
,→,,
AG Automaten und Formale Sprachen

Preprint AFL-2011-06
Otto-von-Guericke-Universität Magdeburg, Germany

k-Local Internal Contextual Grammars
Radu Gramatovici(B) Florin Manea(A,B)

(A)Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik
PSF 4120, D-39016 Magdeburg, Germany

manea@iws.cs.uni-magdeburg.de

(B)Faculty of Mathematics and Computer Science, University of Bucharest,
Str. Academiei 14, RO-010014 Bucharest, Romania,

radu.gramatovici@fmi.unibuc.ro

Abstract

In this paper we propose a generalization of the local internal contextual grammars, in-
troduced by Ilie in 1997, namely the k-local internal contextual grammars. These grammars
are, in fact, classical internal contextual grammars, but their only permitted derivations are
those that can be described in a restricted manner (that depends on the number k). Within
this formalism we define different classes of languages, for which we prove a series gen-
erative properties. Also, we propose an efficient algorithmic solution for the membership
problem for k-local contextual grammars with polynomial choice. This seems interesting to
us, as it shows how the restrictions on the descriptions of the derivations reflect in the pos-
sibility of designing a polynomial algorithm for the acceptance of the languages generated
by internal contextual grammars using such derivations.

1. Introduction
Contextual grammars were introduced in [10] by Solomon Marcus as an attempt to transform in
generative devices some procedures developed within the framework of analytical models. Al-
though a series of linguistic motivations and applications of the contextual grammars formalism
are presented in [13, Chapter 5]), the problem of finding classes of Marcus contextual gram-
mars suitable for natural language processing (discussed in [12, Chapter 7]) is still on going,
following the introduction and study of contextual tree-like structures [5], parsing algorithms
[2, 1, 4, 3, 6, 7] or language properties, such as ambiguity and syntactic complexity, see, e.g.,
[12] and the references therein, [9, 11].

To this end, one of the most important tasks seems to be the design of efficient accep-
tors/parsers for the analysis of contextual languages. Such algorithms are extensively used in
linguistic applications and their primary condition is to be time-efficient. From the theoretical
point of view, this means to have a polynomial (of a reasonable degree) time complexity.

The first approaches to contextual languages recognition/parsing were developed by Har-
busch, in a series of papers [6, 7]. However, the parser for internal contextual grammars with
context-free selectors reported in these papers is not completely defined and it was not proved

2 Radu Gramatovici, Florin Manea

to be correct or to have polynomial complexity. Local internal contextual grammars were intro-
duced by Ilie in [8] as a formalism generating polynomially parsable languages. “Local", in the
context of internal contextual grammars, stands for the localization of the derivation of words,
with respect to the position of the previously inserted context. A similar condition was defined
by Gramatovici in [2], under the name of “derivation that preserves the selectors".

In [8], Ilie showed that the class of languages generated by local internal contextual gram-
mars with regular choice is polynomially parsable. However, this result was not effective: it
was obtained indirectly, and no practical algorithm was proposed for the recognition of local
internal contextual grammars with regular choice. The result of Ilie was improved in [4] in two
directions: first the result was extended for local internal contextual grammars with context-free
choice and, second, it was obtained by effectively constructing a polynomial parser that recog-
nizes any word of length N in O(N7) time; the time complexity of this algorithm was further
improved to O(N4) in [3].

In this paper, we generalize local contextual grammars to k-local contextual grammars.
Similar to the case of the local contextual grammars, the derivation is localized, but a newly
inserted context has to be adjacent to at least to one of the previously inserted k contexts. The
localization condition previously defined in [8] is obtained in our model by taking k = 1. As
an initial result, we show that this generalization is not trivial since k-local internal contextual
grammars generate different classes of languages for different values of k. Further, a series of
language theoretic results are given for k-local internal contextual grammars, showing how the
descriptive restrictions imposed on the derivations reflect in the generative power of the model.
Finally, we show that the languages generated by k-local internal contextual grammars, whit
polynomial choice, can be recognized in polynomial time.

2. Preliminaries
We assume that the reader is familiar with the basic concepts of formal languages theory (see,
e.g., [13]). In this section we only give the definitions, notations and some examples regarding
the generative models we use; for further details concerning contextual grammars the reader is
referred to the monograph [12].

For an alphabet V , we denote by V ∗ and V + the set of all words and of all non-empty words
over V , respectively. The empty word is denoted by λ. Given a word w ∈ V ∗ and a letter a∈ V ,
we denote by |w| and |w|a the length ofw and the number of occurrences of a inw, respectively.
For w ∈ V ∗ and V ′ an alphabet, we obtain w|V ′ from w by erasing all the symbols not contained
in V ′; w|V ′ is called the projection of w to V , .

By FIN, REG, CF, CS and P we denote the classes of finite, regular, context-free, context-
sensitive and deterministic polynomial languages, respectively. Let F be one of these classes.

An internal contextual grammar with selection from F (or, simpler, with F-choice) is a
construct G= (V,A,(L1, c1), . . . ,(Ln, cn)), where:

• V is an alphabet,

• A is a finite language over V , called the set of axioms,

• for i ∈ {1, . . . ,n}, (Li, ci) is a contextual rule with the selection language Li, where
Li ⊆ V ∗ and Li ∈ F , and the context ci = (ui,vi) ∈ V ∗×V ∗.

k-Local Internal Contextual Grammars 3

When the class F is not explicitly mentioned, it is not important or follows from the context.
The derivation in the contextual grammar G is defined as x⇒ y if and only if there is a

contextual rule (Li,(ui,vi)) such that x = x1x2x3 with x2 ∈ Li and y = x1uix2vix3. Let ∗⇒
denote the reflexive and transitive closure of⇒. The language generated by G is L(G) = {w ∈
V ∗ | ∃α ∈ A,α ∗⇒ w}.

We say that a word w can be derived by a sequence of contexts (w1, t1), (w2, t2), . . . ,(wp, tp)
in the contextual grammar G, if there exists the derivation:

α⇒ x1,1w1x2,1t1x3,1⇒ x1,2w2x2,2t2x3,2⇒ . . .⇒ x1,pwpx2,ptpx3,p = w,
such that α= x1,1x2,1x3,1 is an axiom fromA, (Lri ,(wi, ti)) is a contextual rule of the grammar
G, x1,iwix2,itix3,i = x1,i+1x2,i+1x3,i+1 and x2,i ∈ Lri for all 1 ≤ i ≤ p− 1. The sequence of
contexts (w1, t1),(w2, t2), . . . ,(wp, tp) is called the control sequence of the above derivation.

It is not hard to see that the derivation of a word is not fully characterized by its control
sequence, as one could insert the contexts in various positions in the words obtained during
such a derivation. An accurate characterization of a derivation as the above is given by the
description of the derivation:

α;x1,1(w1)x2,1(t1)x3,1;x1,2(w2)x2,2(t2)x3,2; . . . ;x1,p(wp)x2,p(tp)x3,p.
For the purposes of this paper, we introduce the marked description of a derivation. We

define the infinite set of symbols {(i,)i, [i,]i | i ∈ IN}, and assume that none of its symbols be-
longs to V . A marked description of the above derivation of w in the grammar G is a sequence:

α;y1,1(1w1)1y2,1[1t1]1y3,1;y1,2(2w2)2y2,2[2t2]2y3,2; . . . ;y1,p(pwp)py2,p[ptp]py3,p,
where yj,i|V = xj,i, for 1≤ i≤ p, α= y1,1y2,1y3,1, and y1,i(iwi)iy2,i[iti]iy3,i= y1,i+1y2,i+1y3,i+1
for any 1 ≤ j ≤ 3 and 1 ≤ i ≤ p− 1. The marked descriptor of w with respect to the given
derivation is the word β = y1,p(pwp)py2,p[ptp]py3,p.

A marked descriptor β of a word w, with respect to one of its derivations in G, characterizes
completely that derivation. Indeed, one can easily obtain from β the marked description of the
respective derivation of w, by the following algorithm.

Algorithm D. Input: the word β.

1. Start from the marked descriptor of w.

2. While the current descriptor contains parentheses, delete the symbols (j ,)j , [j ,]j for the
maximum j that appears the sequence, together with the symbols from V that are between
(j and)j but are not between other (i and)i with 1≤ i < j, and the symbols from V that
are between [j and]j but are not between other [i and]i with 1≤ i < j.

3. Stop when the sequence contains only symbols from V .

Example 2.1 Note that a word w may have several different marked descriptors, with respect
to the different derivations of that word in an internal contextual grammar with choice, even if
we start all the derivations with the same axiom. Indeed, consider the grammar G = ({a,b},
{a2b3}, (a∗b∗,(a3, b3))). Then the words:

1. a(1aa(2aaa)2a)1abb[1bbb[2bbb]2]1b,

2. (1aaa)1a(2aaa)2ab[1bbb]1bb[2bbb]2,

3. (1aaa(2aaa)2)1aabb[1bbb]1[2bbb]2b, and

4 Radu Gramatovici, Florin Manea

4. aa(1aaa(2aaa)2[2bbb]2)1bbb[1bbb]1

are all marked descriptors of the same word a8b9, with respect to four different two-steps deriva-
tions of this word from the axiom a2b3.

The main notion that we introduce in this paper is defined in the following:

Definition 2.2 Let k be a positive integer and G = (V,A,(L1, c1), . . . ,(Ln, cn)) be an internal
contextual grammar with choice. Consider the following derivation of w from α:

α⇒ x1,1w1x2,1t1x3,1⇒ x1,2w2x2,2t2x3,2⇒ . . .⇒ x1,pwpx2,ptpx3,p = w,
where α= x1,1x2,1x3,1, (wi, ti) = cri , with ri ∈ {1, . . . ,n}, x1,iwix2,itix3,i = x1,i+1x2,i+1x3,i+1
and x2,i ∈ Lri , for all 1 ≤ i ≤ p− 1. This derivation is called k-local if and only if it has the
marked description:

α;y1,1(1w1)1y2,1[1t1]1y3,1;y1,2(2w2)2y2,2[2t2]2y3,2; . . . ;y1,p(pwp)py2,p[ptp]py3,p,
that verifies:

• for any q, with k < q ≤ p, there exists r, with q−k ≤ r < q, such that (r is in y1,q,)r and
[r are in y2,q, and]r is in y3,q.

• for any q and r, with 1≤ r < q ≤ p, if (r is in y1,q and)r is in y2,qy3,q, then)r and [r are
in y2,q and]r is in y3,q; if [r is in y1,qy2,q and]r is in y3,q, then (r is in y1,q,)r is in y2,q
and [r is in y2,q.

A k-local derivation of w from α will be denoted by α ∗⇒k−loc w.
The language generated by the grammar G by k-local derivation is

Lk−loc(G) = {w ∈ V ∗ | ∃α ∈ A,α
∗⇒k−loc w}.

Intuitively, in a k-local derivation only the first k derivation steps can be performed arbitrarily
to the previous steps, while all the other contexts are inserted such that they are adjacent to
one of the previously k inserted contexts. Moreover, if the left side of a context is inserted
adjacently to the left side of some previously inserted context, then also the right side of the new
context is inserted adjacently to the right side of the previously inserted context. For instance,
in Example 2.1 the first marked descriptor corresponds to a k-local derivation with k ≥ 1, the
second corresponds to a k-local derivation with k ≥ 2, while the others do not correspond to
k-local derivations for any k ≥ 1.

For simplicity, we may call an internal contextual grammar k-local internal contextual gram-
mar when we are interested only in the k-local derivation of that grammar.

We denote by ICC(F) the class of languages generated by internal contextual grammars
with F-choice by normal derivation, by ICCk−loc(F) the class of languages generated by inter-
nal contextual grammars with F-choice by k-local derivation, and by ICC∞−loc(F) the union
of the all these classes ICC∞−loc(F) =

⋃
k≥1 ICCk−loc(F).

Since the definition of 1-local derivation (in our setting) is clearly equivalent to the definition
of local derivation, introduced by Ilie in [8], we write ICCloc(F) instead of ICC1−loc(F). .

k-Local Internal Contextual Grammars 5

3. Language theoretic properties
We begin this section with several examples that will become useful in the sequel.

Example 3.1 Let k be an positive integer, and Gk = ({a,b1, . . . , bk}, {b1 . . . bk}, ({b1, . . . , bk},
(ε,a))) be an internal contextual grammar with FIN-choice. First, the language generated
by Gk by normal derivation is the regular language Lk described by the regular expression
b1a
∗b2a

∗ . . . bka
∗. Second, it is not hard to see that the language generated by Gk by `-local

derivation for ` ≥ k, equals Lk. Finally, the language generated by Gk by m-local derivation
for m< k, denoted Lk,m, is different from Lk. Indeed,

Lk,m = {b1a
n1 . . . bka

nk | n1, . . . ,nk ∈ IN, and ∃`, such that k−m≤ `≤ k,
and ∃r1, r2, . . . , r` ∈ {1, . . . ,k}, with nr1 = nr2 = . . .= nr` = 0}.

That is, in any word from Lk,m, at most m groups of a symbols are non-empty.

Example 3.2 Let k be a positive integer, and let G′k = ({a,b1, b2, . . . , b2k−1}, {b1b2 . . . b2k−1},
({b1, b3 . . . , b2k−1}, (a,a))) be an internal contextual grammar with FIN-choice. The language
generated by G′k by normal derivation is, clearly, the context-free language:

L′k = L(G′k) = {an1b1a
n1b2a

n2b3a
n2 . . .ankb2k−1a

nk | n1, . . . ,nk ≥ 0}.
Further, it is not hard to see that all the languages L′k,` generated by G′k by `-local derivation
for `≥ k, are equal to L′k. On the other hand, the languages L′k,m generated by G′k by m-local
derivation for m< k, are different from L′k. Indeed,

L′k,m = { an1b1a
n1b2a

n2b3a
n2 . . .ankb2k−1a

nk | n1, . . . ,nk ≥ 0, and
∃`, such that k−m≤ `≤ k, and ∃r1, r2, . . . , r`, such that
1≤ r1 < r2 < .. . < r` ≤ k and nr1 = nr2 = . . .= nr` = 0}.

We will see in the following that L′k cannot be generated by any internal contextual grammar
with F-choice by m-local derivation for m< k and F an arbitrary class of languages.

Example 3.3 Let G′′ = ({a,b,c},{abc},({ab+},(a,bc))) be an internal contextual grammar
with regular choice. For all k ≥ 1, the language generated by the grammar G by k-local deriva-
tion, denoted L′′k, is non-context-free language. Indeed, it is not hard to see that L′′k ∩a∗b∗c∗ =
{anbncn | n≥ 1}, which is not a context-free language. Thus, L′′k is also a non-context-free.

Remark 1 If x1,1x2,1x3,1⇒ x1,1w1x2,1t1x3,1⇒ . . .⇒ x1,pwpx2,ptpx3,p is a k-local derivation
in an internal contextual grammarG and t is a positive integer with 1< t≤ p, then x1,tx2,tx3,t⇒
x1,twtx2,tttx3,t⇒ . . .⇒ x1,pwpx2,ptpx3,p is also a k-local derivation in G.

Proof.
Let y1,1y2,1y3,1, y1,1(1w1)1y2,1[1t1]1y3,1, y1,2(2w2)2y2,2[2t2]2y3,2, . . . , y1,p(pwp)py2,p[ptp]py3,p,

be a marked description of the derivation x1,1x2,1x3,1
∗⇒ x1,pwpx2,ptpx3,p. We define the al-

phabet V ′ = V ∪ {(j ,)j , [j ,]j |t ≤ j ≤ p} and the words αi = y1,i(iwi)iy2,i[iti]iy3,i|V ′ for all
i such that t ≤ i ≤ p. Then, for all i such that t ≤ i ≤ p, define the words βi−t+1 as αi
in which we replace the index j of all parentheses (j ,)j , [j ,]j by j − t+ 1. It is rather

6 Radu Gramatovici, Florin Manea

clear that the sequence x1,tx2,tx3,t,β1, . . . ,βp−t+1 is a marked description of the derivation
x1,rx2,rx3,r

∗⇒ x1,pwpx2,ptpx3,p.
According to Definition 2.2, it follows that the following holds for the marked description

y1,1y2,1y3,1, y1,1(1w1)1y2,1[1t1]1y3,1, y1,2(2w2)2y2,2[2t2]2y3,2, . . . , y1,p(pwp)py2,p[ptp]py3,p: for
any q, with k < q ≤ p, there exists r, with q−k ≤ r < q, such that (r belongs to y1,q,)r and [r
belong to y2,q and]r belongs to y3,q.

From the way in which it was constructed and from the fact that the above property re-
lies only on the previously inserted k contexts, it results that the same property is true for the
marked description x1,tx2,tx3,t,β1, . . . ,βp−t+1. Clearly, the second condition from the the defi-
nition of k-local derivation holds canonically for this marked description. Thus, the derivation
x1,rx2,rx3,r

∗⇒ x1,pwpx2,ptpx3,p, given by the above marked description, is also a k-local. 2 2
The following result is immediate:

Proposition 3.4 For any two classes of languages F and F ′, if F ⊆ F ′ then ICCk−loc(F) ⊆
ICCk−loc(F ′).

Further, we present a series of generative properties of k-local internal contextual grammars.

Proposition 3.5 ICC(k+1)−loc(F) \ ICCk−loc(F) 6= ∅ for all k ≥ 1 and all the classes of lan-
guages F that contain FIN.

Proof.
Consider the language L′k+1 defined in Example 3.2,

L′k+1 = {an1b1a
n1b2a

n2b3a
n2 . . .ank+1b2k+1a

nk+1 | n1, . . . ,nk+1 ≥ 0}.
From Example 3.2 it follows thatL′k+1 is generated by the grammarG′k+1 which has FIN-choice
by (k+ 1)-local derivation. Thus, L′k+1 ∈ ICC(k+1)−loc(FIN), and, consequently, L′k+1 ∈
ICC(k+1)−loc(F) for all the classes of languages F that contain FIN.

For the second part of the proof, we show that L′k+1 /∈ ICCk−loc(F) for any class of lan-
guages F .

Assume the opposite: there exists a class of languages F such that L′k+1 ∈ ICCk−loc(F).
Consequently, there exists an internal contextual grammar with F-choice G = (V,A, (L1, c1),
. . . , (Ln, cn)) such that Lk−loc(G) = L′k+1.

For 1 ≤ i ≤ k+ 1, denote by Ni = 1+max{ni | there exist n1, . . . , ni−1,ni+1, . . . , nk+1,
such that an1b1a

n1b2a
n2b3a

n2 . . .anib2i−1a
ni . . .ank+1b2k+1a

nk+1∈A}.
Consider w = aN1b1a

N1b2a
N2b3a

N2 . . .aNk+1b2k+1a
Nk+1 . By the definition of the language

L′k+1 we have w ∈ L′k+1 \A. Therefore, there exists a k-local derivation α ∗⇒k−loc w, where
α ∈ A. Now, it is not hard to see that no context of the grammar, that is used in the derivation
of w, contains any of the symbols b1, b2, . . . , bk; otherwise we could easily obtain words that
contain more than one bi-symbol for some i ∈ {1, . . . ,k}. Moreover, each of the 2k+2 groups
of a-symbols of w can be obtained only after the insertion of at least one context. Also, the
only possibility for the sides of a context to be inserted simultaneously in two such groups
of a-symbols would be to insert it around a word of the form a`bia

e for some `,r ∈ IN and
i ∈ {1, . . . ,k}. Now, if w would be derived by a k-local derivation we would obtain that the
sides of the contexts could be inserted in at most 2k of the a-symbols groups. But this is a
contradiction.

Thus L′k+1 /∈ ICCk−loc(F), for any class of languages F . 2 2

k-Local Internal Contextual Grammars 7

Proposition 3.6 ICCk−loc(F) is incomparable with REG for all k ≥ 1 and all the classes of
languages F that contain FIN.

Proof.
Let k ≥ 1 be a positive integer. Consider the regular language L2k+1 defined in Example
3.1. Similarly to the second part of the proof of Proposition 3.5, one can show that L2k+1 /∈
ICCk−loc(F) for any class of languages F .

According to the previous examples we see that ICCk−loc(FIN) contains some regular lan-
guages. Moreover, if F contains FIN then ICCk−loc(F) also contains languages as L′k, defined
in Example 3.2, which is a context-free non-regular language. 2 2

In fact, for any k ≥ 1 and any class of languages F that contains REG, ICCk−loc(F) may
contain even non-context-free languages. Example 3.3 presents a series of non-context free
languages that can be generated by an internal contextual grammar with REG-choice by k-local
derivation for all k ≥ 1.

The following result answers an open problem from [8, page 43].

Proposition 3.7 For any class of languages F , the class of regular languages REG is not in-
cluded in ICCloc(F).

Proof. It follows as in the second part of the proof of Proposition 3.5 for k = 1, and using the
equivalence between the 1-local derivation and the local derivation. 2 2

We conclude this section by giving a result on the upper bound of the class of languages
generated by k-local internal contextual grammars with at most CS-choice.

Proposition 3.8 For any class of languages F contained in the class of context-sensitive lan-
guages, we have ICC∞−loc(F)⊂ CS.

Proof.
Given an internal contextual grammar G, with at most context-sensitive choice, one can easily
construct a Turing machine working in linear space and accepting Lk−loc(G).

Further, recall that a language L⊆ V ∗ fulfills the internal bounded step property if there is
a constant p such that for each w ∈ L with |w|> p, there exists y ∈ L such that x= x1ux2vx3,
y = x1x2x3 and 0 < |uv| ≤ p (see [13, page 243]). Clearly, any internal contextual grammar
G with at most CS-choice generates, by k-local derivation, only languages having the internal
bounded step property, while CS contains also languages that do not fulfill the IBS property.
Hence, the inclusion ICC∞−loc(F)⊂ CS is strict. This concludes our proof. 2 2

4. Computational Aspects
For the rest of the paper we fix an internal contextual grammar G = (V, A, (L1,(u1,v1)), . . . ,
(Ln,(un,vn))) with P-choice. The problem that we try to solve in this section is the membership
problem for the language generated by the grammar G: given a word w ∈ V ∗ and k ∈ IN we
must decide whether w was generated by G or not by k-local derivation.

We may assume, without losing generality, that if (ui,vi) is a context of this grammar then
uivi 6= λ. Clearly, the derivation of a word w in such a grammar has at most |w| steps. Also,
note that, since Li is in P, the language uiLivi is in P as well for all i ∈ {1, . . . ,n}.

8 Radu Gramatovici, Florin Manea

Our approach is based on a bottom-up strategy: we try to identify the rules that were used in
the possible derivations of w, in the reverse order of their application, and we accept if and only
if we obtain in this way a derivation that started with an axiom of G. A sketch of this approach
is given in the following.

Generic Parsing Algorithm. Input: the word w.

1. Let w be the input word.

2. Let S = {w} be a queue and S′ = ∅ be a set (also implemented as a queue).

3. While S is not void do:

3.1. Extract the word x from S; add x to S′.

3.2. If x is an axiom: STOP; w is accepted.

3.3. For all the contexts (u,v) such that x = yusvz, and s selects (u,v), add ysz to S,
but only if xyz /∈ S∪S′.

4. STOP; S is void and no axiom was found, hence, the word w is rejected.

Clearly, a direct implementation of this approach runs in exponential time and it is generally
unknown whether the membership problems for languages generated by unrestricted internal
contextual grammars with P-choice can be solved in polynomial time. We show here that when
we are interested in checking whether w can be derived by k-local derivation, we can imple-
ment the general idea mentioned above in polynomial time; however, degree of the polynomial
bounding the running time of this algorithm depends on k.

First note that, due to the locality of the derivation, it is important to identify and memorize
the exact place and derivation step in which each a context was inserted during a derivation, not
only to identify and store the contextual rules that were used in that derivation. Thus, we use
the following approach: each time a valid context is identified, it is marked; as in the case of
the marked description of the derivation, the left side of an identified context is placed between
(and), while the right side is placed between [and]. Moreover, we associate with every
context we find the number of contexts that we already identified in the input word, to which
we add 1. For example, assuming that m derivation steps are performed in order to obtain w
from an axiom α of the grammar, the first context we identify (which is, in fact, the last context
inserted in the derivation α ∗⇒k−loc w) is associated with 1, the second with 2, and so on; the last
context identified (which is actually the first context inserted in the derivation) is associated with
m. Thus, the sequence of the numbers associated with the identified contexts is the reversed
sequence of numbers associated with the contexts in the marked description of the derivation.
For simplicity, a symbol a, from a word in which several contexts were identified and marked,
is said to be (-marked (respectively, [-marked) if there exists in the given word the symbol (q
(respectively, the [q symbol) placed to the left of the symbol a and the symbol)q (respectively,
the]q symbol) placed to the right of the symbol a for some q ∈ IN ; a factor of the word is said
to be (-marked ([-marked) if it is placed between by (q and)q (by [q and]q) for some q ∈ IN .
A (-marked ([-marked) factor of a word in which several contexts were identified and marked
is said to be maximal if it is there is no other (-marked ([-marked) factor of the same word that
contains it.

We say that a word x is correctly parenthesized if the following hold:

k-Local Internal Contextual Grammars 9

• the word x contains at most one symbol (j and one symbol)j for all j ∈ IN ; also, x
contains at most one symbol [j and one symbol]j for all j ∈ IN ;

• if x contains one symbol from {(j ,)j , [j ,]j}, then it contains all the symbols from this set,
and x= x′(jy

′)jz
′[ju
′]jv
′;

• if (l appears in x between (j and)j , then)l appears also between (j and)j ; if [l appears
in x between [j and]j , so does]l.

It is not hard to see that the marked descriptor of a word z, with respect to a derivation
of the grammar G, is correctly parenthesized. On the other hand, the words we obtain, by
identifying the contexts inserted in a word and associating numbers with them, are also correctly
parenthesized.

In the following we note an important property of the words obtained by identifying and
marking contexts as described above. Let w be a word obtained by k-local derivation from α,
and let c1, . . . , cm be the contexts inserted in this derivation. We identify and mark successively,
in reverse order, the contexts inserted in w starting with the last one. After all these contexts
are identified and marked, the unmarked symbols of w form the word α. Further, assume
that we have marked the last r contexts inserted in the above derivation of w, for some 1 ≤
r ≤ m. We state that in the word obtained by marking these contexts in w there are at most
k maximal (-marked ([-marked) factors. It is sufficient to prove this statement for (-marked
symbols, a similar argument being valid for [-marked sequences. We use induction: for r ≤ k,
the statement holds canonically. We assume that it holds for a given r, and we prove that it
holds for r+1. Assume the opposite: after marking the context cm−r we obtain k+1 maximal
(-marked maximal factors. Since the statement was valid for r, it follows that the symbols of
the left sides of the contexts {cm−r+1, . . . , cm} form exactly k factors, and by marking the left
side of cm−r none of these factors is extended. Let N be the number of different maximal (-
marked factors, containing the symbols of the left sides of the contexts {cm−r+1, . . . , cm−r+k};
from the definition of the k-local derivation it follows that the symbols of the left side of the
context cm−t+r+1 are contained in one of the factors delimited by (q and)q, with m− r+1 ≤
q ≤ m− r+k. In the same manner, we prove that the left side of every context from the set
{cm−r+2, . . . , cm} is contained in one of these N factors. Hence, N = k and every left side
of the contexts {dm−r+1, . . . ,dm−r+k} is in a different maximal (-marked factor. Finally, the
symbols of the left side of the context dm−r+k are contained in one of the factors delimited by
(q and)q, with m− r ≤ q ≤m− r+k−1; but, since these symbols are not contained in one of
the factors delimited by (q and)q, with m− r+1≤ q ≤m− r+k−1, it follows that they are
contained in the factor delimited by (m−r and)m−r. This is a contradiction, thus, we completed
the proof of the induction step. In conclusion, we showed that if the word w is obtained by
a k-local derivation from α by inserting the contexts c1, . . . , cm, then by marking the symbols
of cm−r, . . . , cm in reverse order, for r ≥ 0, we obtain at most k maximal (-marked ([-marked)
factors.

According to the above, after identifying and marking the symbols of the last r identified
contexts, we obtain a word with at most k (-marked ([-marked) maximal factors.

Now we briefly describe how a context is identified: assume that we have a word x in
which q− 1 contexts were identified so far; we also associated numbers with these contexts,
so some of the symbols of x were marked. We search for a word usv as factors of the word

10 Radu Gramatovici, Florin Manea

formed by the unmarked symbols of x, provided that c = (u,v) is a context of the grammar
and s is a selector of that context; if we find an occurrence of this word we place the symbols
corresponding to u between (q and)q and the symbols corresponding to v between [q and]q.
Note that when doing this we may also place between (q and)q (respectively, between [q and
]q) several already marked symbols, and the corresponding parentheses. However, the insertion
of the new parentheses is made such that the obtained word remains correctly parenthesized; if
there are more than one possibility to do this then all of them are analyzed.

Once a new context, say the qth, is identified in the word, we check whether the derivation
constructed so far is k-local. Formally, we must check whether there exists r with q > r≥ q−k,
such that (r and)r are found between (q and)q and [r and]r are found between [q and]q. To
this end, we say that the index r is satisfied if there exists an index q, with r+k ≥ q > r, such
that (r and)r are found between (q and)q and [r and]r are found between [q and]q, in the
word obtained after r+k context were identified. Assume that, at some point, we succeeded to
identify r+k contexts; these derivation steps form a k-local derivation if and only if after the
(r+k)th context was identified, and the corresponding parentheses inserted, all the indices that
are not satisfied are strictly greater than r. Clearly, the indices of the parentheses limiting the
maximal marked factors are not satisfied.

Now we are able to describe formally the main step of our algorithm.

Remark 2 Let γ ∈ (V ∪{(j ,)j , [j ,]j | j ≤ |w|})∗ be a word such that:

• γ is correctly parenthesized;

• γ |V= w and the unmarked symbols of γ form a word y;

• γ has m maximal (-marked factors and m′ maximal [-marked factors where both m and
m′ are less or equal to k;

Then the following equivalence holds:

• w is obtained from y by a p-steps k-local derivation, and

• γ can be obtained from w by marking the symbols of the contexts inserted in the above
derivation, in reverse order of their insertion, and

• the unsatisfied indices of the parentheses appearing in γ are greater than p−k.

if and only if there exists β ∈ (V ∪{(j ,)j , [j ,]j | j ≤ |y|})∗ such that:

• β |V= w, the unmarked symbols of β form the word z, and w is obtained from z by a
(p−1)-steps k-local derivation,

• β has j maximal (-marked sequences and j′ maximal [-marked sequences with j,j′ ≤
k; moreover, β can be obtained from w by marking the contexts inserted in the above
derivation, in reverse order of their insertion,

• each of not-satisfied indices in β are greater than p−1−k, and

k-Local Internal Contextual Grammars 11

• there exists a context c= (u,v) inX and one of its selectors s, such that γ can be obtained
from β by identifying in z an occurrence of the sequence usv (in this order), and marking
the symbols corresponding to the context c in β. 2

Proof. The proof of the direct implication is immediate. Assume that there exists a word γ
that verifies the above and the contexts inserted during the derivation y ∗⇒k−loc w are c1, . . . , cp.
As stated, γ is obtained from w by identifying and marking the symbols of these contexts. If
we unmark the symbols of c1 in γ, we obtain a word β. This word could have been obtained,
also, from w by marking the symbols of c2, . . . , ct. From the remarks we made, it follows that β
verifies all the listed properties.

To prove the reverse implication, we first observe that z ∗⇒w, since y⇒ z by the insertion of
(u,v) and z ∗⇒k−loc w. Since β can be obtained from w by marking the symbols of the contexts
inserted in the derivation z ∗⇒k−loc w in reverse order of their insertion, it follows that γ can
be obtained from w by marking the symbols of the contexts inserted in the derivation x ∗⇒ w.
Also, it is easy to observe that this derivation is performed in p steps.

To prove that the locality condition holds for the derivation y⇒ z
∗⇒k−loc w, we note that

this condition holds canonically for the first k contexts inserted, and for the contexts inserted in
the last p− 1− k steps (due to the k-locality of the derivation z ∗⇒k−loc w). Consequently we
should prove only that the locality condition holds for the context inserted in the k+1-st step.
If this condition does not hold it results that the index p−k is not satisfied in γ, a contradiction
with the hypothesis. Hence, y ∗⇒k−loc w. This concludes our proof. 2 2

Coming closer to an effective implementation of the bottom-up strategy mentioned before,
note that at any moment of a successful analysis (one that confirms that the w can be generated
by G starting from some word by k-local derivation) there exist at most k not-satisfied indices,
and the difference between any two such indices is less than k. Thus, we can use, instead
of the real value of the indices, their value modulo k. In this setting, the q derivation steps
from a derivation of w discovered until a given moment do not form a k-local derivation if and
only if there exist two unsatisfied indices, associated with the parentheses used to mark these
contexts, that are equal modulo k; that is, the derivation of w is not k-local if and only if the
indices of the parentheses associated with the (q−k)th context were not satisfied after the qth

context was identified. Also, one should memorize only the unsatisfied indices, the position of
the parentheses associated with these indices and the number of contexts identified until that
moment in the input word.

According to Remark 2, an algorithm deciding whether w can be generated by G could
work as follows: perform a “breadth-first” search in the space of all the words that verify the
conditions in Proposition 2, starting from the word w, and trying to find a word α, whose
unmarked symbols form an axiom of the grammar. Following Remark 2, the transition, in such
a search, between two words β and γ is possible if and only if γ can be obtained from β by
marking the sides of a context correctly selected.

The basic data structure used in our algorithmic approach is called item, and it is a pair
(γ,m) with m ∈ IN such that m ≤ |w| and γ ∈ (V ∪{(i,)i, [i,]i | 0 ≤ i ≤ k− 1})∗ such that
γ contains t maximal (-marked sequences and t′ maximal [-marked sequences with t, t′ ≤ k.
Every word γ which verifies the properties stated in Remark 2 can be encoded as the item
(γ,m) where m is the number of contexts identified in γ so far and γ is obtained from γ by

12 Radu Gramatovici, Florin Manea

deleting the parentheses with satisfied indices and, then, by replacing each index with its value
modulo k.

Now we are able to give an exact insight on how our algorithm works.

Remark 3 In order to decide whether w can be generated by G we run an algorithm that per-
forms a breadth-first search in the space of all the possible items, according to the following
guidelines:

• The starting item of the search is (w,0);

• The transition from an item (β,a) towards an item (γ,b) is possible if and only if:
– b= a+1;
– γ′ is a word obtained from β by identifying and marking (as described before) the sides
of a context correctly selected,
– γ is obtained from γ′ by deleting all the parentheses with satisfied indices.

• If we reach, during this search, an item (α,a), such that the unmarked symbols of α form
an axiom of the grammar, then the algorithm stops and accepts. Otherwise, the algorithm
stops and rejects the input word.

It is not hard to see that this algorithm stops after a finite number of steps. Indeed, we note
that, for a given word w, the graph defined by the items and the transitions connecting them is
a directed acyclic graph, each path in this graph having at most |w| items on it. Also, we have
to explore only the items obtained from w by marking the symbols of several contexts, using
markings indexed over the set {0, . . . ,k−1}. 2

Note that every item that appears in the above search has at most k (-marked maximal
factors and at most k [-maximal marked factors. Thus, we can bijectively associate with every
item (α,a) a tuple (i0, j0, . . . , i2k−1, j2k−1,a) such that:

• For l < k, il and jl are the positions in the input word where the factor placed between
(l and)l starts and ends, respectively. More precisely, il (respectively, jl) equals the
position of the last symbol from the input word that is placed before (l ()l, respectively);
if no such a symbol exists, then il = 0 (jl = 0, respectively). If (l,)l does not exist in α,
then il = jl =−1;

• For l ≥ k, il and jl are the positions in the input word where the factor placed between
[l−k and]l−k starts and ends, respectively. More precisely, il (respectively, jl) equals the
position of the last symbol from the input word that is placed before [l−k (]l−k, respec-
tively); if no such a symbol exists, then il = 0 (jl = 0, respectively). If [l−k,]l−k does not
exist in α, then il = jl =−1.

Consequently, we can associate with a set of items I a characteristic function CI , such that:

• CI(i0, j0, . . . , i2k−1, j2k−1,a) = 1 if the item (α,a), associated with the tuple (i0, j0, . . . ,
i2k−1, j2k−1,a), is in I;

• CI(i0, j0, . . . , i2k−1, j2k−1,a) = 0, otherwise.

k-Local Internal Contextual Grammars 13

In practice, this function will be implemented as a 4k+1-dimensional array. Consequently, on
a random access machine, both the time needed to modify the value of an element of this matrix
and the time needed to compare the value of an element of the array with a given number are
constant. The tuple that corresponds to an item that appears in the search algorithm described
in Remark 3 can be roughly described as having on each of its components a value between −1
and |w|, where w is the input word. Hence, assuming that k is a constant, we state that there are
at most (|w|+2)4k+1, i.e. O(|w|4k+1) items that verify the restrictions described above.

We denote by Items the set of all the items; we denote by Items(w) the set of all the items
that can appear in the analysis of the word w.

The second data structure that we use is needed in order to be able to obtain a description
of the derivation of a word w. This structure consists of a partial function fw : Items(w)→
Items(w) that verifies the following properties:

• f((α,a)) = (β,a− 1) if and only if there exists a transition from the item (β,a− 1) to
(α,a);

• f is undefined otherwise.

In the implementation of the algorithm, this function can be described as a 4k+1 dimensional
array, containing tuples. The size of such an array is also O(|w|4k+1).

Also, our algorithm produces, if possible, a final item: this is an item that verifies the prop-
erty that its unmarked symbols form an axiom of the grammar.

We can now formally define the parsing algorithm for the internal contextual grammar with
context free choice G and k-local derivation, following the guidelines stated in Remark 3. We
make the observation that every set used in this algorithm is implemented as a queue. Also, let
us state that n is the number of contextual rules and m is the number of axioms in G.

Algorithm A

1. Denote by w the input word.

2. Initialize the set of items: S = {(w,0)} and the array associated with it, CS .

3. Initialize the function f , described above, leaving it undefined in every point.

4. Initialize the set of items S′ = ∅ and the array associated with it, CS′ .

5. While S 6= ∅ do:

5.1. Extract the item (β,a) from S; add (β,a) to S′ and adjust the values corresponding
to this item in the arrays CS and CS′ .

5.2. Let y be the word formed by the unmarked symbols of β.

5.3. If there exists i ∈ {1, . . . ,m}, such that y equals the axiom ai then: let the final item
be (β,a); stop the algorithm and output “YES".

5.4. For all i ∈ {1, . . . ,n} do:
5.4.1. Find all the factors z of y such that z = uisvi with s ∈ Li.
5.4.2. Generate all possible words α obtained from β by marking the words ui and

vi, found above, with parentheses indexed by ((a+1) mod k), as follows:

14 Radu Gramatovici, Florin Manea

5.4.2.1. Generate the tuple associated with the item (α′,a+ 1) from the tuple
(i0, j0, . . . , i2k−1, j2k−1,a) associated with (β,a), by setting to −1 the four
components corresponding to the indices that are going to be satisfied by
the insertion of the parentheses ((a+1) mod k,)(a+1) mod k, [(a+1) mod k,](a+1) mod k

in β.
5.4.2.2. If α′ is correctly parenthesized and the equality i(a+1) mod k = j(a+1) mod k

= ik+((a+1) mod k) = jk+((a+1) mod k) =−1 holds, then generate the tuple as-
sociated with the item (α,a+ 1) from the tuple associated with the item
(α′,a+1), by assigning to the above four components the values of the po-
sitions in w of the parentheses ((a+1) mod k,)(a+1) mod k, [(a+1) mod k,](a+1) mod k,
respectively.

5.4.2.3. If (α,a+1) /∈ S∪S′ then insert (α,a+1) in S and adjust CS .
5.4.2.4. Let f((α,a+1)) = (β,a).

6. Stop the algorithm and output “NO";

As a consequence of the remarks made before the definition of the algorithm, it is clear that the
Algorithm A ends after a finite number of steps and outputs “YES” iff the word w is generated
by the grammar G, and “NO” otherwise.

In the following we compute the time complexity of this algorithm, as a function depending
on the length of the input word w. Note that the time bounds that we will prove are valid for
random access machines.

It is obvious that the steps 1 and 6 are executed in constant time. In the execution of the
steps 2 and 4, the initialization of the arrays corresponding to the sets S and S′ is preformed
in O(|w|4k+1) computational time, and the initialization of the sets (queues) S and S′ is done
in constant time. Similarly, the initialization of the function f , in step 3, requires O(|w|4k+1).
Consequently, the entire computation in steps 2,3 and 4 is carried out in O(|w|4k+1) time. It
is not hard to see that the number of times the While cycle from step 5 is executed coincides
with the cardinality of the set S′ at the end of the algorithm. Consequently, it also equals
the number of items reached during the search performed by Algorithm A. Hence, this cycle
is executed for at most O(|w|4k+1) times. Now, we have to check the running time needed
for the operations performed in one iteration of this cycle. The step 5.1 can be executed in
constant time while the step 5.2 needs O(|w|) computational time. The execution of the step
5.3 also needs linear time. First, we have to check if there exists an axiom of the grammar
that equals y. Hence, we have to do a constant number of comparisons between two word;
every such comparison needs as many symbols comparisons as the length of the shorter of
the two words plus a comparison between the length of the two words, and, consequently,
every comparison can be implemented in constant time (since all the axioms have their length
bounded by a constant). The other operations performed in this step can be executed in linear
time. Finally, we check the complexity of the cycle in the step 5.4. This cycle is executed for n
times, hence a constant number of times. First, step 5.4.1 requires O(|w|2P (|w|)) time, where
P (n) is the time complexity needed to recognize any of the languages Li for i ∈ {i ldots,n}.
The cycle in step 5.4.2 is executed for all the possible words that can be obtained from β by
marking an occurrence of a word of the form uisvi, s ∈ Li, as a subsequence of y. There are
O(|β|4) =O(|w|4) possibilities of placing the markings in β; for each of these possibilities, one

k-Local Internal Contextual Grammars 15

may discover in linear time if it verifies the conditions imposed in this step: the markings delimit
an occurrence of the context (ui,vi), correctly selected, and, the word obtained is correctly
parenthesized. Indeed, we can store the occurrences of the words uisvi, s ∈ Li, in y during
the execution of step 5.4.1., and we can check if a word is correctly parenthesized in linear
time. Consequently, this cycle is executed for O(|w4|) times, for each possibility a linear time
verification of the conditions being needed. Also, each of the steps in the cycle 5.4.2 can be
executed in linear time. To conclude, the execution of the whole cycle 5.4.2 can be performed
in O(|w|5) computational time. The complexity of the cycle 5.4 is, hence, O(|w|5). Finally,
we obtain the complexity of one execution of the operations contained by the While cycle in
step 5: O(|w|5). Consequently, the overall running time of step 5 is: O(|w|4k+6). Adding the
complexity of the steps 1,2,3,4,5 and 6, we obtain that total time complexity of the parsing
algorithm on the input w: O(|w|4k+6).

By this we have proved:

Theorem 4.1 For an internal contextual grammar G with P-choice, the membership prob-
lem can be solved in polynomial time by Algorithm A. The complexity of this algorithm is
O(N4k+6). 2

Remark 4 The complexity of the Algorithm A can be reduced by precomputing the positions
where a context could be found in a word obtained from w by (-marking t sequences and [-
marking t′ sequences, t, t′ ≤ k. In particular cases (in the case when k = 1, for example) the
locality condition can be expressed in a less complicated form, and, also, the identification of
the contexts can be carried out in a more efficient way; such things can bring important opti-
mizations to our algorithm (mainly in the implementation of the cycle 5.4.2.). See, for instance
[3]. In this paper, our main interest was to prove that parsing k-local contextual languages is
polynomial, not to provide the most efficient algorithm that does it. Hence, we proposed a
more time consuming, yet polynomial, more readable algorithm, rather than presenting a very
difficult-to-follow, though optimized, version.

Our algorithm can be used also as a parsing algorithm. In order to obtain a description of
a derivation of the input word w accepted by the Algorithm A, we should just follow the path
found by Algorithm A from the item (w,0) to the final item, as it is provided by the function
f . In the following we present an algorithm that obtains the marked descriptor of w, according
to a derivation of w in G, discovered by the Algorithm A.

Algorithm B

1. Let (α,a) be the final item produced by the Algorithm A for the input word w. Let t= a
be the length of the derivation of w and β = w be a word.

2. While a > 0 do:

2.1. Let (α′,a−1) = f((α,a)).

2.2. Construct the word β′ by inserting in β the (t−a+ 1)-indexed parentheses at the
positions indicated in (i0, j0, . . . , i2k−1, j2k−1,a), the tuple associated with (α,a).
More exactly, the symbol (t−a+1 is inserted in β on the position ia mod k, the symbol
)t−a+1 is inserted in β on the position ja mod k, the symbol [t−a+1 is inserted in β on
the position ik+a mod k, the symbol]t−a+1 is inserted in β on the position jk+a mod k.

16 Radu Gramatovici, Florin Manea

Note that all these positions are relative to the symbols of w. Additionally, the new
parentheses should be inserted in such a way to produce a correctly parenthesized
word and to satisfy the indices that appear as not-satisfied in α′, but appear as satis-
fied in α.

2.3. Substitute α= α′, β = β′, a= a−1;

3. Output β.

The strategy implemented by this algorithm is very simple. Since w is accepted by Algo-
rithm A, a final item (α0,a) is reached. If w is an axiom in G, then (α0,a) = (w,0), and w is
its own marked descriptor. Therefore, in this case, the algorithm outputs w.

If w is not an axiom, then starting with the final item (α0,a) provided by the Algorithm A,
we obtain a sequence of items (αl,a− l), with 0≤ l≤ a, such that (αl,a− l) = f(αl−1,a− l+1)
for any 1 ≤ l ≤ a. From the reverse implication of Proposition 2, such a sequence exists, and
the word w is obtained from the axiom α0|V , by successively inserting a contexts from G.

These contexts are successively marked in the word w, in the order of their application,
using the information stored in the items (αl,a− l), with 0 ≤ l ≤ a− 1. The positions, in
which the l-indexed parentheses are inserted, are extracted from the item (αl−1,a− l+ 1) for
each 1 ≤ l ≤ a. More exactly, with the tuple (i0, j0, . . . , i2k−1, j2k−1,a− l+1) associated with
(αl−1,a− l+1), the symbol (t−a+1 is inserted in w on the position ia mod k, the symbol)t−a+1 is
inserted in w on the position ja mod k, the symbol [t−a+1 is inserted in w on the position ik+a mod k,
the symbol]t−a+1 is inserted in w on the position jk+a mod k. Remember, from the definition of
a tuple associated with an item produced by the Algorithm A, that positioning a parenthesis
relative to the positions of the symbols of w means to insert the parenthesis with the position i
after the i− th symbol of w (the 0 position being in front of all symbols of w).

Moreover, when several parentheses share the same position in w, we apply the following
principles for deciding their relative order:

• The new parentheses should be inserted such that a correctly parenthesized word is pro-
duced.

• The new parentheses of an index l, with 2 ≤ l ≤ a, should be inserted in order to satisfy
the indices that appear as not-satisfied in αl, but appear as satisfied in αl−1.

To obtain the running time of the Algorithm B, we analyze, as in the case of Algorithm A,
each of its steps. Step 1 can be executed in constant time. The cycle in the step 2 is executed
for at most a times, with a ≤ |w|. The most time-consuming step in this cycle is the step
2.2, and it requires O(|w|) time. To conclude, this algorithm can be implemented in O(|w|2)
computational time.

Finally, the marked descriptor of w produced by the Algorithm B can be further processed
in order to generate the marked description of the derivation of w in G. It is straightforward that
the computational complexity of the Algorithm D, that does this thing, is also O(|w|2) for an
input word w.

k-Local Internal Contextual Grammars 17

5. Conclusions
The generalization of local contextual grammars proposed in this paper is supported by the
fact that such grammars have rather poor generative properties. Proposition 3.7 answers an
open question given by Ilie in [8]: there are regular languages that cannot be generated by
local internal contextual grammars with finite or regular choice. A similar result is proved in
Proposition 3.6 for any k-local internal contextual grammar with a fixed k ≥ 1. It remains an
open problem whether any regular language can be generated by a k-local internal contextual
grammar for some k depending on that regular language.

The problem of recognizing k-local internal contextual languages with only finite, regular
or context-free choice should be considered; it seems interesting to see whether the particular
form of the selectors permits a more efficient implementation of our entire strategy, or only the
identification of the contexts and their selectors can be performed faster. It is worth seeing if
our approach works for other types of (linguistically motivated) contextual grammars.

References
[1] G. B. ENGUIX, R. GRAMATOVICI, Parsing with Active P Automata. In: Workshop on

Membrane Computing’03. Lecture Notes in Computer Science 2933, Springer, 2004, 31–
42.

[2] R. GRAMATOVICI, An Efficient Parser for a Class of Contextual Languages. Fundam.
Inform. 33 (1998) 3, 211–238.

[3] R. GRAMATOVICI, F. MANEA, A CYK-based Parser for Local Internal Contextual Gram-
mars with Context-Free Choice. In: Proc. AFL’05. 2005, 31–42.

[4] R. GRAMATOVICI, F. MANEA, Parsing Local Internal Contextual Languages with
Context-Free Choice. Fundam. Inform. 64 (2005) 1-4, 171–183.

[5] R. GRAMATOVICI, C. MARTÍN-VIDE, Sorted dependency insertion grammars. Theor.
Comput. Sci. 354 (2006) 1, 142–152.

[6] K. HARBUSCH, An Efficient Online Parser for Contextual Grammars with at Most
Context-Free Selectors. In: CICLing. Lecture Notes in Computer Science 2588, Springer,
2003, 168–179.

[7] K. HARBUSCH, Parsing Contextual Grammars with Linear, Regular and Context-Free
Selectors. In: Grammars and Automata for String Processing. Topics in Computer Math-
ematics 9, Taylor and Francis, 2003, 45–54.

[8] L. ILIE, On Computational Complexity of Contextual Languages. Theor. Comput. Sci.
183 (1997) 1, 33–44.

[9] P. JANCAR, F. MRÁZ, M. PLÁTEK, M. PROCHÁZKA, J. VOGEL, Restarting Automata,
Marcus Grammars and Context-Free Languages. In: Developments in Language Theory.
1995, 102–111.

18 Radu Gramatovici, Florin Manea

[10] S. MARCUS, Contextual grammars. Revue Roum. Math. Pures Appl. 14 (1969), 1525–
1534.

[11] F. MRÁZ, M. PLÁTEK, M. PROCHÁZKA, Restarting automata, deleting and Marcus
grammars. In: Recent Topics in Mathematical and Computational Linguistics. Romanian
Academy Publishing House, 2000, 218–233.

[12] G. PĂUN, Marcus Contextual Grammars. Kluwer Publ. House, Doordrecht, 1998.

[13] G. ROZENBERG, A. SALOMAA (eds.), Handbook of Formal Languages. Springer-Verlag,
Berlin, 1997.

	1. Introduction
	2. Preliminaries
	3. Language theoretic properties
	4. Computational Aspects
	5. Conclusions

