
,→,,
AG Automaten und Formale Sprachen

Preprint AFL-2011-04
Otto-von-Guericke-Universität Magdeburg, Germany

Accepting Networks of Evolutionary Processors
with Subregular Filters

Florin Manea(A) Bianca Truthe

Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik
PSF 4120, D-39016 Magdeburg, Germany
{manea,truthe}@iws.cs.uni-magdeburg.de

Abstract

In this paper, we propose a new variant of Accepting Networks of Evolutionary Proces-
sors, in which the operations can be applied only arbitrarily to the words, while the filters
are languages from several special classes of regular sets. More precisely, we show that the
use of filters from the class of ordered, non-counting, power-separating, suffix-closed reg-
ular, union-free, definite and combinational languages is as powerful as the use of arbitrary
regular languages and yields networks that can accept all the recursively enumerable lan-
guages. On the other hand, by using filters that are only finite languages, monoids, nilpotent
languages, commutative regular languages, or circular regular languages, one cannot gen-
erate all recursively enumerable languages. These results seem interesting as they provide
both upper and lower bounds on the classes of languages that one can use as filters in an
accepting network of evolutionary processors in order to obtain a complete computational
model.

1. Introduction
The computational model considered in this paper, accepting networks of evolutionary proces-
sors (ANEPs, for short), was introduced in [8]. It is a bio-inspired model based on an archi-
tecture considered in [4]. An ANEP can be seen as a graph having in each node a so-called
evolutionary processor. By this we mean a processor which is able to perform very simple op-
erations, namely point mutations in a DNA sequence (insertion, deletion or substitution of a
pair of nucleotides). More generally, each node may be viewed as a cell containing genetic in-
formation encoded in DNA sequences, which may evolve by local evolutionary events, namely
point mutations; moreover, each node is specialized just for one of these evolutionary oper-
ations. Furthermore, the data in each node are organized in the form of multisets of words,
each word appearing in an arbitrarily large number of copies, and all the copies are processed
as follows: if at least one rule can be applied to a word w, we obtain all the words that are
derived from the word w by applying exactly one of the possible rules at exactly one feasible

(A)Also at: Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, RO-
010014 Bucharest, Romania (flmanea@fmi.unibuc.ro). The work of Florin Manea is supported by the Alexan-
der von Humboldt Foundation.



2 Florin Manea, Bianca Truthe

position in the word w. The computation of an ANEP is conducted as follows. Initially, only
one special node, the input node, contain a certain word, the input word. Further, the words
are processed in alternative evolutionary and communication steps. In an evolutionary step, the
words found in each node are rewritten according to the rules of that node. In a communication
step, the words of a node are communicated to the other nodes, as permitted by some filtering
condition associated with both the sending and the receveing node. The language accepted by
an ANEP consists of all the input words for which we reach, during the computation, a situ-
ation in which another special node, the output node, contains at least one string. Results on
ANEPs, seen as formal languages accepting devices, were surveyed recently in [7]. However,
it is worth noting that in the initial paper [8], as well as subsequent papers [5, 6], it was shown
that such networks are computationally complete, i. e., they are able to accept all recursively
enumerable languages, given that the filters that restrict the communication are from a special
class of regular languages (inspired by the usage of random-context conditions defined by the a
set of permitting contexts and one of forbidding contexts).

In this paper we are interested in analyzing the computational power of ANEPs in which
the filters are languages from other subclasses of regular languages (depicted in Figure 1,
see also [10]). The results we obtain show that, when the filters are ordered, non-counting,
power-separating, suffix-closed regular, union-free, definite and combinational languages, we
obtain classes of ANEPs that can accept all the recursively enumerable languages. On the
other hand, when we restrict to the usage of filters that are only finite languages, nilpotent lan-
guages, monoids, commutative or circular regular languages, we cannot accept all recursively
enumerable languages. We also show that some of the classes of languages accepted by ANEPs
with different types of filters are incomparable. Finally, a non-trivial hierarchy of classes of
languages accepted by ANEPs with such filters is obtained (shown in Figure 2). A similar re-
search was carried out for generating networks of evolutionary processors (see [1, 2]), but the
obtained results were quite different (and the techniques that were used to show them could not
be directly used in the case of ANEPs).

2. Basic Definitions
We assume that the reader is familiar with the basic concepts of formal language theory (see
e. g. [9]). We here only recall some notations used in the paper.

The set of the natural numbers is denoted by N. By V ∗ we denote the set of all words
(strings) over an alphabet V (including the empty word λ). The length of a word w is denoted
by |w|. By V + and V k for some natural number k we denote the set of all non-empty words
and the set of all words with length k, respectively. Let Vk be the set of all words over V
with a length of at most k, i. e., Vk =

⋃k
i=0V

i. We denote by t⊥ the shuffle operation on
words; formally, the shuffle of words u,v ∈ V ∗ is a set of words denoted by u t⊥ v and defined
recursively as

x t⊥ λ = λ t⊥ x= {x}, x ∈ V ∗, and
ax t⊥ by = {a}(x t⊥ by)∪{b}(ax t⊥ y), a,b ∈ V, x,y ∈ V ∗.

By FIN, REG, and RE we denote the classes of the finite, regular, and recursively enumer-
able languages, respectively.



Accepting Networks of Evolutionary Processors with Subregular Filters 3

A phrase structure grammar is specified as a quadruple G= (N,T,P,S) where N is a set of
non-terminals, T is a set of terminals, P is a finite set of rules which are written as α→ β with
α ∈ (N ∪T )∗ \T ∗ and β ∈ (N ∪T )∗, and S ∈N is the axiom. It is known that any recursively
enumerable language can be generated by a phrase structure grammar in Kuroda normal form,
i. e., by a grammar where all rules have one of the following forms:

AB→ CD, A→ CD, A→ x where A,B,C,D ∈N, x ∈N ∪T ∪{λ}.

For a language L over an alphabet V , we set

Comm(L) = {ai1 . . .ain | a1 . . .an∈L,n≥ 1,{i1, . . . , in}= {1, . . . ,n}},
Circ(L) = {vu | uv ∈ L, u,v ∈ V ∗},
Suf (L) = {v | uv ∈ L, u,v ∈ V ∗}.

We consider the following restrictions for regular languages. Let L be a language and
V = alph(L) the minimal alphabet of L. We say that L is

• combinational iff it can be represented in the form L= V ∗A for some subset A⊆ V ,

• definite iff it can be represented in the form L=A∪V ∗B whereA andB are finite subsets
of V ∗,

• nilpotent iff L is finite or V ∗ \L is finite,

• commutative iff L= Comm(L),

• circular iff L= Circ(L),

• suffix-closed (or fully initial or multiple-entry language) iff xy ∈ L for some x,y ∈ V ∗
implies y ∈ L (or equivalently, Suf (L) = L),

• non-counting (or star-free) iff there is an integer k ≥ 1 such that, for any x,y,z ∈ V ∗,
xykz ∈ L if and only if xyk+1z ∈ L,

• power-separating iff for any x ∈ V ∗ there is a natural number m ≥ 1 such that either
Jm
x ∩L= ∅ or Jm

x ⊆ L where Jm
x = {xn | n≥m},

• ordered iff L is accepted by some finite automaton A= (Z,V,δ,z0,F ) where (Z,�) is a
totally ordered set and, for any a ∈ V , z � z′ implies δ(z,a)� δ(z′,a),

• union-free iff L can be described by a regular expression which is only built by product
and star.

It is obvious that combinational, definite, nilpotent, ordered and union-free languages are
regular, whereas non-regular languages of the other types mentioned above exist.

By COMB, DEF, NIL, COMM, CIRC, SUF, NC, PS, ORD, and UF we denote the classes
of all combinational, definite, nilpotent, regular commutative, regular circular, regular suffix-
closed, regular non-counting, regular power-separating, ordered, and union-free languages, re-
spectively. Moreover, we add the class MON of all languages of the form V ∗, where V is an



4 Florin Manea, Bianca Truthe

alphabet (languages of MON are target sets of monoids; we call them monoidal languages). We
set G = {FIN, MON, COMB, DEF, NIL, COMM, CIRC, SUF, NC, PS, ORD, UF}. The
relations between these classes of languages are investigated, e. g., in [3] and [10], and their
set-theoretic relations are given in Figure 1.

REG

PS

77

NC

OO

CIRC

__

ORD

77

DEF

OO

UF

OO

COMM

OO

SUF

hh

NIL

OO 77

COMB

OOgg

FIN

OO

MON

OOgg

HH == 88

Figure 1: Hierarchy of subregular languages (an arrow from X to Y denotes X ⊂ Y , and if two classes
are not connected by a directed path then they are incomparable)

We call a rule α→ β a
– substitution if |α|= |β|= 1,
– deletion if |α|= 1 and β = λ.
– insertion if α= λ and |β|= 1.

The rules are applied like context-free rewriting rules. We say that a word v derives a word w,
written as v =⇒ w, if there are words x,y and a rule α→ β such that v = xαy and w = xβy. If
the rule p applied is important, we write v =⇒p w.

Further, we define the accepting networks of evolutionary processors (ANEPs for short).

Definition 2.1 Let X be a subclass of regular languages.
(i) An accepting network of evolutionary processors (of size n) with filters from X is a tuple

N = (V,U,N1,N2, . . . ,Nn,E,Nni ,Nno)

where

• V is a finite alphabet, called the input alphabet of the network,

• U is a finite alphabet, called the working alphabet of the network,

• for 1≤ i≤ n, the evolutionary processor Ni = (Mi, Ii,Oi) is defined by

– Mi is a set of rules of a certain type (substitution, deletion or insertion):
Mi ⊆ {a→ b | a,b ∈ U} or Mi ⊆ {a→ λ | a ∈ U} or Mi ⊆ {λ→ b | b ∈ U},

– Ii and Oi are languages from X , included in U∗; Ii is called the input filter of
the processor, and Oi is called the output filter of the processor,

• E is a subset of {N1,N2, . . . ,Nn}×{N1,N2, . . . ,Nn}, denoting the edges that con-
nect the processors of the network, and



Accepting Networks of Evolutionary Processors with Subregular Filters 5

• ni and no are two natural numbers such that 1 ≤ ni,no ≤ n; Nni is the input node
of the network, and Nno is the output node of the network.

(ii) A configuration C ofN is an n-tuple C = (C(1),C(2), . . . ,C(n)) where C(i) is a subset
of U∗ for 1≤ i≤ n.

(iii) LetC =(C(1),C(2), . . . ,C(n)) andC ′=(C ′(1),C ′(2), . . . ,C ′(n)) be two configurations
of N . We say that C derives C ′ in one

• evolutionary step (written as C =⇒ C ′) if, for 1≤ i≤ n, C ′(i) consists of all words
w ∈ C(i) to which no rule of Mi is applicable and of all words w for which there
are a word v ∈ C(i) and a rule p ∈Mi such that v =⇒p w holds,

• communication step (written as C ` C ′) if, for 1≤ i≤ n,

C ′(i) = (C(i)\Oi)∪
⋃

(Nk,Ni)∈E
(C(k)∩Ok ∩ Ii).

The computation of an evolutionary network N on an input word w ∈ V ∗ is a sequence
of configurations Cw

t = (Cw
t (1),C

w
t (2), . . . ,C

w
t (n)), t≥ 0, such that

• Cw
0 (ni) = {w} and Cw

0 (j) = ∅ for j ∈ {1, . . . ,n}\{ni},
• for any t≥ 0, Cw

2t derives Cw
2t+1 in one evolutionary step,

• for any t≥ 0, Cw
2t+1 derives Cw

2t+2 in one communication step.

The computation of an evolutionary network N on an input word w ∈ V ∗ is said to be
accepting if there exists a configuration Cw

t in which Cw
t (no) is non-empty.

(iv) The language L(N ) accepted by N is defined as

L(N ) = {w | w ∈ V ∗, the computation of N on w is accepting}.

Intuitively, an ANEP is a graph consisting of n nodes 1,2, . . . ,n associated with the evolu-
tionary processors N1,N2, . . . ,Nn. From these processors two are distinguished: Nni , the input
node, and Nno , the output node. The nodes are connected by the set of edges given by E: there
is a directed edge from Nk to Ni if and only if (Nk,Ni) ∈ E; such an edge should be seen as a
directed communication channel between the processors Nk and Ni. Any processor Ni consists
of a set of evolutionary rulesMi, an input filter Ii and an output filterOi (where Ii andOi belong
to the class X). We say thatNi is a substitution processor or a deletion processor or an insertion
processor if the rules in the set Mi are substitutions or insertions or deletions, respectively. The
input filter Ii and the output filter Oi control the words which are allowed to enter and to leave
the node, respectively, via the communication channels. Assume that w ∈ V ∗ is the input word
of the network. With any node i and any time moment t≥ 0 we associate a set Cw

t (i) of words
(the words contained in the node at time t, in the computation on the word w). Initially, all
the processors Ni do not contain any words, except for Nni which contains only the word w.
In an evolutionary step, we derive from Cw

t (i) all words applying rules from the set Mi. In a
communication step, any processor Ni sends out all words Cw

t (i)∩Oi (which pass the output
filter) to all processors to which a directed edge exists (only the words from Cw

t (i)\Oi remain
in the set associated with Ni) and, moreover, it receives from any processor Nk such that there
is an edge from Nk to Ni all words sent by Nk and passing the input filter Ii of Ni, i. e., the



6 Florin Manea, Bianca Truthe

processor Ni gets in addition all words of Cw
t (k)∩Ok ∩ Ii. We start with an evolutionary step

and then communication steps and evolutionary steps are alternately performed. A word is ac-
cepted by N is and only if there exists t > 0 such that the output node contains at least one
string after t steps where performed, i. e., Cw

t (no) 6= ∅. The accepted language consists of all
accepted words.

For a class X ⊆ REG, we denote the class of all languages generated by networks of evolu-
tionary processors where all filters are of type X by A(X).

The following facts are obvious.

Lemma 2.2 LetX and Y be subclasses of REG such thatX ⊆ Y holds. Then also the inclusion
A(X)⊆A(Y ) holds. 2

Lemma 2.3 Let X be a subclass of REG. Then the inclusion X ⊆A(X) holds. 2

3. Computationally Complete Cases
In this section, we show the computational completeness of some classes A(X) where X is a
subclass of regular languages from G.

Theorem 3.1 A(COMB) = RE.

Proof. The proofs showing that the class of languages accepted by ANEPs with left/right opera-
tions and random context filters (see [5, 7]) can be easily adapted to show thatA(COMB)⊆ RE.

In what follows, we will show that A(COMB) ⊇ RE. For this, let L be a recursively enu-
merable language. Let G= (N,T,P,S) be a grammar in Kuroda normal form that generates L.
Further, let V =N ∪T and let x1,x2, . . . ,xk be the elements of V .

We will construct an ANEP that simulates, bottom-up, a derivation in the grammar G. That
is, we try to apply the rules of the grammar reversed, until we get a string that contains just one
occurrence of the axiom of the grammar. For the rules of the formA→ x with x∈N ∪T ∪{λ},
this can be easily simulated by insertion or substitution rules. For the rules of P that have the
form α→ β with |β|= 2, the discussion is more complicated.

More precisely, let p= α→ β be a rule of P with |β|= 2 and wβatat−1 · · ·a1 be a sentential
form of the grammar G with w ∈ V ∗ and ai ∈ V for all natural numbers i with 1 ≤ i ≤ t. We
want to store the symbols a1,a2, . . . ,at together with their positions in the suffix somewhere else
in the word such that the subword β appears in the end of the word. There it can be replaced
by the left hand side α of the rule (which can be done using nodes with combinational filters).
Finally, the symbols a1,a2, . . . ,at are restored at their correct positions.

Since a word can be arbitrarily large, the position of a letter ai can be also an arbitrarily large
number and hence cannot be represented by a single symbol from the finite working alphabet of
the network. In order to overcome this problem, we consider the symbols of V as digits in the
base k+1: xi corresponds to the digit i in this base, and there exists one more digit, that does
not correspond to any symbol of V , denoted by 0. Now we define a bijective correspondence
associating to a word w = bmbm−1 · · ·b1 the number

bm . . . b10 = bm(k+1)m+ bm−1(k+1)m−1 + · · ·+ b1(k+1)1 +0(k+1)0



Accepting Networks of Evolutionary Processors with Subregular Filters 7

in base k+ 1. Now, instead of storing the symbols a1,a2, . . . ,at together with their positions
in the suffix somewhere in the word, we can store in the word d symbols of 1, given that 1d

is the unary representation of the base k+1 number bm . . . b10. After we replace β with α, we
just have to rewrite at the end of the word the base k+1 number that equals to the number of 1
symbols found in the current word (omitting the final 0), and delete these 1 symbols; in other
words, we restore atat−1 · · ·a1 at the end of the word.

We denote the network that we construct by N . This network has the following structure,
for p ∈ P :

Np
// Nin

//oo

yy ��

Nout

Nst

99

Nrst

OO

Basically, N is composed of 4+ |P | subnetworks:

• Nin contains only the input node. This node also controls the computation by choosing
which is the next step to be performed: to simulate the reverse application of a rule of
the grammar, to locate the righthand side of a rule and to store a suffix of the word as
explained above, to restore the suffix, or to verify if the string can be accepted.

• Nout verifies if the input string was reduced to the axiom of the grammar, and if this is the
case, it accepts.

• Np implements the application of the rule p reversed, for p ∈ P .

• Nst stores a suffix of the word, seen as a base k+1 number, as a unary number.

• Nrst restores a suffix of the word from the unary number saved in the word.

Let V ′ = {x′ | x ∈ V }, V = {x | x ∈ V }, and assume that 1, 1′, 1′′, #, #′ and ⊥ are symbols that
do not belong to V . Let

U = V ∪V ′∪V ∪{1,1′,1′′,#,#′}.

The working alphabet of the network is

U ′ = U ∪{⊥},

while the input alphabet is T .
In what follows, we define in details the nodes and edges of each of the aforementioned

subnetworks.
We start with the input subnetwork Nin. This contains only the node Nin = (∅,U∗,U∗).
The output subnetwork Nout contains two nodes:

N1
out = (

{
S→ S′

}
,{S }∗ ,U∗),

N2
out = (∅,

{
S′
}∗
,∅).



8 Florin Manea, Bianca Truthe

The node N2
out is also the output node of the networkN . The edges that are connected to nodes

of this subnetwork are: (Nin,N
1
out) and (N1

out,N
2
out). Clearly, a word that is sent to this network

reaches the output node if and only if it is equal to S.
Let p be a rule of the form

A→ a with A ∈N and a ∈N ∪T.

Then the network Np has a single node

N1
p = ({a→ A} ,U∗,U∗).

We also have the edges (Nin,N
1
p ) and (N1

p ,Nin).
Let p be a rule of the form

A→ λ with A ∈N.

Then the network Np has a single node

N1
p = ({λ→ A} ,U∗,U∗).

Again, we have the edges (Nin,N
1
p ) and (N1

p ,Nin).
The case when the rule p has the form

AB→ CD,

where A,B,C,D ∈N , is a bit more complicated. Keep in mind that when we try to apply this
rule reversed we assume that CD are the last symbols of the communicated word. The network
Np has 7 nodes:

N1
p = (

{
D→D′

}
∪{x→⊥ | x ∈ U } ,U∗D,U∗),

N2
p = (

{
D′→ λ

}
,U∗D′,U∗),

N3
p = (

{
C→ C ′

}
∪{x→⊥ | x ∈ U } ,U∗C,U∗),

N4
p = (

{
C ′→ λ

}
,U∗C ′,U∗),

N5
p = (

{
λ→ A′

}
,U∗,U∗),

N6
p = (

{
λ→B′

}
,U∗A′,U∗),

N7
p = (

{
B′→B,A′→ A

}
,U∗B′,(U \V ′)∗).

We have also the edges (Nin,N
1
p ), (N

7
p ,Nin), and (N i

p,N
i+1
p ) for 1≤ i≤ 6.

Finally, the case when the rule p has the form

A→ CD,



Accepting Networks of Evolutionary Processors with Subregular Filters 9

where A,C,D ∈N , is similar to the above. Again, when we try to apply this rule reversed we
assume that CD are the last symbols of the communicated word. The networkNp has 6 nodes:

N1
p = (

{
D→D′

}
∪{x→⊥ | x ∈ U } ,U∗D,U∗),

N2
p = (

{
D′→ λ

}
,U∗D′,U∗),

N3
p = (

{
C→ C ′

}
∪{x→⊥ | x ∈ U } ,U∗C,U∗),

N4
p = (

{
C ′→ λ

}
,U∗C ′,U∗),

N5
p = (

{
λ→ A′

}
,U∗,U∗),

N6
p = (

{
A′→ A

}
,U∗A′,(U \V ′)∗).

The edges are (Nin,N
1
p ), (N

6
p ,Nin), and (N i

p,N
i+1
p ) for 1≤ i≤ 5.

It is easy to see that, for all the rules p, the processor Np rewrites the current word by
reversely applying the rule p of the grammar.

We move now to the two networksNst andNrst. In both cases, we will give an overview on
the algorithms implemented by these networks, and then we will give the full constructions.

The network Nst always receives from Nin a word of a set (#q t⊥ 1t t⊥ w){x} with w ∈ V ∗
and x ∈ V . Its computation on such a word follows the deterministic Algorithm Store.

Algorithm 1 Store: describes the computation ofNst on a word from the set (#q t⊥ 1t t⊥ w){xi}
with w ∈ V ∗ and xi ∈ V

1: Replace the last symbol xi of the input word with x′i;
2: Insert in the word the symbol #′;
3: Insert in the word the symbol 1′;
4: repeat
5: Substitute one symbol 1′ with 1′′;
6: Insert k−1 symbols 1′′;
7: until the word does not contain 1′ symbols anymore;
8: if the word contains # symbols then
9: Substitute one symbol # with #′;

10: Substitute all the symbols 1′′ with 1′;
11: Go to step 4;
12: else
13: Substitute all the symbols #′ with #;
14: if the word contains x′1 then
15: Delete x′1;
16: Substitute all the symbols 1′ with 1;
17: else
18: Substitute one symbol # with #′;
19: Substitute x′i with x′i−1;
20: Go to step 3;
21: The word is now from the set #q+1 t⊥ 1t+ikq+1 t⊥ w.



10 Florin Manea, Bianca Truthe

Similar to the case of Nst, the network Nrst always receives from Nin a word of a set
#q t⊥ 1t t⊥ w with w ∈ V ∗, q ∈ N, and t ∈ N. Its computation on such a word follows the
nondeterministic Algorithm Restore.

Algorithm 2 Restore: describes the computation of Nrst on a word of the set #q t⊥ 1t t⊥ w with
w ∈ V ∗

1: Insert in the word the symbol x′1;
2: Substitute one symbol # with #′;
3: if the word does not contain 1′ symbols anymore then
4: Substitute k symbols 1 with 1′′ (if this step cannot be completed, the word is blocked);
5: else
6: Substitute one symbol 1′ with 1′′;
7: Substitute k−1 symbols 1 with 1′′ (if this step cannot be completed, the word is blocked);
8: if the word does not contain 1′ symbols anymore then
9: Substitute all the symbols 1′′ with 1′;

10: else
11: Go to step 3;
12: if the word does not contain # symbols anymore then
13: Delete all the symbols 1′;
14: Choose nondeterministically one of the following choices:
15: case 1: In this case, the symbol restored at the end of the word was x′i, but we assume

that we should restore x′i+1; if this assumption is false, the word is blocked or lost later
in the computation. Replace x′i with x′i+1; Replace all #′ with #; Go to step 2;

16: case 2: In this case, the symbol restored at the end of the word was x′i, and we assume
that we should start the restoring a new symbol; if this assumption is false, the word
is blocked or lost later in the computation. Delete one symbol #′; Replace x′i with xi;
Replace all #′ with #; Go to step 1;

17: case 3: In this case, we assume that the suffix was completely restored; if this assumption
is false, the word is blocked or lost later in the computation. If the word contains 1 it is
lost; Delete one symbol #′; If the word contains #′ it is lost; Replace x′i with xi;

18: else
19: Go to step 2;
20: The word is now from the set #q−1 t⊥ 1t−ik

q t⊥ wxi.

It is not hard to see that the Algorithms Store and Restore work correctly (i. e., the statements
made in last steps of the algorithms, respectively, hold for any input word that verifies the
required form) and that the Algorithms really work in the way we want the two subnetworks
Nst and Nrst to work.

In what follows, we show how the Algorithms Store and Restore can be effectively imple-
mented using networks of evolutionary processors.



Accepting Networks of Evolutionary Processors with Subregular Filters 11

The network Nst has 11+(k−1) nodes. They are defined by:

H1 = (
{
xi→ x′i

}
,U∗ {xi | 1≤ i≤ k } ,U∗);

this implements step 1 of Store.
H2 = (

{
λ→ #′

}
,U∗

{
x′i | 1≤ i≤ k

}
,U∗);

this implements step 2 of Store.
H3 = (

{
λ→ 1′

}
,U∗

{
x′i | 1≤ i≤ k

}
,U∗);

this implements step 3 of Store.
H4 = (

{
1′→ 1′′

}
∪{a→⊥ | a ∈ U } ,U∗,U∗);

this implements step 5 of Store.
H ′i = (

{
λ→ 1′′

}
,U∗,U∗),1≤ i≤ k−1;

these nodes implement step 6 of Store,
H4 and H ′i for 1≤ i≤ k−1 implement the cycle 4 – 7 of Store.

H5 = (
{

#→ #′
}
∪{a→⊥ | a ∈ U } ,(U \

{
1′
}
)∗,U∗);

this implements steps 8,9 of Store.
H6 = (

{
1′′→ 1′

}
,U∗,(U \

{
1′′
}
)∗);

this implements step 10 of Store.
H7 = (

{
#′→ #

}
,(U \

{
1′,#

}
)∗,(U \{#′})∗);

this implements steps 13,14 of Store.
H8 = (

{
x′1→ λ

}
,U∗

{
x′1
}
,U∗);

this implements step 15 of Store.
H9 = (

{
1′→ 1

}
,U∗,(U \{1′})∗);

this implements step 16 of Store.
H10 = (

{
#→ #′

}
,U∗

{
x′i | 2≤ i≤ k

}
,U∗);

this implements step 18 of Store.
H11 = (

{
x′i→ x′i−1 | 2≤ i≤ k

}
,U∗,U∗);

this implements step 19 of Store.

The edges of this subnetwork are:

(Nin,H1), (H1,H2), (H2,H3), (H3,H4),

(H4,H
′
i) for 1≤ i≤ k−1,

(H ′i,H
′
i+1) for 1≤ i≤ k−2,

(H ′k−1,H4), (H ′k−1,H5), (H ′k−1,H7), (H5,H6), (H6,H4),

(H7,H8), (H7,N10), (H8,H9), (H9,Nin), (H10,H11), (H11,H3).



12 Florin Manea, Bianca Truthe

From the explanations provided in the definitions of the nodes it is clear that the network im-
plements the operations of the Algorithm Store. Moreover, the edges ensure that the subnetwork
executes the steps of the algorithm Store in the correct order.

The network Nrst has 13+(k−1) nodes. They are defined by:

N1 = (
{
λ→ x′1

}
,U∗,U∗);

this implements step 1 of Restore.
N2 = (

{
#→ #′

}
∪{a→⊥ | a ∈ U } ,U∗

{
x′i | 1≤ i≤ k

}
,U∗);

this implements step 2 of Restore.
N3 = (

{
1→ 1′′

}
∪{a→⊥ | a ∈ U } ,U∗x′1,U∗);

this implements partly steps 3 and 4 of Restore.
N4 = (

{
1′→ 1′′

}
∪{a→⊥ | a ∈ U } ,U∗,U∗);

this implements steps 3 and 6 of Restore.
N ′i = (

{
1→ 1′′

}
∪{a→⊥ | a ∈ U } ,U∗,U∗),1≤ i≤ k−1;

these nodes implement step 7 and complete step 4 of Restore.
N6 = (

{
1′→ λ

}
,(U \{#})∗,(U \

{
1′
}
)∗);

this implements step 13 of Restore.
N7 = (

{
x′i→ x′i+1 | 1≤ i≤ k−1

}
∪{a→⊥ | a ∈ U } ,U∗,U∗);

N8 = (
{

#′→ #
}
,U∗,(U \

{
#′
}
)∗);

the last 2 nodes implement step 14 of Restore.
N9 = (

{
#′→ λ

}
,U∗,U∗);

N10 = (
{
x′i→ xi | 1≤ i≤ k

}
,(U \{#})∗,(U \

{
1′
}
)∗,(U \V ′)∗);

N11 = (
{

#′→ #
}
∪{a→⊥ | a ∈ U } ,U∗,(U \

{
#′
}
)∗);

the last 3 nodes implement step 15 of Restore.
N12 = (

{
#′→ λ

}
,(U \{1})∗,U∗);

N13 = (
{
x′i→ xi | 1≤ i≤ k

}
,(U \{#′})∗,U∗);

the last 2 nodes implement step 16 of Restore.

The edges of this subnetwork are:

(Nin,N1), (N1,N2), (N2,N3), (N2,N4),

(N3,N
′
i) and (N4,N

′
i) for 1≤ i≤ k−1,

(N ′i ,N
′
i+1) for 1≤ i≤ k−2,

(N ′k−1,N3), (N ′k−1,N5), (N5,N6), (N6,N7), (N6,N9), (N6,N12),

(N7,N8), (N8,N2), (N9,N10), (N10,N11), (N11,N1), (N12,N13), (N13,Nin).

Once more, it is rather easy to see that the nodes and the edges defined above ensure that
the subnetwork Nrst implements exactly the steps of the Algorithm Restore and that they are
executed in the correct order.



Accepting Networks of Evolutionary Processors with Subregular Filters 13

The computation of N is rather simple to imagine: the node Nin chooses (nondeterministi-
cally) what should be done next: a reversed rule of the grammar should be applied, the righthand
side of a rule should be located in the word and the suffix found after that location should be
saved as an unary number, the saved prefix should be restored, or the current word should be
sent to the output subnetwork and accepted if it equals the starting symbol S. The language
accepted by the network consists of all the words that can be rewritten according to the reversed
rules of G (between the application of two such rules it may be possible to store a suffix and
then, later, restore it), such that we finally obtain S. This language is exactly L. 2

According to Lemma 2.2 and the relations between the classes of G, depicted in Figure 1,
we get the following corollary.

Corollary 3.2 A(REG) =A(DEF) =A(ORD) =A(NC) =A(PS) = RE.

Also networks with suffix-closed regular filters only are computationally complete.

Theorem 3.3 A(SUF) = RE.

Proof. Let L ⊆ V ∗ be a recursively enumerable language. According to Theorem 3.1 there
exists a networkN = (V,U,N1,N2, . . . ,Nn,E,N1,Nn) with evolutionary processors and filters
from COMB such that L(N ) = L. We can assume without losing generality that the output
node Nn has no rules. For any node Ni = (Mi, Ii,Oi), we construct the sets

I ′i = {X}Ii{Y }∪Suf (Ii){Y }∪{λ},
O′i = {X}Oi{Y }∪Suf (Oi){Y }∪{λ},

where X and Y are two new symbols. By definition, I ′i and O′i are suffix-closed.
We consider now the network

N ′ = (V,U ∪{X,Y },N0,N
′
0,N

′
1,N

′
2, . . . ,N

′
n,N

′
n+1,E

′,N0,N
′
n+1)

with

N0 = ({λ→X},∅,XU∗∪{U∗}),
N ′0 = ({λ→ Y },XU∗Y ∪{U∗Y },XU∗Y ∪{U∗Y }),
N ′i = (Mi, I

′
i,O
′
i) for 1≤ i≤ n−1,

N ′n = ({X → λ, Y → λ}, I ′n,U∗),
N ′n+1 = (∅,U∗,∅),
E′ = E∪

{
(N0,N

′
0),(N

′
0,N

′
1),(N

′
n,N

′
n+1)

}
.

It is obvious that the filters of all the nodes defined above are suffix-closed, too. Thus, N ′ is a
network of type SUF.

We now prove that L(N ) = L(N ′). Let w be an input word for the two networks. The
ANEPN ′ transforms it into XwY in the nodes N0 and N ′0, and then the word is sent to N ′1; no
other processing can be done. Further, the string is processed in N ′ according to the rules of
Mi, 1 ≤ i ≤ n− 1, only; the obtained strings can only be sent to nodes N ′s, 1 ≤ s ≤ n. Thus,
we simulate a derivation in N (in N ′ we have an X in front of and a Y behind the word w



14 Florin Manea, Bianca Truthe

occurring in N ) and a string enters into N ′n if and only if a string obtained from w could have
entered Nn. Now, in N ′, the X and Y symbols are removed and the resulting word is sent
to N ′n+1. Hence, L(N ′) = L(N ). 2

Theorem 3.4 A(UF) = RE.

Proof. By Corollary 3.2, the relations of Figure 1, and Lemma 2.2, we have A(UF)⊆ RE.
Let L⊆ V ∗ be a recursively enumerable language. By Theorem 3.1, we can assume that L is

accepted by an ANEP N with combinational filters, input alphabet V and working alphabet U .
We show how this network can be simulated by another network with filters from UF and the
same input and working alphabets.

Let N be a processor of the network N . Then N has the form

N = (M,V ∗1 {a1,a2, . . . ,an},V ∗2 {b1, b2, . . . , bm})

with V1 ⊆ U , ai ∈ V1 for 1 ≤ i ≤ n, V2 ⊆ U , and bj ∈ V2 for 1 ≤ j ≤m. Let c1, c2, . . . , ck be
the other letters of V2: {c1, c2, . . . , ck } = V2 \ {b1, b2, . . . , bm }. We replace the node N by the
subnetwork given in the following figure where the nodes are defined as follows:

Na
i = (∅,V ∗1 {ai},U∗) for 1≤ i≤ n,
N ′ = (M,U∗,V ∗2 ),

N b
i = (∅,U∗,V ∗2 {bi}) for 1≤ i≤m,

N c
i = (∅,U∗,V ∗2 {ci}) for 1≤ i≤ k.

// Na
1

// N ′ // N b
1

//

...
...

// Na
n

//

N b
m

////

N c
1

//

OO

...

N c
k

//

OO

Every edge from a node K to the node N is replaced by edges from K to every node Na
i for

1≤ i≤ n. Every edge from the node N to a node K is replaced by edges from every node N b
i

for 1≤ i≤m to A.
Then a word w passes the node N if and only if it passes the subnetwork defined above.

Indeed, w enters the subnetwork if and only if it passes the input filter of one of the nodes Na
i ,

which is equivalent to passing the input filter of N . Then a rule is applied to it; this is simulated
in the subnetwork in the node N ′, where every string that entered the subnetwork enters after
an evolutionary and a communication step. Further, the string exits the node N if it belongs to
the set V ∗2 and its last letter is one of the bi with 1≤ i≤m; equivalently, in the subnetwork, the
word remains in the node N ′ if it does not belong to V ∗2 , otherwise it is communicated to the
nodes N b

i for 1 ≤ i ≤m and N c
i for 1 ≤ i ≤ k and exits the subnetwork if it passes the output

filter of one of the nodes N b
i . If it does not pass such an output filter, then it passes the output

filter of one of the nodes N c
i and is returned to node N ′ (which simulates that it remains in the

node N as well).
Thus, the construction does not change the language and the obtained network accepts L,

too. Moreover, if V = {c1, c2, . . . , cr}, then

V ∗{a}= ({c1}∗{c2}∗ · · ·{cr}∗)∗{a}.



Accepting Networks of Evolutionary Processors with Subregular Filters 15

Therefore all filters of the constructed network above are union-free. Hence, L ∈ A(UF). This
proves the other inclusion RE ⊆A(UF). 2

4. Lower Bounds
In this section, we show that the results presented in the previous section are optimal with
respect to the hierarchy depicted in Figure 1. We also show a series of proper inclusion results
between the classes A(X) with X ∈ G.

Theorem 4.1 A(CIRC) contains only circular languages.

Proof. Let N = (V,U,N1,N2, . . . ,Nn,E,Nni ,Nno) be an accepting network of evolutionary
processors with filters from the class CIRC. Let w be a word over V and w′ a circular per-
mutation of w. Assume that there exists t+ 1 words w′0 = w′,w′1,w

′
2, . . . ,w

′
t and t+ 1 nodes

N ′0 = Nni ,N
′
1, . . . ,N

′
t , such that w′i was derived from w′i−1 in one evolutionary step, in which

a rule ri was applied in the node N ′i−1 to w′i−1, and then w′i entered N ′i+1 for 1 ≤ i ≤ t− 1. It
is rather easy to show, by induction on t, that there exists t+1 words w0 = w,w1, . . . ,wt such
that wi is a circular permutation of w′i for 0≤ i≤ t, and wi was derived from wi−1 in one evolu-
tionary step, in which a rule ri was applied in the node N ′i−1 to wi−1, and then wi entered N ′i+1
for 1≤ i≤ t.

It follows that if w is accepted by N then any circular permutation of w is also accepted by
the network. Thus, the language accepted by N is circular. 2

The following corollary is now immediate.

Corollary 4.2 A(CIRC) is a proper subset of RE.

We can show the following result in a manner very similar to the proof of Theorem 4.1, by
simply replacing circular permutations with any type of permutations.

Theorem 4.3 A(COMM) contains only commutative languages. 2

According to the previous theorem, the Lemmas 2.2 and 2.3, and the fact that not all regular
circular languages are commutative, the following corollary is immediate.

Corollary 4.4 A(COMM) is a proper subset of A(CIRC).

We can also show the following result.

Theorem 4.5 A(NIL) is a proper subset of RE.

Proof. Let L = {aw | w ∈ {a,b}∗}. We show that L cannot be accepted by a network with
filters from NIL.

For the sake of a contradiction, assume that there exists an ANEP

N = (V,U,N1,N2, . . . ,Nn,E,Nni ,Nno)

with filters from NIL such that L(N ) = L.



16 Florin Manea, Bianca Truthe

Let us assume that none of the filters of N is finite. Let N ′0,N
′
1, . . . ,N

′
t with N ′0 =Nni and

N ′t = Nno be the processors on a path from the input node to the output node. Let ` be the
maximum length of a word w that does not belong to any of the filters of these nodes. Let w be
the word bab`+t. Clearly, w will be processed in the first node N ′0, then it can enter N ′1, where
it is further processed and sent to N ′2, and so on. The word is not blocked by any filter since it
will be longer than any of the words that are blocked by these filters. So it reaches the output
node and it is accepted, a contradiction.

Consequently, at least one of the nodes of N has a finite filter. Moreover, by arguments
similar to the above, there is no path connecting the input node and the output node that contains
only nodes with infinite filters. Let `1 be the maximum length of a word that appears in one of
the finite filters of the network’s nodes and let `2 be the maximum length of a word that does
not belong to an infinite filter of the network’s nodes. Let ` = max(`1, `2). Now consider the
word ab`+1. This word belongs to the language L so it also belongs to the language L(N ); for
each word w′, that can be derived from this word by N , denote by #(w′) the number of the
initial b symbols that are still present in the word to which we add the number of the symbols
that are obtained by (iterated) substitutions from the original b symbols. Consider the t+ 1
words w0 = w,w1,w2, . . . ,wt and the t+ 1 nodes N ′0 = Nni ,N

′
1, . . . ,N

′
t = Nno , such that wi

was derived from wi−1 in one evolutionary step, in the node N ′i−1, and then wi entered Ni+1
for 1≤ i≤ t−1. Assume that j is minimum such that N ′j has a finite filter and suppose that N ′j
has the input filter finite. Clearly, there exists a number k ≤ j such that #(wk) < #(wk+1);
otherwise, the string wj contains more than ` letters and cannot enter the processor N ′j . So N ′k
is a deletion node and one of the initial b symbols of the input word or a symbol obtained from
these symbols is deleted there. Assume that the pth initial b or the symbol derived from it is
deleted in this node. Let w′i the word obtained from wi by deleting the symbol derived from
the pth initial b symbol so far (denoted in the following xi) for i ≤ k. Now it is not hard to see
that one can obtain the words bw′0,x1w

′
1,x2w

′
2, . . . ,xkw

′
k,wk+1, . . . ,wt on the same path given

by the nodes N ′0 = Nni ,N
′
1, . . . ,N

′
t = Nno and using the same rules. But this means that the

word bw′0 is accepted by N , a contradiction. A similar argument works for the case when N ′j
has the output filter finite.

Thus, we have shown that in all the cases we reach a contradiction and this concludes our
proof. 2

By Lemma 2.2 we can now also derive the following corollary.

Corollary 4.6 A(MON) and A(FIN) are proper subsets of RE.

Also, since A(MON) is included in A(COMM), by Theorem 4.3, it follows that all the
languages in A(MON) are commutative. On the other hand, it is not hard to see that A(NIL)
contains also finite languages that are not commutative. Thus, we obtain the following corollary.

Corollary 4.7 A(MON) is a proper subset of A(NIL).

Finally, we show that the computational power of networks with finite filters is weaker than
the computational power of networks with nilpotent filters, while networks with monoidal filters
are as powerful as networks with commutative filters.

Theorem 4.8 A(FIN) is a proper subset of A(NIL).



Accepting Networks of Evolutionary Processors with Subregular Filters 17

Proof. The first remark is that the non-regular context-free language

L= {w | w ∈ {a,b}∗, |w|a = |w|b }

can be accepted by an ANEP with monoidal filters.
Indeed consider the ANEP

N = ({a,b} ,{a,b,X,Y,F } ,N1,N2,N3,E,N1,N3)

with E = {(N1,N2),(N2,N1),(N2,N3)} and the nodes defined as follows:

N1 = ({a→X,Y → F,b→ F } ,{X,Y,a,b}∗ ,{X,Y,a,b}∗),
N2 = ({b→ Y,X → F,a→ F } ,{X,Y,a,b}∗ ,{X,Y,a,b}∗),
N3 = (∅,{X,Y }∗,∅).

The ANEP N works as follows: In node N1, an a symbol becomes X and the word goes to
nodeN2 where a b symbols becomes Y . The process is iterated until no a and b symbols remain.
If this case occurs in node 2 then the string enters the output node and it is accepted (an equal
number of a and b symbols was found); otherwise, the obtained words are trapped in node N1
(when the initial word had more b symbols) or in node N2 (when the initial word had more a
symbols). Thus, L(N ) = L.

Further we look on the form of the languages accepted by ANEPs with finite filters. Let

N = (V,U,N1,N2, . . . ,Nn,E,Nni ,Nno)

be such a network, and denote by Oni the output filter of the input node. Denote by O′ni
the

subset Oni ∩L(N ). Notice that if Nni is a substitution or an insertion node then the accepted
language is a finite one: It consists only of the words that can be transformed by the rules of
the input node into the words of O′ni

. If Nni is a deletion node then we can easily see that the
language accepted byN is O′ni

V ∗1 , provided that the rules of Nni are Mni = {a→ λ | a ∈ V1 }.
According to the above the class of languages accepted by ANEPs with finite filters is a

proper subclass of REG. Therefore, L cannot be accepted by such a network. 2

Remark 4.9 The previous proof, combined with the fact that A(FIN) contains non-commuta-
tive languages, shows that A(MON) and A(FIN) are incomparable. Similar arguments show
that A(FIN) is incomparable with A(CIRC). Finally, A(NIL) and A(CIRC) are also incompa-
rable. Indeed, A(NIL) contains languages that are not in A(CIRC), according to the above. On
the other hand, A(CIRC) also contains languages that are not in A(NIL); for instance, the lan-
guage L= {w |w ∈ {a,b,c}∗ ,w is a circular permutation of (abc)n, for some n ∈N} is clearly
in A(CIRC), but one can show, similarly to the proof of Theorem 4.5, that if a network with
nilpotent filters accepts L then this network accepts also words starting with cb, a contradiction.

Theorem 4.10 A(MON) =A(COMM).

Proof. We already know that A(MON) ⊆ A(COMM), so we just have to show the inverse
inclusion.



18 Florin Manea, Bianca Truthe

For this, let L be a language which is accepted by a network

N = (V,U,N1,N2, . . . ,Nn,E,Nni ,Nno)

with filters from COMM. We will construct an ANEP N ′ with monoidal filters that accepts the
language L.

First consider a node N = (M,I,O) of the networkN , such that I and O are commutative.
We construct a new network by replacing this node with four other nodes:

N1 = (∅,U∗, I),
N2 = (M,U∗,U∗),

N3 = (∅,U∗,O),
N4 = (∅,U∗,U∗ \O).

These nodes are connected by the edges (N1,N2), (N2,N3), (N2,N4), and (N4,N2). Fur-
thermore, whenever we had an edge (K,N) in N we will have an edge (K,N1) in the new
network, and whenever we had an edge (N,K) in N then we will have an edge (N3,K) in the
new network.

It is not hard to see that the network obtained by replacing N with the subnetwork we
have just described accepts the same language, and still has commutative filters. Moreover, by
replacing, one at a time, each node that has commutative filters, according to the procedure
above, leads to a new networkN ′. This network has the property that each of its nodes that has
commutative filters has no rules, and has a monoid as input filter.

Next we will construct a new network N ′′ that accepts the same language and has only
monoidal filters. The idea that we implement is the following: we replace each node N of N ′
that has an output filter O which is not a monoid by a subnetwork that actually tests whether the
communicated word is part of O.

For this, assume that N = (∅,V ∗1 ,O) is such a node with O /∈ MON, U ′ = {a′ | a ∈ U },
and⊥ is a symbol not contained inU . Let T =(V,Q,q0,F,δ) be a deterministic finite automaton
that accepts O. For each triple t= (q1,a,q2) with a ∈ V and q1, q2 ∈Q such that δ(q1,a) = q2,
we construct two nodes:

N t
1 = (

{
a→ a′, q1→⊥

}
,(U ∪U ′∪{q1})∗,(U ∪U ′∪{q1})∗),

N t
2 = ({q1→ q2 } ,(U ∪U ′∪{q1})∗,(U ∪U ′∪{q2})∗).

Then we also construct the nodes

Nin = ({λ→ q0 } ,V ∗1 ,(U ∪{q0})∗),
Npost = (

{
a′→ a | a ∈ U

}
,(U ′∪F )∗,(U ∪F )∗),

Nout = (
{
qf → λ | qf ∈ F

}
,(U ∪F )∗,U∗).

If we have an edge (K,N) in the network N ′, we will now have the edge (K,Nin), and if
we have an edge (N,K) in N ′, then we will now have the edge (Nout,K). Also we have the
following edges:

– (Nin,N
t
1) where t is a triple (q0,a,q) for some a ∈ V and q ∈Q such that δ(q0,a) = q;

– (N t
1,N

t
2) for each triple t= (q1,a,q2) with a ∈ V and q1, q2 ∈Q such that δ(q1,a) = q2;



Accepting Networks of Evolutionary Processors with Subregular Filters 19

– (N t
2,N

r
1 ) for all the triples t= (q1,a,q2) and r= (q2, b,q3) with a,b∈ V and q1, q2, q3 ∈Q

such that δ(q1,a) = q2 and δ(q2, b) = q3;
– (N t

3,Npost) for all the triples t = (q1,a,qf ) with a ∈ V , q1 ∈ Q and qf ∈ F such that
δ(q1,a) = qf ;

– (Npost,Nout).
We can now show that each time a word w passes the node N then it also passes the

subnetwork defined above. The key idea is that we will not check if w ∈ O, but if a non-
deterministically chosen permutation of w is in O. First, assume that w enters N and, conse-
quently, it also enters Nin. Now, in the subnetwork, the symbol q0 is appended to the word,
and it is sent to a subnetwork associated with a triple (q0,a,q1) defined as above. In N t

1, an a
symbol becomes a′, meaning that it was read by the automaton acceptingO; if no a exists in the
word, q0 becomes ⊥ and the word is trapped in the node. Next the word goes to N t

2 where q0
becomes q1. Then the word is sent to N r

1 where r = (q1, b,q2) and the process described above
is iterated. This continues until the symbol representing the state of the automaton represents
a final state and the rest of the symbols are from U ′; that is, the whole word was read and
the automaton reached a final state or a permutation of w is in O. In this case, the word goes
to Npost where the markings of the symbols are removed and then it is sent to Nout where the
state-symbol is removed. Finally, the string exists the subnetwork exactly as it exits the nodeN .

Note that the filters of the above subnetwork ensure that at every moment we have at most
one state-symbol, and no other derivations, than the one we discussed, can occur.

Clearly, the network obtained by replacing N with the associated subnetwork accepts the
same language and has only monoidal filters. Moreover, if we replace each node that has com-
mutative filters according to the procedure above, we obtain a new network N ′′ that accepts L
and has only monoidal filters. This concludes our proof. 2

5. Conclusions
The results we have obtained can be seen in Figure 2. A solid arrow from X to Y denotes
X ⊂ Y (X is a proper subset of Y ); if two classes are not connected by a directed path then
they are incomparable.

RE =A(REG) =A(PS) =A(NC) =A(ORD)
=A(DEF) =A(COMB) =A(UF) =A(SUF)

A(NIL)

55

A(CIRC)

ii

A(FIN)

OO

A(MON) =A(COMM)

jj 44

Figure 2: Hierarchy of the language classes accepted by ANEPs with subregular filters

It remains to be studied how the different types of ANEPs can be used to accept languages
that are important in practice (for instance, different subclasses of the Chomsky hierarchy).
Also, it seems interesting to us to define computational complexity measures for these networks
as it was defined in the case of ANEPs with left/right operations and random-context filters



20 Florin Manea, Bianca Truthe

and to investigate whether such networks can be used to accept efficiently different classes of
languages. Finally, we will investigate the existence of trade-offs between the efficiency of
accepting a given language and the structural complexity of the filters used.

References
[1] J. DASSOW, F. MANEA, B. TRUTHE, Networks of Evolutionary Processors with Subregular Fil-

ters. In: 5th International Conference on Language and Automata Theory and Applications (LATA),
Tarragona, Spain, May 26–31, 2011, Proceedings. LNCS, Springer-Verlag, 2011. Accepted.

[2] J. DASSOW, B. TRUTHE, On Networks of Evolutionary Processors with State Limited Filters. In:
H. BORDIHN, R. FREUND, T. HINZE, M. HOLZER, M. KUTRIB, F. OTTO (eds.), Second Work-
shop on Non-Classical Models of Automata and Applications (NCMA), Jena, Germany, August
23–24, 2010, Proceedings. books@ocg.at 263, Österreichische Computer Gesellschaft, Austria,
2010, 57–70.

[3] I. M. HAVEL, The theory of regular events II. Kybernetika 5 (1969) 6, 520–544.

[4] W. D. HILLIS, The Connection Machine. MIT Press, Cambridge, MA, USA, 1986.

[5] F. MANEA, M. MARGENSTERN, V. MITRANA, M. J. PEREZ-JIMENEZ, A New Characterization
of NP, P and PSPACE with Accepting Hybrid Networks of Evolutionary Processors. Theor. Comp.
Sys. 46 (2010) 2, 174–192.

[6] F. MANEA, C. MARTÍN-VIDE, V. MITRANA, On the Size Complexity of Universal Accepting
Hybrid Networks of Evolutionary Processors. Mathematical Structures in Computer Science 17
(2007) 4, 753–771.

[7] F. MANEA, C. MARTÍN-VIDE, V. MITRANA, Accepting Networks of Evolutionary Word and
Picture Processors: A Survey. In: C. MARTÍN-VIDE (ed.), Scientific Applications of Language
Methods. Mathematics, Computing, Language, and Life: Frontiers in Mathematical Linguistics
and Language Theory 2, World Scientific, 2010, 525–560.

[8] M. MARGENSTERN, V. MITRANA, M. J. PÉREZ-JIMÉNEZ, Accepting Hybrid Networks of Evolu-
tionary Processors. In: DNA Computing, 10th International Workshop on DNA Computing. LNCS,
Springer-Verlag Berlin, 2004, 235–246.

[9] G. ROZENBERG, A. SALOMAA, Handbook of Formal Languages. Springer-Verlag, Berlin, 1997.

[10] B. WIEDEMANN, Vergleich der Leistungsfähigkeit endlicher determinierter Automaten. Diplomar-
beit, Universität Rostock, 1978.


	1. Introduction
	2. Basic Definitions
	3. Computationally Complete Cases
	4. Lower Bounds
	5. Conclusions

