
,→,,
AG Automaten und Formale Sprachen

Preprint AFL-2011-02
Otto-von-Guericke-Universität Magdeburg, Germany

Deciding according to the shortest computations
Florin Manea(A)

Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik
PSF 4120, D-39016 Magdeburg, Germany

manea@iws.cs.uni-magdeburg.de

Abstract

In this paper we propose, and analyze from the computational complexity point of view,
a new variant of nondeterministic Turing machines. Such a machine accepts a given input
word if and only if one of its shortest possible computations on that word is accepting;
on the other hand, the machine rejects the input word when all the shortest computations
performed by the machine on that word are rejecting. Our main results are two new char-
acterizations of PNP[log] and PNP in terms of the time complexity classes defined for such
machines.
Keywords: Computational Complexity, Turing Machine, Oracle Turing Machine, Shortest
Computations

1. Introduction
The computation of a nondeterministic Turing machine (and, in fact, any computation of a non-
deterministic machine, that consists in a sequence of moves) can be represented as a (potentially
infinite) tree. Each node of this tree is an instantaneous description (ID for short, a string en-
coding the configuration of the machine at a given moment: the content of the tapes and the
state), and its children are the IDs encoding the possible configurations in which the machine
can be found after a (nondeterministic) move is performed. If the computation is finite then
the tree is also finite and each leaf of the tree encodes a final ID: an ID in which the state is
either accepting or rejecting. The machine accepts if and only if one of the leaves encodes the
accepting state (also in the case of infinite trees), and rejects if the tree is finite and all the leaves
encode the rejecting state.

Therefore, in the case of finite computations, one can check if a word is accepted/rejected
by a machine by searching in the computation-tree for a leaf that encodes an accepting ID. The-
oretically, this is done by a simultaneous traversal of all the possible paths in the tree (as we can
deduce, for instance, from the definition of the time complexity of a nondeterministic computa-
tion). However, in practice, it is done by traversing each path at a time, until an accepting ID is
found, or until the whole tree was traversed. Unfortunately, this may be a very time consuming

(A)Also at: Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, RO-
010014 Bucharest, Romania (flmanea@fmi.unibuc.ro). The work of Florin Manea is supported by the Alexan-
der von Humboldt Foundation.

2 Florin Manea

task. Consequently, one may be interested in methods of using nondeterministic machines in a
more efficient manner.

Our paper proposes such a method: the machine accepts (rejects) a word if and only if one of
the shortest paths in the computation-tree ends (respectively, all the shortest paths end) with an
accepting ID (with rejecting IDs). Intuitively, we traverse the computations-tree on levels and,
as soon as we reach a level containing a leaf, we look if there is a leaf encoding an accepting ID
on that level, and accept, or if all the leaves on that level are rejecting IDs, and, consequently,
reject. We show that the class of languages that are decided according to this strategy by Turing
machines, whose shortest computations have a polynomial number of steps, equals the class
PNP[log]. As a consequence of this result we can also show that the class of languages that
are decided by Turing machines, working in nondeterministic polynomial time on any input but
deciding according to the computations that have a minimal number of nondeterministic moves,
also equals the class PNP[log]. These results continue a series of characterizations of PNP[log],
started in [10]. Then, we propose another method: the machine accepts (rejects) a word if and
only if the the first leaf that we meet in a breadth-first-traversal of the computations-tree encodes
an accepting ID (respectively, encodes a rejecting ID); note that in this case, one must define
first an order between the sons of a node in the computations-tree. We show that, in the case
of ordering the tree lexicographically, the class of languages that are decided, according to this
new strategy, by Turing machines whose shortest computations have a polynomial number of
steps equals the class PNP.

The research presented in this paper is related to a series of papers presenting variants of
nondeterministic Turing machines, working in polynomial time, that accept (or reject) a word if
and only if a specific property is (respectively, is not) verified by the possible computations of
the machine on that word. We recall, for instance: polynomial machines that accept if and only
if the number of accepting paths is even (⊕P from [6]), polynomial machines which accept if at
least 1/2 of their computations are accepting, and reject if at least 1/2 of their computations are
rejecting (the class PP), or polynomial machines that accept if at least 2/3 of the computation
paths accept and reject if at most 1/3 of the computation paths accept (the class of bounded-error
probabilistic polynomial time BPPpath); several other examples can be found on the Complexity
Zoo web page1 or [7]. However, instead of looking at all the computations, we look just at
the shortest ones, and instead of asking questions regarding the number of accepting/rejecting
computations, we just ask existential questions about the shortest computations.

Our work finds motivations also in the area of nature-inspired supercomputing models.
Some of these models (see [5, 8], for instance) were shown to be complete by simulating,
in a massively parallel manner, all the possible computations of a nondeterministic Turing ma-
chine; characterizations of several complexity classes, like NP,P and PSPACE, were obtained
in this framework. However, these machines were, generally, used to accept languages, not to
decide them; in the case when a deciding model was considered ([5]), the rejecting condition
was just a mimic of the rejecting condition from classical computing models. Modifying such
nature-inspired machines in order to decide as soon as a possible accepting/rejecting configura-
tion is obtained, in one of the computations simulated in parallel, seems to be worth analyzing:
such a halting condition looks closer to what really happens in nature, and it leads to a reduced
consume of resources, comparing to the case when the machine kept on computing until all the

1www.complexityzoo.com, a web page constructed and managed by Scott Aaronson

Deciding according to the shortest computations 3

possibilities were explored. Also, from a theoretical point of view, considering such halting
conditions could lead to novel characterizations of a series of complexity classes (like the ones
discussed in this paper) by means of nature-inspired computational models, as they seem quite
close to the idea of deciding with respect to the shortest computations.

2. Basic Definitions
The reader is referred to [2, 4, 7] for the basic definitions regarding Turing machines, oracle
Turing machines, complexity classes and complete problems. In the following we present just
the intuition behind these concepts, as a more detailed presentation would exceed th purpose of
this paper.

A k-tape Turing machine is a construct M = (Q,V,U,qo,acc,rej,B,δ), where Q is a finite
set of states, q0 is the initial state, acc and rej are the accepting state, respectively the rejecting
state, U is the working alphabet, B is the blank-symbol, V is the input alphabet and δ : (Q \
{acc,rej})×Uk → 2(Q×(U\{B})

k×{L,R}k) is the transition function (that defines the moves of
the machine). An instantaneous description (ID for short) of a Turing machine is a word that
encodes the state of the machine and the contents of the tapes (actually, the finite strings of non-
blank symbols that exist on each tape), and the position of the tape heads, at a given moment
of the computation. An ID is said to be final if the state encoded in it is the accepting or the
rejecting state. A computation of a Turing machine on a given word can be described as a
sequence of IDs: each ID is transformed into the next one by simulating a move of the machine.
If the computation is finite then the associated sequence is also finite and it ends with a final
ID; a computation is said to be an accepting (respectively, rejecting) one, if and only if the final
ID encodes the accepting state (respectively, rejecting state). All the possible computations of
a nondeterministic machine on a given word can be described as a (potentially infinite) tree of
IDs: each ID is transformed into its sons by simulating the possible moves of the machine; this
tree is called computations-tree.

A word is accepted by a Turing machine if there exists an accepting computation of the
machine on that word; it is rejected if all the computations are rejecting. A language is accepted
(decided) by a Turing machine if all its words are accepted by the Turing machine, and no
other words are accepted by that machine (respectively, all the other words are rejected by that
machine). The class of languages accepted by Turing machines is denoted by RE (and called
the class of recursively enumerable languages), while the class of languages decided by Turing
machines is denoted by REC (and called the class of recursive languages).

The time complexity (or length) of a finite computation on a given word is the minimum
between the number of IDs that occur in an accepting computation of that word and the height
of the computations-tree of the machine on the word. A language is said to be decided in
polynomial time if there exists a Turing M machine and a polynomial f such that the time
complexity of a computation of M on each word of length n is less than f(n), and M accepts
exactly the given language. The class of languages decided by deterministic Turing machines
in polynomial time is denoted P and the class of languages decided by nondeterministic Turing
machines in polynomial time is denoted NP. If a machine decides a language in polynomial
time we usually say that this machine works in polynomial time.

A Turing machine with oracle A, where A is a language over the working alphabet of the

4 Florin Manea

machine, is a regular Turing machine that has a special tape (the oracle tape) and a special state
(the query state). The oracle tape is just as any other tape of the machine, but, every time the
machine enters the query state, a move of the machine consists in checking if the word found
on the oracle tape is in A or not, and returning the answer.

We denote by PNP the class of languages decided by deterministic Turing machines, that
work in polynomial time, with oracles from NP. We denote by PNP[log] the class of languages
decided by deterministic Turing machines, that work in polynomial time, with oracles from NP,
and which can enter the query state at most O(logn) times in a computation on a input word of
length n.

The following problem is complete for PNP, with respect to polynomial time reductions (see
[9] for a proof):

Problem 1 (Odd - Traveling Salesman Problem, TSPodd) Let n be a natural number, and d
be a function d : {1, . . . ,n}× {1, . . . ,n} → IN . Decide if the minimum value of the set I =
{∑n

i=1 d(π(i),π(i+1)) | π is a permutation of {1, . . . ,n}, and π(n+1) = π(1)} is odd.

We assume that the input of this problem is given as the natural number n, and n2 numbers
representing the values d(i, j), for all i and j. The size of the input is the number of bits needed
to represent the values of d times n2.

Next we describe a PNP[log]-complete problem; however, we need a few preliminary notions
(see [3] for a detailed presentation). Let n be a natural number and let C = {c1, . . . , cn} be a set
of n candidates. A preference order on C is an ordered list 〈cπ(1) < cπ(2) < .. . < cπ(n)〉, where
π is a permutation of {1, . . . ,n}; if ci appears before cj in the list we say that the candidate ci is
preferred to the candidate cj in this order. Given a multiset V of preference orders on a set of
n candidates C (usually V is given as a list of preference orders) we say that the candidate ci is
a Condorcet winner, with respect to the preferences orders of V , if ci is preferred to each other
candidate in strictly more than half of the preference orders. We define the Dodgson score of a
candidate c, with respect to V , as the smallest number of exchanges of two adjacent elements
in the preference orders from V (switches, for short) needed to make c a Condorcet winner;
we denote this score with Score(C,c,V). In [3] it was shown that the following problem is
PNP[log]-complete, with respect to polynomial time reductions:

Problem 2 (Dodgson Ranking, DodRank) Let n be a natural number, let C be a set of n
candidates, and c and d two candidates from C. Let V be a multiset of preference orders on C.
Decide if Score(C,c,V)≤ Score(C,d,V).

We assume that the input of this problem is given as the natural number n, two numbers c
and d less or equal to n, and a list of preference orders V , encoded as permutations of the set
{1, . . . ,n}. If we denote by #(V) the number of preference orders in V , then the size of the
input is O(#(V)n logn).

The connection between decision problems and languages is discussed in [4]. When we say
that a decision problem is solved by a Turing machine, of certain type, we actually mean that
the language corresponding to that decision problem is decided by that machine.

Deciding according to the shortest computations 5

3. Shortest computations
In this section we propose a modification of the way Turing machines decide an input word.
Then we propose a series of results on the computational power of these machines and the
computational complexity classes defined by them.

Definition 3.1 Let M be a Turing machine and w be a word over the input alphabet of M .
We say that w is accepted by M with respect to shortest computations if there exists at least
one finite possible computation of M on w, and one of the shortest computations of M on w
is accepting; w is rejected by M w.r.t. shortest computations if there exists at least one finite
computation of M on w, and all the shortest computations of M on w are rejecting. We denote
by Lsc(M) the language accepted by M w.r.t. shortest computations, i.e., the set of all words
accepted by M , w.r.t. shortest computations. We say that the language Lsc(M) is decided by
M w.r.t. shortest computations if all the words not accepted by M , w.r.t. shortest computations,
are rejected w.r.t. shortest computations.

The following remark shows that the computational power of the newly defined machines
coincides with that of classic Turing machines.

Remark 1 The class of languages accepted by Turing machines w.r.t. shortest computations
equals RE, while the class of languages decided by Turing machines w.r.t. shortest computations
equals REC.

Proof. Since any language from REC (respectively, RE) is decided (accepted) by a determin-
istic Turing machine, it is clear that it is also decided (accepted) w.r.t. shortest computations
by the same machine. On the other hand, if a language is decided (respectively, accepted) by
a Turing machine M w.r.t. shortest computations then that language is decided (accepted) by a
classic deterministic Turing machineM ′ as follows: M ′ simply generates the computations-tree
of M on an input word level by level, and as soon as it generates a level that contains a final ID
it accepts the input word if the level contains an accepting ID, and rejects otherwise. 2

Next we define a computational complexity measure for the Turing machines that decide
w.r.t. shortest computations.

Definition 3.2 Let M be a Turing machine, and w be a word over the input alphabet of M .
The time complexity of the computation of M on w, measured w.r.t. shortest computations,
is the length of the shortest possible computation of M on w. A language L is said to be
decided in polynomial time w.r.t. shortest computations if there exists a Turing M machine and
a polynomial f such that the time complexity of a computation of M on each word of length
n, measured w.r.t. shortest computations, is less than f(n), and Lsc(M) = L. We denote by
PTimesc the class of languages decided by Turing machines in polynomial time w.r.t. shortest
computations.

The main result of this section is the following:

Theorem 3.3 PTimesc = PNP[log].

Proof. The proof will be structured in two parts. First we show the upper bound PTimesc ⊆
PNP[log], and, then we show the lower bound PTimesc ⊇ PNP[log].

6 Florin Manea

For the first part of the proof let L ⊆ V ∗ be a language in PTimesc and let M be a Tur-
ing machine that decides L in polynomial time w.r.t. shortest computations. Also, let f be a
polynomial such that the time complexity of the computation of M on each word of length n,
measured w.r.t. shortest computations, is less than f(n). Finally, let # be a symbol not contained
in V .

We define the language L′ = {x#w#1k | w ∈ V ∗,x ∈ {0,1}, and, if x = 1 (respectively,
x= 0) there exists an accepting (respectively, rejecting) computation ofM , of length less than k,
on the input wordw}. It is not hard to see that L′ is in NP. A nondeterministic machine deciding
L′ works as follows: it simulates, nondeterministically, a computation of at most k steps of M ,
and accepts if and only if x = 1, or, respectively, x = 0, and the simulated computation is
accepting, or, respectively, rejecting; otherwise (i.e., if in the k steps simulated by the machine
a final configuration was not obtained) it rejects. Clearly, this machine works in polynomial
time.

A deterministic Turing machine M ′, with oracle L′, accepting L implements the following
strategy, on an input word w:

1. M ′ searches (by binary search) the minimum length of an accepting computation of M on
w, with length less or equal to f(|w|). In this search, the machine queries the oracle L′ for
O(log2(f(|w|))) times, asking, in each of these queries, if a string of the form 1#w#1k, with
k ≤ f(|w|), is in L′.

2. Let n0 be the minimum length of an accepting computation, with length less or equal to f(|w|),
computed in the previous step (we assume that n0 is set to a special value, f(n)+ 1 for in-
stance, if the search is unsuccessful). The machine verifies now, by another oracle query, if
0#w#1n0−1 ∈ L′ (i.e., if there exists a shorter rejecting computation of M). If the answer of
the last query is positive, M ′ rejects the input word, otherwise, it accepts.

Since the machine M has at least one possible computation on w of length less than f(|w|),
and that w ∈ L if and only if the shortest computation of M accepts, it is clear that the machine
M ′ decides the language L. Also, M ′ works in polynomial time and makes at most O(logn)
queries to the oracle L′; therefore, L ∈ PNP[log]. This completes the proof of the upper bound.

For the second inclusion, note that the class PTimesc is closed to polynomial-time reduc-
tions. That is, if L ∈ PTimesc and L′ is polynomial-time reducible to L, then L′ ∈ PTimesc.
Indeed, assume that g is a function, that can be computed in polynomial time by a deterministic
Turing machine such that, w ∈ L′ if and only if g(w) ∈ L. A machine that decides w.r.t. short-
est computations the language L′ works as follows: first, for the input w, it computes deter-
ministically the function g(w), and, then, runs the machine accepting L on the input g(w); it
is clear that this machine implements the desired behavior, and that it works in polynomial
time, measured w.r.t. shortest computations. Therefore, it is sufficient to show that the PNP[log]-
complete problem DodRan can be solved in polynomial time by a Turing machine M that
decides w.r.t. shortest computations.

Let us first make several denotations. The input of M consists in the number n, the set C
of n candidates, c and d two candidates from C, and V the multiset of preference orders on
C (encoded as explained in the previous section). It is not hard to see that one can verify if a
candidate is a Condorcet winner for the multiset V of preference orders on C in polynomial
time; let f be a polynomial that upper bounds the time needed to do this checking, for every n

Deciding according to the shortest computations 7

and #(V). Note that one needs at most (n− 1)
(⌊

#(V)
2

⌋
+1
)

switches to make a candidate a
Condorcet winner, since, in the worst case, we must bring this candidate from the last position
to the first position in

⌊
#(V)

2

⌋
+ 1 of the orders. Also, making (n− 1)

(⌊
#(V)

2

⌋
+1
)

switches
in the orders of V requires polynomial time. Let g be a polynomial that upper bounds the time
needed to make (n−1)

(⌊
#(V)

2

⌋
+1
)

switches, for every n and #(V).
This machine implements the following algorithm:

1. M writes, nondeterministically, two numbers k1 and k2 (as the strings 1k1 and 1k2), with
ki ≤ (n−1)

(⌊
#(V)

2

⌋
+1
)

for i ∈ {1,2}. Then, M chooses nondeterministically k1 switches
to be made in V , and saves them as the set T1, and k2 switches to be made in V , and saves
them as the set T2.

2. M makes (deterministically) the switches from T1, and saves the newly obtained preference
orders as a multiset V1. M makes (deterministically) the switches from T2, and saves the newly
obtained preference orders as a multiset V2.

3. M checks (deterministically) if c is a Condorcet winner in V1. If the answer is positive it goes
to step 4, otherwise it makes 2f(n,#(V))+ 2g(n,#(V)) dummy steps and rejects the input
word.

4. M checks (deterministically) if d is a Condorcet winner in V2. If the answer is positive it goes
to step 7, otherwise it makes 2f(n,#(V))+ 2g(n,#(V)) dummy steps and rejects the input
word.

5. If k1 ≤ k2 the machine accepts the input, otherwise it rejects.

First let us see that M works correctly. In step 1 it chooses nondeterministically some
switches in V , that are supposed to make c and d Condorcet winners, respectively. Notice
that the length of a possible computation performed in this step depends on the choice of the
numbers k1 and k2; if these numbers are smaller, then the computation is shorter. Then in
step 2 the machine actually makes (deterministically) the switches chosen in the previous step.
The length of a possible computation, until this moment, is still determined by the choice of
k1 and k2. In steps 3 and 4 the machine verifies if those switches were indeed good to make
c and d winners, according to the orders modified by the previously chosen moves. If they
were both transformed in winners by the chosen switches, the computation continues with to
step 5; otherwise, the machine makes a sequence of dummy steps, long enough to make that
computation irrelevant for the final answer of the machine on the given input. Note that at
least one choice of the switches, in step 1, makes both c and d winners. Now, the shortest
computations are those ones in which both c and d were transformed into winners and the
chosen numbers k1 and k2 are minimal. But this is exactly the case when k1 = Score(C,c,V)
and k2 = Score(C,d,V). In the step 5, all the computations in which c and d were transformed
into winners are completed by a deterministic comparison between k1 and k2. Thus, after the
execution of this step the shortest computations remain the ones where k1 = Score(C,c,V)
and k2 = Score(C,d,V); the decision of this computation is to accept, if k1 ≤ k2, or to reject,
otherwise. Consequently, M accepts if and only if Score(C,c,V)≤ Score(C,d,V), and reject
otherwise. Also, it is rather easy to see that M works in polynomial time, since each of the 5
steps described above can be completed in polynomial time.

8 Florin Manea

In conclusion we showed that DodRan can be solved in polynomial time by a Turing ma-
chine that decides w.r.t. shortest computations. It follows that PTimesc ⊇ PNP[log], and this
ends our proof. 2

The technique used in the previous proof to show that PNP[log]-complete problems can be
solved by in polynomial time by Turing machines that decide w.r.t. shortest computations sug-
gests another characterization of PNP[log]. In this respect, consider nondeterministic Turing
machines, working in polynomial time, that decide an input according to the decisions of the
computations in which the least number of nondeterministic moves is made. Such a machine
can be formally defined as follows:

Definition 3.4 Let M be a Turing machine working in polynomial time and w be a word over
the input alphabet of M . We say that w is accepted by M with respect to the computations with
minimum number of nondeterministic moves if one of the possible computations of M on w, in
which M makes the minimum number of nondeterministic moves, is accepting; w is rejected by
M w.r.t. the computations with minimum number of nondeterministic moves if all the possible
computations of M on w, in which M makes the minimum number of nondeterministic moves,
are rejecting.We denote by Lnm(M) the language decided by M w.r.t. the computations with
minimum number of nondeterministic moves and by PTimenm the class of all the languages
decided in this manner.

It is not hard to see that, given a Turing machine working in polynomial time and an input word
for that machine, the machine will always decide the input word w.r.t. the computations with
minimum number of nondeterministic moves, since all of its computations are finite. One can
show the following result.

Theorem 3.5 PTimenm = PNP[log].

Proof. We can use a proof similar to the one of Theorem 3.3.
For the inclusion PTimenm ⊆ PNP[log] we can assume, without loss of generality, that the

machine accepting a language from PTimenm has all the possible computations on an input of
length n of the same length f(n), for some polynomial f (we can complete some of the com-
putations with dummy deterministic steps, in order to make this happen). Then we just have to
search (using binary search) for the computation with the minimum number of nondeterministic
moves, and check if it is an accepting or rejecting one.

For the inclusion PTimenm ⊇ PNP[log], we use the machine constructed in the proof of
PTimesc ⊇ PNP[log], and note that the shortest computations performed by this machine on a
certain input are also the computations where the minimum number of nondeterministic moves
are made. This concludes our proof. 2

4. The first shortest computation

In the previous section we have proposed an decision mechanism of Turing machines that ba-
sically consisted in identifying the shortest computations of a machine on an input word, and
checking if one of these computations is an accepting one, or not. Now we analyze how the

Deciding according to the shortest computations 9

properties of the model are changed if we order the computations of a machine and the decision
is made according to the first shortest computation, in the defined order.

LetM = (Q,V,U,q0,acc,rej,B,δ) be a t-tape Turing machine, and assume that δ(q, a1, . . . ,
at) is a totally ordered set, for all ai ∈ U , i ∈ {1, . . . , t}, and q ∈ Q; we call such a machine an
ordered Turing machine. Let w be a word over the input alphabet of M . Assume s1 and s2 are
two (potentially infinite) sequences describing two possible computations of M on w. We say
that s1 is lexicographically smaller than s2 if s1 has fewer moves than s2, or they have the same
number of steps (potentially infinite), the first k IDs of the two computations coincide and the
transition that transforms the kth ID of s1 into the k+1th ID of s1 is smaller than the transition
that transforms the kth ID of s2 into the k+ 1th ID of s2, with respect to the predefined order
of the transitions. It is not hard to see that this is a total order on the computations of M on w.
Therefore, given a finite set of computations of M on w one can define the lexicographically
first computation of the set as that one which is lexicographically smaller than all the others.

Definition 4.1 Let M be an ordered Turing machine, and w be a word over the input alphabet
of M . We say that w is accepted by M with respect to the lexicographically first computation
if there exists at least one finite possible computation of M on w, and the lexicographically
first computation of M on w is accepting; w is rejected by M w.r.t. the lexicographically first
computation if the lexicographically first computation of M on w is rejecting. We denote by
Llex(M) the language accepted by M w.r.t. the lexicographically first computation. We say that
the language Llex(M) is decided by M w.r.t. the lexicographically first computation if all the
words not contained in Llex(M) are rejected by M .

As in the case of Turing machines that decide w.r.t. shortest computations, the class of
languages accepted by Turing machines w.r.t. the lexicographically first computation equals
RE, while the class of languages decided by Turing machines w.r.t. the lexicographically first
computation equals REC. The time complexity of the computations of Turing machines that
decide w.r.t. the lexicographically first computation is defined exactly as in the case of machines
that decide w.r.t. shortest computations. We denote by PTimelex the class of languages decided
by Turing machines in polynomial time w.r.t. the lexicographically first computation. In this
context, we are able to show the following theorem.

Theorem 4.2 PTimelex = PNP.

Proof. In the first part of the proof we show that PTimelex ⊆ PNP. Let L be a language
in PTimelex and let M be a Turing machine that decides L in polynomial time w.r.t. the lex-
icographically first computation. Also, let f be a polynomial such that the time complexity
of the computation of M on each word of length n, measured w.r.t. the lexicographically first
computation, is less than f(n).

We define the language L′ = {x#w#w′#1k | w ∈ V ∗,w′ is a sequence of consecutive IDs of
M , x ∈ {0,1}, and, if x= 1 (respectively, x= 0) there exists an accepting (respectively, reject-
ing) computation of M on the input word w of length less than k, starting with the sequence of
IDs w′}. It is not hard to see that L′ is in NP. A nondeterministic machine deciding it works as
follows: it simulates, nondeterministically, a computation of at most k steps of M , starting with
the IDs in the sequence w′, and accepts if and only if this x= 1,or, respectively, x= 0, and the
simulated computation is accepting, or, respectively, rejecting; otherwise (i.e., if in the simu-

10 Florin Manea

lated computation steps a final configuration was not obtained) it rejects. Clearly, this machine
works in polynomial time.

A deterministic Turing machine M ′, with oracle L′, accepting L implements the following
strategy, on an input word w:

1. M ′ searches (by binary search) the minimum length of a computation of M on w, with length
less or equal to f(|w|). In this search, the machine queries the oracle L′ for O(log2(f(|w|)))
times, asking, in each of these queries, if a string of the form 1#w#ε#1k and 0#w#ε#1k, with
k ≤ f(|w|), is in L′. Let n0 be the minimum length of a computation, with length less or equal
to f(|w|).

2. Next M ′ tries to construct, ID by ID, the first (shortest) computation of length n0, using the
oracle L′. Assume that w′ is a sequence of IDs identified until a given moment as a prefix
of the sequence encoding the first computation of length n0, and we try to prolongate this
sequence. Assume that w1,w2, . . . ,wk are the IDs that can be obtained from the last ID of w′,
ordered according to the transitions that were used to obtain them. We search the minimum i,
with 1≤ 1≤ k, such that 0#w#w′wi#1n0 or 1#w#w′wi#1n0 is in L′. Once we have identified
this minimum value, denoted i0, we add the ID wi0 to the sequence w′, and repeat the process
described above, until w′ contains n0 IDs.

3. The machine finally checks if the string 1#w#w′#1n0 is in L′, and if it is so accepts, or, if the
string 0#w#w′#1n0 is in L′, and, in this case, rejects.

It is not hard to see that M ′ correctly computes the length n0 of the shortest computation
of M on an input word w. Also, once this length computed, the first shortest computation is
identified, and the machine checks if this computation is an accepting or a rejecting one. Thus,
M ′ implements the desired behavior. Finally, note that M ′ works in polynomial time: in step
2 it makes O(n0) queries, asking if strings of polynomial length are in L′, while the rest of the
computation is clearly carried out in polynomial time. This completes the proof of the upper
bound on PTimelex.

To show the second inclusion, note that, similar to the case of machines deciding w.r.t. short-
est computations, the class PTimelex is closed to polynomial-time reductions. Thus, it is suf-
ficient to show that the PNP-complete problem TSPodd can be solved in polynomial time by a
Turing machine M that decides w.r.t. the lexicographically first computation.

Therefore we construct a Turing machine M that solves TSPodd w.r.t. the lexicographically
first computation. The input of this machine consists in a natural number n, and n2 natural
numbers, encoding the values of the function d : {1, . . . ,n}×{1, . . . ,n}→ IN . We can assume,
without losing generality, that all the input numbers are given as decimal numbers; also, we
assume that all the n2 numbers, that encode the values of the function d, have the same number
of decimal digits, denoted by m (we may add some leading zeros at the beginning of these
numbers in order to make this assumption hold). Therefore the size of the input is O(n2m).
Also, let us make the assumption that every time we sum up n numbers of m digits we make
exactly f(m,n) steps, where f is a polynomial, and the sum is always represented using the
same number of digits (clearly bounded by the input size).

This machine implements the following algorithm:

1. M writes, nondeterministically, a permutation π of {1, . . . ,n} and computes, deterministically,
the sum S = ∑

n
i=1 d(π(i),π(i+1)). Let k be the number of digits of S.

Deciding according to the shortest computations 11

2. M writes, nondeterministically, a number S0 of k digits; this number may have some leading
zeros. We assume that this step is performed in k computational steps, each consisting in
choosing one of the moves {m0,m1, . . . ,m9} in which one of the digits 0, . . . ,9, respectively,
is written. These moves are ordered m0 <m1 < .. . < m8 <m9.

3. M writes, nondeterministically, a permutation π′ of {1, . . . ,n} and computes, deterministi-
cally, the sum S′ = ∑

n
i=1 d(π

′(i),π′(i+1)).

4. M checks, deterministically, if S′ = S0. If yes it goes to step 5, otherwise it makes 2n2m
dummy step and rejects.

5. M checks, deterministically, if S′ is odd. If yes it accepts, otherwise it rejects.

It is important to state that the order of the nondeterministic moves that are executed in steps
1 and 3 has no impact on the computation. For uniformity we consider that they are ordered,
but we don’t make any assumption on what order is actually used.

Before showing that the machine works correctly, we notice that it works in polynomial
time. Indeed, it is not hard to see that every possible computation of M consists in a sequence
of steps of polynomial length, and always ends with a decision.

To show the soundness of our construction, let us observe that all the possible computa-
tions implemented by the first 3 steps of the above algorithm have the same length. In the
first of these steps we choose a possible permutation π of {1, . . . ,n} and compute the sum
S = ∑

n
i=1 d(π(i),π(i+1)); in this way we have computed a possible solution of the Traveling

Salesman Problem, defined by the function d, and the real solution of the problem should be at
most S. Then we try to find another permutation π′ that leads to a smaller sum. For this we
choose first a number S0 that has as many digits as S (of course, it may have several leading
zeros); however, the computations are ordered in such a manner that a computation in which
smaller numbers are constructed comes before a computation in which a greater number is con-
structed. Then, in steps 3 and 4,M verifies if S′ can be equal to the sum ∑

n
i=1 d(π

′(i),π′(i+1)),
for a permutation π′ nondeterministically chosen. If the answer is yes then it means that S0 is
also a possible solution of the problem; otherwise we conclude that the nondeterministic choices
made so far were not really the good ones, so we reject after we make a long-enough sequence
of dummy steps, in order not to influence the decision of the machine. Finally, we verify if S0 is
odd, and accept if and only if this condition holds. By the considerations made above, it is clear
that in all the shortest computations we identified some numbers that can represent solutions of
the Traveling Salesman Problem; moreover, in the first of the shortest computations we have
identified the smallest such number, i.e., the real solution of the problem. Consequently, the
decision of the machine is to accept or to reject the input according to the parity of the solution
identified in the first shortest computation, which is correct.

Summarizing, we showed that TSPodd can be solved in polynomial time by a Turing ma-
chine that decides w.r.t. the lexicographically first computation. It follows that PTimelex ⊇
PNP, and this concludes our proof. 2

Remark 2 Note that the proof of Theorem 3.3 shows that PNP[log] can be also characterized as
the class of languages that can be decided in polynomial time w.r.t. shortest computations by
nondeterministic Turing machines whose shortest computations are either all accepting or all
rejecting. On the other hand, in the proof of Theorem 4.2, the machine that we construct to solve
w.r.t. the lexicographically first computation the TSPodd problem may have both accepting and

12 Florin Manea

rejecting shortest computations on the same input. This shows that PNP[log] = PNP if and only if
all the languages in PNP can be decided w.r.t. shortest computations by nondeterministic Turing
machines whose shortest computations on a given input are either all accepting or all rejecting.

There is a point where the definition of the ordered Turing machine doesn’t seem satisfac-
tory: each time a machine has to execute a nondeterministic move, for a certain state and a tuple
of scanned symbols, the order of the possible moves is the same, regardless of the input word
and the computation performed until that moment. Therefore, we consider another variant of
ordered Turing machines, in which such informations are considered:
Let M be a Turing machine. We denote by 〈M〉 a binary encoding of this machine (see, for
instance, [4]). It is clear that the length of the string 〈M〉 is a polynomial with respect to the
number of states and the working alphabet of the machine M . Let g : {0,1,#}∗ → {0,1,#}∗
be a function such that g(〈M〉#w1#w2# . . .#wk) =w′1#w′2# . . .#w′p, given that w1, . . . ,wk are bi-
nary encodings of the IDs that appear in a computation of length k of M (we assume that they
appear in this order, and that w1 is an initial configuration), and w′1, . . . ,w

′
p are the IDs that can

be obtained in one move from wk. Clearly, this function induces canonically an ordering on the
computations of a Turing machine. Assume s1 and s2 are two (potentially infinite) sequences
describing two possible computations of M on w. We say that s1 is g-smaller than s2 if the first
k IDs of the two computations, which can be encoded by the strings w1, . . . ,wk, coincide, and
g(〈M〉#w1#w2# . . .#wk) = w′1#w′2# . . .#w′p, the k+ 1th ID of s1 is encoded by w′i, the k+ 1th
ID of s2 is encoded by w′j , and i < j. It is not hard to see that g induces a total order on the
computations of M on w; thus we will call such a function an ordering function. Therefore,
given a finite set of computations of M on w we can define the g-first computation of the set as
the one that is g-smaller than all the others.

Definition 4.3 Let M be a Turing machine, and g : {0,1,#}∗→{0,1,#}∗ be an ordering func-
tion. We say that w is accepted by M with respect to the g-first shortest computation if there
exists at least one finite possible computation of M on w, and the g-first of the shortest com-
putations of M on w is an accepting one; w is rejected by M w.r.t. the lexicographically first
computation if the g-first shortest computation of M on w is a rejecting computation. We de-
note by Lgfsc(M) the language accepted by M w.r.t. the g-first shortest computation, i.e., the
set of all words accepted by M , w.r.t. the g-first shortest computation. As in the case of regular
Turing machines, we say that the language Lgfsc(M) is decided by M w.r.t. the g-first shortest
computation if all the words not contained in Lgfsc(M) are rejected by that machine, w.r.t. the
g-first shortest computation.

It is not surprising that, if g is Turing computable, the class of languages accepted by Turing
machines w.r.t. the g-first shortest computation equals RE, while the class of languages de-
cided by Turing machines w.r.t. the lexicographically first computation equals REC. The time
complexity of the computations of Turing machines that decide w.r.t. the g-first shortest com-
putation is defined exactly as in the case of machines that decide w.r.t. shortest computations.
We denote by PTimegfsc the class of languages decided by Turing machines in polynomial
time w.r.t. the g-first shortest computation. Also, we denote by PTimeofsc the union of all the
classes PTimegfsc, where the ordering function g can be computed in polynomial deterministic
time. We are now able to show the following theorem.

Deciding according to the shortest computations 13

Theorem 4.4 PTimeofsc = PNP.

Proof. In fact, we will show that PTimeofsc = PTimelex. First, let us observe that the
inclusion PTimeofsc ⊇ PTimelex holds canonically. Indeed, the lexicographical order of the
computations defined in the previous section is just a particular case of an order defined by an
ordering function computable in deterministic polynomial time.

Further, we show that PTimeofsc ⊆ PTimelex. Given g an ordering function that can be
computed in deterministic polynomial time, let L be a language and M be a Turing machine
that decides in polynomial time L w.r.t. the g-first shortest computation. Let us assume, without
loss of generality, that the time needed to compute the value of g for a string of k configurations
of M , all having the same initial configuration, regardless of the configurations. We define an
ordered machine M ′ and show that it decides L w.r.t. the lexicographically first computation,
also in polynomial time.

We will not give the details of the construction of M ′, as they can be quite tedious, but we
will give the main idea implemented by this machine. The machine M ′ basically simulates
the computation of the machine M and keeps on a track (called “memory track”) the encoding
of M and the encodings of IDs of M that were obtained during the simulated computation.
Assume that M ′ should simulate a move of M , provided that the current state of M is q and the
scanned symbols are (a1, . . . ,ak). First, M ′ enters in a state qg in which it computes the value
of the function g having as argument the string saved on the memory track. Suppose that the
computed value is the string w′1#w′2# . . .#w′p, and the machine M must make the transition mi

to obtain the ID w′i from the current ID, for i ∈ {1, . . . ,p}. Accordingly, the machine M ′ enters
in a state qm1,...,mp , and from this state it must make a nondeterministic move that simulates
the move of M . But we define M ′ such that its possibilities, in this case, are ordered: the first
comes the move m1, then the move m2, and so on, finally coming mp (m1 < m2 < .. . < mp,
in the formalism of ordered machines). Once the move is simulated, the machine M ′ saves the
encoding of the current ID of the simulated machine (again, we may assume that this operation
can be done in the same time for any ID, since their length is bounded by a polynomial), and
goes on to simulate the next move of M .

It is not hard to see that M ′ simulates soundly the behavior of M . Basically, M ′ keeps
a history of the computation performed by M and uses a subroutine, computing the function
g, to ensure that the lexicographical order of the simulated computations coincides with the
order defined by the function g for the machine M and its real computations. Also, the part of
the algorithm implemented by M ′ that is not involved in the actual simulation (that is keeping
the history of the simulated computation and computing the values of g) depends only on the
number of steps of M simulated until that point and on the input word, so it is quite easy to
see that the the shortest computations of M and are simulated by the shortest computations of
M ′; moreover, the g-first shortest computation of M is simulated by the lexicographically first
shortest computation of M ′.

It follows that the language L is decided by M ′ in polynomial time w.r.t. the lexicographi-
cally first computation.

To conclude, we showed that PTimeofsc ⊆ PTimelex.
It follows that PTimeofsc = PTimelex and, according to Theorem 4.2, we obtain the iden-

tity PTimeofsc = PNP. 2

Notice that PNP[log] ⊆ PTimegfsc ⊆ PNP, for all the ordering functions g which can be com-

14 Florin Manea

puted in polynomial deterministic time. The second inclusion is immediate from the previous
Theorem, while the first one follows from the fact that any language in PNP[log] is accepted
w.r.t. shortest computations, in polynomial time, by a nondeterministic Turing machine whose
shortest computations are either all accepting or all rejecting; clearly, the same machine can be
used to show that the given language is in PTimegfsc.

It is interesting to see that for some particular ordering functions, as for instance the one that
defines the lexicographical order discussed previously, a stronger result holds: PTimegfsc =
PNP (where g is the ordering function). We leave as an open problem to see if this relation holds
for all the ordering functions, or, if not, to see when it hold.

5. Conclusions and Further Work
In this paper we have shown that considering a variant of Turing machine, that decides an input
word according to the decisions of the shortest computations of the machine on that word,
leads to new characterizations of two well studied complexity classes PNP[log] and PNP. These
results seem interesting since they provide alternative definitions of these two classes, that do
not make use of any other notion than the Turing machine (like oracles, reductions, etc.). From
a theoretical point of view, an attractive continuation of the present work would be to analyze if
the equality results in Theorems 3.3and 4.2 relativize. It is not hard to see that the upper bounds
shown in these proofs are true even if we allow all the machines to have access to an arbitrary
oracle. It remains to be settled if a similar result holds in the case of the lower bounds.

Nevertheless, other accepting/rejecting conditions related to the shortest computations could
be investigated. As we mentioned in the Introduction, several variants of Turing machines that
decide a word according to the number of accepting, or rejecting, computations were already
studied. We intend to analyze what happens if we use similar conditions for the shortest com-
putations of a Turing machine. In this respect, using the ideas of the proof of Theorem 4.2, one
can show that:

Theorem 5.1 Given a nondeterministic polynomial Turing machine M1, one can construct a
nondeterministic polynomial Turing machine, with access to NP-oracle, M2, whose computa-
tions on an input word correspond bijectively to the short computations of M1 on the same
word, such that two corresponding computations are both either accepting, or rejecting.

Proof. Let M be a nondeterministic Turing machine working in polynomial time. Also, let f
be a polynomial such that the time complexity of the computation of M on each word of length
n is less than f(n).

Recall the language L′ = {x#w#w′#1k | w ∈ V ∗,w′ is a sequence of consecutive IDs of M ,
x ∈ {0,1}, and, if x= 1 (respectively, x= 0) there exists an accepting (respectively, rejecting)
computation of M on the input word w of length less than k, starting with the sequence of IDs
w′}, from the proof of Theorem 4.2. Also recall that L′ is in NP.

We construct now a nondeterministic Turing machine M ′, with oracle L′, that acts as fol-
lows:

1. M ′ searches (by binary search) the minimum length of a computation of M on w, with length
less or equal to f(|w|). In this search, the machine queries the oracle L′ for O(log2(f(|w|)))

Deciding according to the shortest computations 15

times, asking, in each of these queries, if a string of the form 1#w#ε#1k and 0#w#ε#1k, with
k ≤ f(|w|), is in L′. Let n0 be the minimum length of a computation, with length less or equal
to f(|w|). This step is executed deterministically.

2. Next M ′ tries to construct nondeterministically, ID by ID, one of the shortest computations
of M on w (the length of this computation is n0), using the oracle L′. Assume that w′ is a
sequence of IDs identified until a given moment as a prefix of the sequence encoding such a
computation, and we try to prolongate this sequence. Assume that w1,w2, . . . ,wk are the IDs
that can be obtained from the last ID of w′. We search all the possible i, with 1 ≤ 1 ≤ k,
such that 0#w#w′wi#1n0 or 1#w#w′wi#1n0 is in L′. Once we have identified these values,
denoted by i1, . . . , ip, we add, nondeterministically, one of the IDs wij , with j ∈ {1, . . . ,p} to
the sequence w′, and repeat the process described above, until w′ contains n0 IDs.

3. The machine finally checks if the string 1#w#w′#1n0 , for a w′ obtained in one of the possible
computations, is in L′, and if it is so the computation is accepting, or, if the string 0#w#w′#1n0 ,
for aw′ obtained in one of the possible computations, is inL′, and, in this case, the computation
is rejecting.

It is not hard to see that M ′ correctly computes the length n0 of the shortest computation
of M on an input word w. Also, once this length computed, the shortest computations of M ′

are identified, and the machine simulates these computations nondeterministically. Thus, the
computations ofM can be put in a bijectively correspondence with the shortest computations of
M ′: one of the shortest computations ofM corresponds to the computation ofM ′ that simulates
this shortest computation. Finally, note that M ′ works in nondeterministic polynomial time.

This concludes the proof of Theorem 5.1. 2

This Theorem is useful to show upper bounds on the complexity classes defined by count-
ing the accepting/rejecting shortest computations. Some examples in this direction are: PPsc ⊆
PPNP (where PPsc is the class of decision problems solvable by a nondeterministic polynomial
Turing machine which accepts if and only if at least 1/2 of the shortest computations are accept-
ing, and rejects otherwise) or BPPsc ⊆ BPPNP

path (where BPPsc is the class of decision problems
solvable by an nondeterministic polynomial Turing machine which accepts if at least 2/3 of the
shortest computations are accepting, and rejects if at least 2/3 of the shortest computations are
rejecting).

Remark 3 However, in some cases one can show stronger upper bounds; for instance, PPsc ⊆
PPNP[log]

ctree (where PPNP[log]
ctree is the class of decision problems solvable by a PP-machine which

can make a total number of O(logn) queries to an NP-language in its entire computation tree,
on an input of length n). It seems an interesting problem to find lower bounds for such classes,
as well.

Proof. Let M be a nondeterministic Turing machine working in polynomial time. Also, let f
be a polynomial such that the time complexity of the computation of M on each word of length
n is less than f(n).

Recall the language L′ = {x#w#w′#1k | w ∈ V ∗,w′ is a sequence of consecutive IDs of M ,
x ∈ {0,1}, and, if x= 1 (respectively, x= 0) there exists an accepting (respectively, rejecting)
computation of M on the input word w of length less than k, starting with the sequence of IDs
w′}, from the proof of Theorem 4.2. Also recall that L′ is in NP.

16 Florin Manea

We construct now a nondeterministic Turing machine M ′, with oracle L′, that acts as fol-
lows:

1. M ′ searches (by binary search) the minimum length of a computation of M on w, with length
less or equal to f(|w|). In this search, the machine queries the oracle L′ for O(log2(f(|w|)))
times, asking, in each of these queries, if a string of the form 1#w#ε#1k and 0#w#ε#1k, with
k ≤ f(|w|), is in L′. Let n0 be the minimum length of a computation, with length less or equal
to f(|w|). This step is executed deterministically.

2. Next M ′ simulates the computations of M , counting how many steps it has already simulated.
As soon as a computation has more than n0 steps, it makes a nondeterministic move, with two
possible continuations: one possibility is to accept the input, while the other one is to reject
it. The computations with n0 steps are fully simulated (and the decision of M ′ in those cases
coincide with the decision of M).

It is not hard to see that M ′ correctly computes the length n0 of the shortest computation of
M on an input word w. Also, it is clear that the difference between the number of accepting
paths and the number of rejecting paths of M ′ equals the difference between the number of
accepting shortest computations and rejecting shortest computations of M . Finally, note that
M ′ works in nondeterministic polynomial time, and it makesO(logn) queries to a NP language,
summed up over all the possible computations. So, if we see M ′ as a PP-machine, it makes
exactly the same decision as M , seen as a PPsc-machine.

Clearly, this implies that PPsc ⊆ PPNP[log]
ctree , and our proof is concluded.

Alternatively, one can see that all the languages from PPsc can be accepted by deterministic
Turing machines working in polynomial time, that are allowed to make O(logn) queries to NP
and exactly one query to PP, which gives the decision of the machine, on an input of length
n. The only difference from the above idea is that step 2 of the algorithm is replaced by a
PP-language query.

Another remark is that the idea presented above holds in the case of other classes, like
⊕P (where ⊕P is the class of decision problems solvable by a nondeterministic polynomial
Turing machine which accepts if and only if the number of accepting paths is even), which was
introduced in [6].

One can show, similarly to the above, that ⊕Psc ⊆ ⊕PNP[log]
ctree (where ⊕PNP[log]

ctree is the class
of decision problems solvable by a ⊕P-machine which can make a total number of O(logn)
queries to an NP-language in its entire computation tree, on an input of length n). The only
difference from the above proof is that in step 2 of the algorithm, as soon as a computation
has more than n0 steps, the machine M makes a nondeterministic move with three possible
continuations: two possibilities are to accept the input, and the other is to reject it.

The same idea works for the class RP, of decision problems solvable by a nondeterministic
polynomial Turing machine which accepts if and only if at least 1/2 of computation paths accept
and rejects if and only if all computation paths reject, introduced in [1]. In this case we get
RPsc ⊆RPNP[log]

ctree (where RPNP[log]
ctree is the class of decision problems solvable by a RP-machine

which can make a total number ofO(logn) queries to an NP-language in its entire computation
tree, on an input of length n).

According to Remark 2, one can see that the lower bounds PNP[log] ⊆ PPsc, PNP[log] ⊆⊕Psc
and PNP[log] ⊆ RPsc hold. 2

Deciding according to the shortest computations 17

References
[1] J. GILL, Computational Complexity of Probabilistic Turing Machines. SIAM J. Comput. 6 (1977)

4, 675–695.

[2] J. HARTMANIS, R. E. STEARNS, On the Computational Complexity of Algorithms. Trans. Amer.
Math. Soc. 117 (1965), 533–546.

[3] E. HEMASPAANDRA, L. A. HEMASPAANDRA, J. ROTHE, Exact Analysis of Dodgson Elections:
Lewis Carroll’s 1876 Voting System is Complete for Parallel Access to NP. In: ICALP. LNCS 1256,
Springer, 1997, 214–224.

[4] J. E. HOPCROFT, J. D. ULLMAN, Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[5] F. MANEA, M. MARGENSTERN, V. MITRANA, M. J. PÉREZ-JIMÉNEZ, A New Characteriza-
tion of NP, P, and PSPACE with Accepting Hybrid Networks of Evolutionary Processors. Theory
Comput. Syst. 46 (2010) 2, 174–192.

[6] C. H. PAPADIMITRIOU, S. ZACHOS, Two remarks on the power of counting. In: Theoretical
Computer Science. LNCS 145, Springer, 1983, 269–276.

[7] C. M. PAPADIMITRIOU, Computational complexity. Addison-Wesley, 1994.

[8] M. J. PÉREZ-JIMÉNEZ, A Computational Complexity Theory in Membrane Computing. In: Work-
shop on Membrane Computing. LNCS 5957, Springer, 2009, 125–148.

[9] K. W. WAGNER, More Complicated Questions About Maxima and Minima, and Some Closures of
NP. Theor. Comput. Sci. 51 (1987), 53–80.

[10] K. W. WAGNER, Bounded Query Classes. SIAM J. Comput. 19 (1990) 5, 833–846.

	1. Introduction
	2. Basic Definitions
	3. Shortest computations
	4. The first shortest computation
	5. Conclusions and Further Work

