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Abstract

In this paper we propose a hierarchy of classes of languages, generated by networks
of evolutionary processors with the filters in several special classes of regular sets. More
precisely, we show that the use of filters from the class of ordered, non-counting, power-
separating, circular, suffix-closed regular, union-free, definite and combinational languages
is as powerful as the use of arbitrary regular languages and yields networks that can gen-
erate all the recursively enumerable languages. On the other hand, the use of filters that
are only finite languages allows only the generation of regular languages, but not all regu-
lar languages can be generated. If we use filters that are monoids, nilpotent languages or
commutative regular languages, we obtain the same family of languages which contains
non-context-free languages but not all regular languages. These results seem to be of in-
terest because they provide both upper and lower bounds on the classes of languages that
one can use as filters in a network of evolutionary processor in order to obtain a complete
computational model.

1. Introduction
An important part of theoretical computer science is the study of problems and processes con-
nected with regular sets. In the last years a lot of papers appeared in which, for such problems
and processes, the effect of going from arbitrary regular sets to special regular sets was studied.
We here mention four such topics.

– It is a classical result that any nondeterministic finite automaton with n states can be
transformed into a deterministic one with 2n states, which accepts the same language,
and that this exponential blow-up with respect to the number of states is necessary in the
worst cases. In [2], this problem is studied if one restricts to the case that the automata
accept special regular languages only. It is shown, that the situation does not change
for suffix-closed and star-free regular languages; however, for some classes of definite
languages, the size of the deterministic automaton is bounded by 2n−1 +1.
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– A number α, n≤ α≤ 2n, is called magic (w. r. t. n), if there is no nondeterministic finite
automaton with n states such that the minimal deterministic finite automaton has α states.
It is known that no magic numbers exist if n ≥ 3. This situation changes if one consid-
ers subregular families of languages. For instance, only the values α which satisfy the
condition n+1 ≤ α≤ 2n−1 +1 are possible for prefix-free regular languages (see [15]).

– In the last 20 years the behaviour of the (nondeterministic) state complexity under opera-
tions is intensively studied, i. e., it is asked for the size of the minimal (non)deterministic
finite automaton for the language obtained from languages with given sizes. For many
operations, the worst case is exactly determined. It has been shown that one gets smaller
sizes if one restricts to special regular languages (see [12], [13], [3], and [16]).

– In order to enlarge the generative power, some mechanisms connected with regular lan-
guages were introduced, which control the derivations in context-free grammars. For
instance, the sequence of applied rules in a regularly controlled grammar, the current
sentential form in a conditional grammar and the levels of the derivation tree in a tree
controlled grammar have to belong to given regular languages. In the papers [7], [9], [8],
and [10], the change in the generative power, if one restricts to special regular sets, is
investigated.

In this paper we continue the research along this direction. We consider the effect of special
regular filters for generating evolutionary networks.

Networks of language processors have been introduced in [6] by E. CSUHAJ-VARJÚ and
A. SALOMAA. Such a network can be considered as a graph where the nodes are sets of
productions and at any moment of time a language is associated with a node. In a derivation step
any node derives from its language all possible words as its new language. In a communication
step any node sends those words to other nodes where the outgoing words have to satisfy an
output condition given as a regular language (called output filter), and any node takes words
sent by the other nodes if the words satisfy an input condition also given by a regular language
(called input filter). The language generated by a network of language processors consists of all
(terminal) words which occur in the languages associated with a given node.

Inspired by biological processes, in [4] a special type of networks of language processors
was introduced which are called networks with evolutionary processors because the allowed
productions model the point mutation known from biology. The sets of productions have to
be substitutions of one letter by another letter or insertions of letters or deletion of letters; the
nodes are then called substitution node or insertion node or deletion node, respectively. Results
on networks of evolutionary processors can be found, e. g., in [4], [5], [17]. For instance. in [5],
it was shown that networks of evolutionary processors are complete in that sense that they can
generate any recursively enumerable language.

Modifications of evolutionary networks with evolutionary processors concern restrictions
in the type of the nodes and the mode of applying a rule. In [1], it is investigated how the
generative power behaves if one restricts to networks with at most two types of nodes only.
Moreover, in the case that one allows that some insertions and deletions can only be performed
at the begin or end of the word one has also restricted to special regular filters given by random
context conditions.

In this paper, we modify the filters. We require that the filters have to belong to a special
subset of the set of all regular languages. We show that the use of filters from the class of
ordered, non-counting, power-separating, circular, suffix-closed regular, union-free, definite and
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combinational languages is as powerful as the use of arbitrary regular languages and yields
networks that can generate all the recursively enumerable languages. On the other hand, the use
of filters that are only finite languages allows only the generation of regular languages, but not
all regular languages can be generated. If we use filters that are monoids, nilpotent languages
or commutative regular languages, we obtain the same family of languages which contains
non-context-free languages but not all regular languages. These results seem to be of interest
because they provide both upper and lower bounds on the classes of languages that one can use
as filters in a network of evolutionary processor in order to obtain a complete computational
model.

2. Definitions
We assume that the reader is familiar with the basic concepts of formal language theory (see
e. g. [18]). We here only recall some notations used in the paper.

By V ∗ we denote the set of all words (strings) over V (including the empty word λ). The
length of a word w is denoted by |w|. By V + and V k for some natural number k we denote the
set of all non-empty words and the set of all words with length k, respectively. Let Vk be the set
of all words over V with a length of at most k, i. e., Vk =

⋃k
i=0V

i.
A phrase structure grammar is specified as a quadruple G = (N,T,P,S) where N is a set

of non-terminals, T is a set of terminals, P is a finite set of productions which are written as
α→ β with α ∈ (N ∪T )∗ \T ∗ and β ∈ (N ∪T )∗, and S ∈N is the axiom.

By REG, CF, and RE we denote the families of regular, context-free, and recursively enu-
merable languages, respectively.

For a language L over V , we set

Comm(L) = {ai1 . . .ain | a1 . . .an ∈ L, n≥ 1, {i1, i2, . . . , in}= {1,2, . . . ,n}},
Circ(L) = {vu | uv ∈ L, u,v ∈ V ∗},
Suf (L) = {v | uv ∈ L, u,v ∈ V ∗}

We consider the following restrictions for regular languages. Let L be a language and
V = alph(L) the minimal alphabet of L. We say that L is

– combinational iff it can be represented in the form L= V ∗A for some subset A⊆ V ,
– definite iff it can be represented in the form L=A∪V ∗B whereA andB are finite subsets

of V ∗,
– nilpotent iff L is finite or V ∗ \L is finite,
– commutative iff L= Comm(L),
– circular iff L= Circ(L),
– suffix-closed (or fully initial or multiple-entry language) iff xy ∈ L for some x,y ∈ V ∗

implies y ∈ L (or equivalently, Suf (L) = L),
– non-counting (or star-free) iff there is an integer k ≥ 1 such that, for any x,y,z ∈ V ∗,
xykz ∈ L if and only if xyk+1z ∈ L,

– power-separating iff for any x ∈ V ∗ there is a natural number m ≥ 1 such that either
Jm

x ∩L= ∅ or Jm
x ⊆ L where Jm

x = {xn | n≥m},
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– ordered iff L is accepted by some finite automaton A= (Z,V,δ,z0,F ) where (Z,�) is a
totally ordered set and, for any a ∈ V , z � z′ implies δ(z,a)� δ(z′,a),

– union-free iff L can be described by a regular expression which is only built by product
and star.

It is obvious that combinational, definite, nilpotent, ordered and union-free languages are
regular, whereas non-regular languages of the other types mentioned above exist.

By COMB, DEF, NIL, COMM, CIRC, SUF, NC, PS, ORD, and UF we denote the families
of all combinational, definite, nilpotent, regular commutative, regular circular, regular suffix-
closed, regular non-counting, regular power-separating, ordered, and union-free languages, re-
spectively. Moreover, we add the family MON of all languages of the form V ∗, where V is an
alphabet (languages of MON are target sets of monoids; we call them monoidal languages). We
set

G = {FIN,MON,COMB,DEF,NIL,COMM,CIRC,SUF,NC,PS,ORD,UF}.

The relations between families of G are investigated e. g. in [14] and [20]. and their set-theoretic
relations are given in Figure 1.
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Figure 1: Hierarchy of subregular languages (an arrow from X to Y denotes X ⊂ Y , and if two families
are not connected by a directed path then they are incomparable)

We call a production α→ β a
– substitution if |α|= |β|= 1,
– deletion if |α|= 1 and β = λ.

The productions are applied like context-free rewriting rules. We say that a word v derives a
word w, written as v =⇒ w, if there are words x,y and a production α→ β such that v = xαy
and w = xβy. If the rule p applied is important, we write v =⇒p w.

We introduce insertion as a counterpart of deletion. We write λ→ a, where a is a letter. The
application of an insertion λ→ a derives from a word w any word w1aw2 with w = w1w2 for
some (possibly empty) words w1 and w2.

We now introduce the basic concept of this paper, the networks of evolutionary processors
(NEPs for short).



Networks of Evolutionary Processors with Subregular Filters 5

Definition 2.1 Let X be a family of regular languages.
(i) A network of evolutionary processors (of size n) with filters of the set X is a tuple

N = (V,N1,N2, . . . ,Nn,E,j)

where
– V is a finite alphabet,
– for 1 ≤ i≤ n, Ni = (Mi,Ai, Ii,Oi) where

– Mi is a set of rules of a certain type: Mi ⊆ {a→ b | a,b ∈ V } or
Mi ⊆ {a→ λ | a ∈ V } or Mi ⊆ {λ→ b | b ∈ V },

– Ai is a finite subset of V ∗,
– Ii and Oi are languages from X over V ,

– E is a subset of {1,2, . . . ,n}×{1,2, . . . ,n}, and
– j is a natural number such that 1 ≤ j ≤ n.

(ii) A configuration C of N is an n-tuple C = (C(1),C(2), . . . ,C(n)) where C(i) is a subset
of V ∗ for 1 ≤ i≤ n.

(iii) LetC = (C(1),C(2), . . . ,C(n)) andC ′ = (C ′(1),C ′(2), . . . ,C ′(n)) be two configurations
of N . We say that C derives C ′ in one

– evolutionary step (written as C =⇒C ′) if, for 1≤ i≤ n, C ′(i) consists of all words
w ∈ C(i) to which no rule of Mi is applicable and of all words w for which there
are a word v ∈ C(i) and a rule p ∈Mi such that v =⇒p w holds,

– communication step (written as C ` C ′) if, for 1 ≤ i≤ n,

C ′(i) = (C(i)\Oi)∪
⋃

(k,i)∈E

(C(k)∩Ok ∩ Ii).

The computation of an evolutionary network N is a sequence of configurations
Ct = (Ct(1),Ct(2), . . . ,Ct(n)), t≥ 0, such that

– C0 = (A1,A2, . . . ,An),
– for any t≥ 0, C2t derives C2t+1 in one evolutionary step,
– for any t≥ 0, C2t+1 derives C2t+2 in one communication step.

(iv) The language L(N ) generated by N is defined as

L(N ) =
⋃
t≥0

Ct(j)

where Ct = (Ct(1),Ct(2), . . . ,Ct(n)), t≥ 0 is the computation of N .

Intuitively, a network with evolutionary processors is a graph consisting of some, say n,
nodes N1,N2, . . . ,Nn (called processors) and the set of edges given by E such that there is a
directed edge from Nk to Ni if and only if (k, i) ∈E. Any processor Ni consists of a set of evo-
lutionary rules Mi, a set of words Ai, an input filter Ii and an output filter Oi. We say that Ni

is a substitution node or a deletion node or an insertion node if Mi ⊆ {a→ b | a,b ∈ V } or
Mi ⊆ {a→ λ | a ∈ V } or Mi ⊆ {λ→ b | b ∈ V }, respectively. The input filter Ii and the output
filter Oi control the words which are allowed to enter and to leave the node, respectively. With
any node Ni and any time moment t≥ 0 we associate a set Ct(i) of words (the words contained
in the node at time t). Initially, Ni contains the words of Ai. In an evolutionary step, we derive
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from Ct(i) all words applying rules from the set Mi. In a communication step, any proces-
sor Ni sends out all words Ct(i)∩Oi (which pass the output filter) to all processors to which
a directed edge exists (only the words from Ct(i) \Oi remain in the set associated with Ni)
and, moreover, it receives from any processor Nk such that there is an edge from Nk to Ni all
words sent by Nk and passing the input filter Ii of Ni, i. e., the processor Ni gets in addition
all words of Ct(k)∩Ok ∩ Ii. We start with an evolutionary step and then communication steps
and evolutionary steps are alternately performed. The language consists of all words which are
in the node Nj (also called the output node, j is chosen in advance) at some moment t, t≥ 0.

For a family X ⊆ REG, we denote the family of languages generated by networks of evolu-
tionary processors where all filters are of type X by E(X).

The following fact is obvious.

Lemma 2.2 Let X and Y be subfamilies of REG such that X ⊆ Y . Then the inclusion

E(X)⊆ E(Y )

holds. 2

The following theorem is known (see, e. g., [5]).

Theorem 2.3 E(REG) = RE.

3. Some General Results
We start with some results which hold for every type of filters.

Lemma 3.1 For every network N of evolutionary processors, there is a network N ′ of evolu-
tionary processors that generates the same language as N and has the property that its output
node N ′ has the form N ′ = (∅,∅, I ′,O′) for some regular languages I ′,O′ over the network’s
working alphabet and no edge is leaving N ′.

Proof. Let N = (V,N1,N2, . . . ,Nn,E,j) be a network of evolutionary processors where the
output node Nj has not the required property: Nj 6= (∅,∅, Ij ,Oj) for any sets Ij ,Oj or there is
an edge leaving node Nj . We define a new network N ′ = (V,N ′

1,N
′
2, . . . ,N

′
n+4,E

′,n+4) by

N ′
i =Ni for 1 ≤ i≤ n,

N ′
i = (Mi,∅, Ii,Oi) for n+1 ≤ i≤ n+4,

E′ = E∪{ (i,n+1) | (i, j) ∈ E }
∪{(n+1,n+2),(n+1,n+4),(n+2,n+3),(n+2,n+4),(n+3,n+2)}

where

Mn+1 = ∅, Mn+2 = Mj , Mn+3 = ∅, Mn+4 = ∅,
An+1 = Aj , An+2 = ∅, An+3 = ∅, An+4 = ∅,
In+1 = Ij , In+2 = V ∗, In+3 = V ∗ \Oj , In+4 = V ∗,
On+1 = V ∗, On+2 = V ∗, On+3 = V ∗, On+4 = V ∗.
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The network is illustrated below:
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The new output node N ′
n+4 satisfies the condition because N ′

n+4 = (∅,∅,V ∗,V ∗) and no edge
leaves the node N ′

n+4. We now show that L(N ′) = L(N ).
The subnetwork consisting of N ′

1,N
′
2, . . . ,N

′
n is the same as N . The initial sets of N ′

j

and N ′
n+1 as well as the input filters and incoming edges coincide. Hence, if a word w is

in Nj at an even moment t, then w is also in this moment in node N ′
j and N ′

n+1. The word
is then sent unchanged to the output node N ′

n+4. Thus, w ∈ L(N ) and w ∈ L(N ′). Addition-
ally, w is also sent to N ′

n+2 where the same rules as in Nj can be applied. Hence, if a word v is
derived in Nj (and, hence, v ∈ L(N )) then v is derived in N ′

n+2 and will be sent to the output
node in the next communication step, hence, v ∈ L(N ′). If the word v remains in Nj then a
word u∈L(N ) will be derived from v inNj . InN ′, the word v will also be sent toN ′

n+3 which
takes the word and sends it back to N ′

n+2 where it will be derived to u which will be sent to the
output node afterwards. Hence, as long as a word is modified in Nj , the same word is modified
in N ′

n+2 with intermediate communication to N ′
n+3 and all these words also arrive in the output

node. Thus, L(N )⊆ L(N ′).
Every word w ∈L(N ′) came to nodeN ′

n+4 from nodeN ′
n+1 orN ′

n+2. If it came fromN ′
n+1

then the word was also in node Nj , hence, w ∈ L(N ). If it came from N ′
n+2 then it has been

derived from a word v which came from N ′
n+1 or N ′

n+3. If v came from N ′
n+1 then v was also

in Nj and has derived w, hence, w ∈ L(N ). If v came from N ′
n+3 then v was previously in

node N ′
n+2 and was derived from a word u. Furthermore, v /∈ Oj . If u came from N ′

n+1 then u
was also in Nj and has derived v which remained there and derived w, hence, w ∈ L(N ).
If u came from N ′

n+3 then the argumentation can be repeated because for every word in u
in N ′

n+2 there was a word ũ in N ′
n+1 with ũ =⇒∗

Mj
u and all words during this derivation did

not belong to Oj . Hence, ũ was also in Nj where the same derivation of u took place. Thus, we
obtain L(N ′)⊆ L(N ).

Since L(N ′) = L(N ) the network N ′ has the required properties. 2

Theorem 3.2 Let X ∈ G. Then each language L ∈ X can be generated by a NEP N with at
most two nodes and with filters from X .

Proof. Let X = FIN. Let L be a finite set over V . Then the evolutionary network

(V,(∅,L,∅,∅),∅,1)

with all filters from FIN generates L.
If X 6= FIN, then MON ⊆X holds by Figure 1. Moreover, let L ∈X be a language over an

alphabet V .
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We construct the NEP N = (V,N1,N2,E,2) given as

#
"

 
!

I1 = V ∗

A1 = {λ}
O1 = V ∗

M1 = {λ→ a | a ∈ V }

#
"

 
!

I2 = L

A2 = {λ | λ ∈ L}
O2 = V ∗

M2 = ∅

-

'$
?

Every word w ∈ V + will be derived in node N1 and be communicated to node N2 which
accepts all words that also belong to L. The language generated by N is

L(N ) = A2∪ (V +∩L) = L.

All filters are of type X . 2

Corollary 3.3 For each class X ∈ G, we have X ⊆ E(X). 2

Corollary 3.4 For each class X ∈ G, we have MON ⊆ E(X).

Proof. By the relations given in Figure 1 and Corollary 3.3, it is sufficient to show the in-
clusion MON ⊆ E(FIN). Let V be an alphabet and L = V ∗. Then the evolutionary network
(V,({λ→ a | a ∈ V } ,{λ},∅,∅),∅,1) with all filters from FIN generatesL. Thus, any monoidal
language L= V ∗ belongs to E(FIN). 2

4. Computationally Complete Cases
In this section we present the computational completeness of some families E(X).

Theorem 4.1 E(SUF) = RE and E(CIRC) = RE.

Proof. First we show that E(SUF) = RE.
LetL be a recursively enumerable language. LetN = (V,N1,N2, . . . ,Nn,E,j) be a network

with evolutionary processors and filters from the class REG such that L(N ) = L. For any node
Ni = (Mi,Ai, Ii,Oi), we construct the sets

I ′i = {X}Ii{Y }∪Suf (Ii){Y }∪{λ},
O′

i = {X}Oi{Y }∪Suf (Oi){Y }∪{λ},

where X and Y are two new symbols. By definition, I ′i and O′
i are suffix-closed. We assume

that the network N has the property Nj = (∅,∅, Ij ,Oj) and no edge leaves the output node
(according to the previous Lemma).

We consider the network

N ′ = (V ∪{X,Y },N ′
1,N

′
2, . . . ,N

′
n,N

′
n+1,N

′
n+2,E

′,n+2)

with

N ′
i = (Mi,{X}Ai{Y }, I ′i,O′

i) for 1 ≤ i≤ n,

N ′
n+1 = ({X → λ, Y → λ},∅, I ′j ,V ∗),

N ′
n+2 = (∅,∅,V ∗,∅),
E′ = E∪{ (i,n+1) | (i, j) ∈ E }∪{(n+1,n+2)} .
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It is obvious that the filters of N ′
n+1 and N ′

n+2 are suffix-closed, too. Thus N ′ is a network of
type SUF.

We now prove that L(N ) = L(N ′). We start with words of the form XwY and as long as
these words are changed according to rules of Mi, 1≤ i≤ n, they can only be sent to nodes N ′

s,
1 ≤ s ≤ n, and N ′

n+1. Thus we simulate a derivation in N (in N ′ we have an X in front of
and a Y behind the word w occurring in N ) and get into N ′

n+1 exactly those words XwY
whose subword w comes into Nj . Now X and Y are removed and the resulting word w is sent
to N ′

n+2. Other words cannot arrive in N ′
n+2 and other words do not appear in Nj . Hence, we

have L(N ′) = L(N ).
To show that E(CIRC) = RE, we repeat the previous proof with the following modifications.

We set
I ′i = Circ({X}Ii{Y }) and O′

i = Circ({X}Oi{Y }) for 1 ≤ i≤ n.

This ensures that Circ(F ) = F for all filters F of the new network N ′. Then the proof proceeds
as in the case of suffix-closed filters. 2

Theorem 4.2 E(DEF) = RE.

Proof. It is known that any recursively enumerable language can be generated by a phrase
structure grammar in Kuroda normal form, i. e., by a grammar where all productions have one
of the following forms:

AB→ CD, A→ CD, A→ x, where A,B,C,D ∈N, x ∈N ∪T ∪{λ}.

We construct a network of evolutionary processors with definite filters only that simulates a
phrase structure grammar in Kuroda normal form.

Let G = (N,T,P,S) be a grammar in Kuroda normal form. Further, let V = N ∪T and
let x1,x2, . . . ,xs be the elements of V .

Let p = α→ β be a rule of P and wαatat−1 · · ·a1 be a sentential form of the grammar G
with w ∈ V ∗ and ai ∈ V for all natural numbers i with 1 ≤ i≤ t.

The idea of the simulation is to store the letters a1,a2, . . . ,at together with their positions in
the suffix somewhere else in the word to obtain the subword α in the end of the word. There it
can be replaced by the right hand side β of the rule (by definite filters it can be checked at the
end of a word that the rule is applied correctly). After that, the letters a1,a2, . . . ,at are restored
at their correct positions.

Since a word can be arbitrarily large, the position of a letter ai can be an arbitrarily large
number and hence cannot be represented by a single symbol from a finite repository. The trick
here is to encode the position by the number of occurrences of a special symbol respresenting ai.
To be more precise, we encode the position i of a letter a by 2i occurrences of the symbol [a].
If a symbol a occurs at positions i1, i2, . . . , ip, then the number of occurrences of the symbol [a]
in the word will be 2i1 +2i2 + · · ·+2ip . Hence, the number of occurrences of a symbol [a] in a
word – read as a binary number – indicates by ‘1’ at which positions in the suffix atat−1 · · ·a0
the letter a occurs.

We now construct a network N for simulating a grammar in Kuroda normal form. Let
p1, . . . ,pk be the rules of the form A→ BC with A,B,C ∈N (k ≥ 0). Let pk+1, . . . ,pm be the
rules of the form AB→ CD with A,B,C,D ∈N (m≥ k). Let pm+1, . . . ,pq be the rules of the



10 Jürgen Dassow, Florin Manea, Bianca Truthe

form A→ x with A ∈ N and x ∈ V (q ≥m). Let pq+1, . . . ,pn be the rules of the form A→ λ
with A ∈N (n≥ q).

For each rule pi with 1 ≤ i≤m, we define two mappings li and ri as follows:

li : {2} −→N, if 1 ≤ i≤ k,

li : {1,2} −→N, if k+1 ≤ i≤m,

ri : {1,2} −→N, if 1 ≤ i≤m.

If pi is a ruleA→BC then we set li(2) =A, ri(1) =B, and ri(2) =C. If pi is a ruleAB→CD
then we set li(1) = A, li(2) = B, ri(1) = C, and ri(2) =D (the values are the nonterminals of
the left hand side and the right hand side at the respective position). As intermediate symbols,
we introduce symbols 〈i, j〉 where i is the number of a rule (1 ≤ i ≤ m) and j is a position
(1 ≤ j ≤ 2). We collect these symbols into two sets 〈1〉 and 〈2〉:

〈1〉= { 〈i,1〉 | 1 ≤ i≤m} , 〈2〉= { 〈i,2〉 | 1 ≤ i≤m} .

Further let V ′ = {x′ | x ∈ V }, [V ] = { [x] | x ∈ V }, and 〈V 〉= { 〈x〉 | x ∈ V } be mutually
disjoint sets. We set

V̂ = V ∪V ′∪ [V ]∪〈V 〉∪
{

I, I′
}
∪〈1〉∪ 〈2〉.

Let F be a symbol that does not occur in the set V̂ .
We define the network N over the alphabet U = V̂ ∪{F }. The network has the following

structure, where Nout denotes the output node:

GF ED@A BCN0GF`````````

����
��
�

��

ED________________________

�� 
  

  

GF ED@A BCN1

JK
76 //

GF ED@A BCN2

OO

HI
=< ��

GF ED@A BCN3

HI
54oo

JK
?>��GF ED@A BC?> =<89 :;Nout

The subnetwork N0 consists of the only node (the initial node) N0 defined by

M0 = ∅, A0 = {S } , I0 = V ∗, O0 = V ∗.

In the cycle consisting of N0 and N1, the simulation of the rules p1,p2, . . . ,pm (where the
length of the right hand side is greater than one) is performed. In the cycle of N0 and N2, the
application of the rules pm+1,pm+2, . . . ,pq is simulated. In the cycle of N0 and N3, the erasing
rules of P are simulated (if P does not contain such rules, the subnetwork N3 is not needed).

The subnetwork N2 consists of the node N2 defined by

M2 = {pm+1,pm+2, . . . ,pq } ,
A2 = ∅, I2 = V ∗, O2 = V ∗.
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The subnetwork N3 consists of the node N3 defined by

M3 = {pq+1,pq+2, . . . ,pn } ,
A3 = ∅, I3 = V ∗, O3 = V ∗.

The rules pm+1, . . . ,pn may lead to a terminal word (in contrast to the rules p1, . . . ,pm).
Therefore, terminal words can only be produced in the nodes N2 and N3. The words from these
nodes are also sent to the output node Nout, which takes all incoming terminal words:

Mout = ∅, Aout = ∅, Iout = T ∗, Oout = U∗.

All words that arrive in this node form the language that is generated by the network.
The subnetwork N1 has the form

GF ED@A BC?> =<89 :;N1GF````````

�� ED^^^^^^^^

��GF ED@A BCN1,i

JK
1≤i≤s

76 //

GF ED@A BCN4 ED^^^^^^^^

��GF ED@A BC?> =<89 :;N5GF````````

��GF ED@A BCN2,i

JK
1≤i≤s

76 //

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

��

//

where the node N1 is defined by

M1 =
{
x→ x′ | x ∈ V

}
∪{ li(2)→ 〈i,2〉 | 1 ≤ i≤ n} ,

A1 = ∅, I1 = V̂ ∗, O1 = V̂ ∗.

This node marks a symbol for removing from the end or for replacing according to a rule.
In each subnetwork N1,i for 1 ≤ i ≤ s, the elimination of the last symbol is performed if

it is equal to x′i. In the subnetwork N4, the application of a rule is simulated. The node N5 is
defined by

M5 = ∅, A5 = ∅, I5 = V̂ ∗, O5 = V̂ ∗.

In each subnetwork N2,i for 1≤ i≤ s, the letter xi is restored at the end of the current word
if it has been there originally.

For 1≤ i≤ s, the subnetworkN1,i checks whether the last symbol of the word is the letter x′i.
If this is not the case, then the word is lost. Otherwise, the symbol ‘I’ is inserted which indicates
the position of the last letter in the original suffix atat−1 · · ·a1 (the number of occurrences of
the symbol ‘I’ is equal to the index of the last letter in the suffix). For example, let the current
suffix be atat−1 · · ·aj+1a

′
j . Let xi be the letter aj . Then the subnetwork N1,i (and no other

subnetworkN1,l) processes the word. After inserting the symbol ‘I’, the word contains exactly j
occurrences of this symbol. Then the symbol [xi] (which is equal to [aj ]) is inserted 2j times
(one symbol is inserted and then the number of occurrences is doubled as many times as the
symbol ‘I’ appears). Finally, the marked letter a′j is deleted.
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The network N1,i has the following form (1 ≤ i≤ s) – the initial set is empty in each node:

GF ED

@A BC
M1,i,1 = {λ→ I} ,
Ii,1 = V̂ ∗ {x′i } ,
Oi,1 = V̂ ∗

//

GF ED

@A BC
M1,i,2 = {λ→ [xi]} ,
Ii,2 = V̂ ∗,
Oi,2 = V̂ ∗ BC

GF��GF ED

@A BC
M1,i,3 = { I→ I′, I′→ F } ,
Ii,3 = V̂ ∗,
Oi,3 = V̂ ∗

//

GF ED

@A BC
M1,i,4 = { [xi]→ 〈xi〉,〈xi〉 → F } ,
Ii,4 = V̂ ∗,
Oi,4 = V̂ ∗

��GF ED

@A BC
M1,i,6 = {〈xi〉 → [xi]} ,
Ii,6 = (V̂ \{ [xi]})∗,
Oi,6 = (V̂ \{〈xi〉})∗

OO

��

GF ED

@A BC
M1,i,5 = {λ→ 〈xi〉} ,
Ii,5 = V̂ ∗,
Oi,5 = V̂ ∗

oo

OO

GF ED

@A BC
M1,i,7 = { I′→ I} ,
Ii,7 = (V̂ \{ I})∗,
Oi,7 = (V̂ \{ I′ })∗

//

GF ED

@A BC
M1,i,8 = {x′i → λ} ,
Ii,8 = V̂ ∗,
Oi,8 = V̂ ∗

//

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

//

In the subnetwork N4, the application of a rule pi with 1≤ i≤m is simulated. This subnet-
work has the following form (the initial set is empty in each node):

��

@A
ED ��GF ED

@A BC
M4,1 = {λ→ 〈i,1〉 | 1 ≤ i≤m} ,
I4,1 = V̂ ∗〈2〉,
O4,1 = V̂ ∗

��

GF ED

@A BC
M4,2 = { li(1)→ 〈i,1〉 |m+1 ≤ i≤ n} ,
I4,2 = V̂ ∗〈2〉,
O4,2 = V̂ ∗ BC

GF��GF ED

@A BC

M4,3 =
n⋃

i=1
{〈i,1〉 → ri(1),〈i,2〉 → ri(2)} ,

I4,3 = V̂ ∗ { 〈i,1〉〈i,2〉 | 1 ≤ i≤ n} ,
O4,3 = (V̂ \ (〈1〉∪ 〈2〉))∗

//

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
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�
�
�_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

The nodes N4,1 and N4,2 take the word if its last symbol has been marked for the simulation
of a rule by a symbol of the set 〈2〉. Then a symbol of the set 〈1〉 is produced (inserted, if
the marking stands for a rule of the form A→ BC, or obtained by substitution, if the marking
stands for a rule of the form AB→ CD). The third node N4,3 checks whether at both places
the same rule was chosen and whether the markings are in the correct order (whether the word
ends with a subword 〈i,1〉〈i,2〉 for some rule pi with 1≤ i≤ n. If it is correct, the intermediate
symbols are replaced by the respective symbols of the right hand side of the rule, otherwise the
word is lost.

If the rule was simulated, the word is sent to node N5 from where it is distributed to every
subnetwork N2,i for 1 ≤ i ≤ s. Each subnetwork N2,i checks whether the letter xi has to be
restored at the end of the word. Let j be the number of occurrences of the symbol ‘I’. If the
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symbol [xi] occurs 2j times in the word, then aj = xi and xi is restored, otherwise, the word is
lost in this network because, at some moment, the only applicable rule is a rule which introduces
the ‘fail’ symbol F (but for every number j between t and 1, the condition aj = xi is satisfied
for some letter xi and, hence, that subnetwork succeeds). When all letters of the suffix have
been restored, the word sent from node N5 to the node N0 does not contain auxiliary symbols.
Hence, it is taken by this node and the simulation of a rule pi with 1 ≤ i≤ n is finished.

The subnetwork N2,i has the following form for 1 ≤ i ≤ s (the initial set is empty in each
node):

GF ED

@A BC
M2,i,1 = { [xi]→ 〈xi〉}∪{a→ F | a ∈ V } ,
I2,i,1 = V̂ ∗,
O2,i,1 = V̂ ∗

��GF ED

@A BC
M2,i,2 = { I→ I′, I′→ F } ,
I2,i,2 = V̂ ∗,
O2,i,2 = V̂ ∗

//

GF ED

@A BC
M2,i,3 = {〈xi〉 → x′i,x

′
i → F } ,

I2,i,3 = V̂ ∗,
O2,i,3 = V̂ ∗

��GF ED

@A BC
M2,i,5 = {x′i → 〈xi〉} ,
I2,i,5 = (V̂ \{〈xi〉})∗,
O2,i,5 = (V̂ \{x′i })∗

OO

��

GF ED

@A BC
M2,i,4 = { [xi]→ x′i,x

′
i → F } ,

I2,i,4 = V̂ ∗,
O2,i,4 = V̂ ∗

oo

OO

GF ED

@A BC
M2,i,6 = { I′→ I} ,
I2,i,6 = (V̂ \{ I})∗,
O2,i,6 = (V̂ \{ I′ })∗

//

GF ED

@A BC
M2,i,7 = {〈xi〉 → λ} ,
I2,i,7 = V̂ ∗,
O2,i,7 = (V̂ \{〈xi〉})∗

��GF ED

@A BC
M2,i,9 = {x′i → xi } ,
I2,i,9 = V̂ ∗ {x′i } ,
O2,i,9 = V̂ ∗

��

GF ED

@A BC
M2,i,8 = {λ→ x′i } ,
I2,i,8 = V̂ ∗,
O2,i,8 = V̂ ∗

oo

GF ED

@A BC
M2,i,10 = { I→ λ} ,
I2,i,10 = V̂ ∗,
O2,i,10 = V̂ ∗

//

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
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//

The network N constructed above for an arbitrary phrase structure grammar has only filters
that are definite languages. This proves the claim. 2

Theorem 4.3 E(COMB) = RE.

Proof. The network constructed in the proof of Theorem 4.2 with definite filters has – up to
one exception – only combinational filters. The exception is the node N4,3 where the input filter
V̂ ∗{〈i,1〉〈i,2〉 | 1≤ i≤ n} is not combinational. We now replace the node N4,3 as follows. For
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each i, 1 ≤ i≤ n, we define the nodes

N4,3,i,1 = ({〈i,2〉 → λ},∅, V̂ ∗{〈i,2〉}, V̂ ∗{〈i,1〉}),
N4,3,i,2 = ({λ→ 〈i,2〉},∅, V̂ ∗{〈i,1〉}, V̂ ∗),
N4,3,i,3 = ({〈i,1〉 → ri(1),〈i,2〉 → ri(2)},∅, V̂ ∗{〈i,2〉}),(V̂ \ (〈1〉∪ 〈2〉))∗).

Then we connect these nodes to the nodes as follows. The ingoing edges ofN4,3,i,1 are those
from N4,3; there are edges from N4,3,i,1 to N4,3,i,2 and from N4,3,i,2 to N4,3,i,3 and the outgoing
edges of N4,3,i,3 are the outgoing edges of N4,3.

We note that all filters of the constructed network are combinational languages.
It is easy to see that a word passes through N4,3 if and only if it passes in succession the

nodesN4,3,i,1,N4,3,i,2, andN4,3,i,3 for some i, 1≤ i≤n and conversely. Moreover, in both cases
the word is changed in the same manner in both cases. Hence the constructed network generates
the recursively enumerable languages from which we started in part i). Thus RE ⊆ E(COMB).

Because E(COMB) ⊆ E(DEF) by the relations of Figure 1 and Lemma 2.2, the equality
RE = E(COMB) follows. 2

Theorem 4.4 E(UF) = RE.

Proof. By Theorem 2.3, the relations of Figure 1, and Lemma 2.2, we have E(UF)⊆ RE.
Let L ∈ RE. By Theorem 4.3 we can assume that L is generated by an evolutionary net-

work N with combinational filters and L = L(N ). Let U be the alphabet of the network.
Furthermore, let N be a node of the network. Then N has the form

N = (M,A,V ∗
1 {a1,a2, . . . ,an},V ∗

2 {b1, b2, . . . , bm})

with V1 ⊆ U , ai ∈ V1 for 1 ≤ i ≤ n, V2 ⊆ U , and bj ∈ V2 for 1 ≤ j ≤m. Let c1, c2, . . . , ck be
the other letters of V2: {c1, c2, . . . , ck } = V2 \ {b1, b2, . . . , bm }. We replace the node N by the
subnetwork given in the following figure where the nodes are defined as follows:

Na
i = (∅,∅,V ∗

1 {ai},U∗) for 1 ≤ i≤ n,

N ′ = (M,A,U∗,V ∗
2 ),

N b
i = (∅,∅,U∗,V ∗

2 {bi}) for 1 ≤ i≤m,

N c
i = (∅,∅,U∗,V ∗

2 {ci}) for 1 ≤ i≤ k.

//GF ED@A BC?> =<89 :;Na
1

//GF ED@A BC?> =<89 :;N ′ //GF ED@A BC?> =<89 :;N b
1

//

...
...

//GF ED@A BC?> =<89 :;Na
n

JK
76 //

GF ED@A BC?> =<89 :;N b
m

//
HI

..

54

GF ED@A BC?> =<89 :;N c
1

01
//

OO

...
GF ED@A BC?> =<89 :;N c

k

HI
//^^^^^^^^

OO� � � � � � � � � � � � � � � � � � � �

Every edge from a node K to the node N is replaced by edges from K to every node Na
i for

1 ≤ i≤ n. Every edge from the node N to a node K is replaced by edges from every node N b
i

for 1 ≤ i≤m to A.
Then a word w passes the node N if and only if it passes the subnetwork defined above.

Indeed, w enters the subnetwork if and only if it passes the input filter of one of the nodes Na
i ,

which is equivalent to passing the input filter of N . Then a rule is applied to it; this is simulated
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in the subnetwork in the node N ′, where every string that entered the subnetwork enters after
an evolutionary and a communication step. Further, the string exits the node N if it belongs to
the set V ∗

2 and its last letter is one of the bi with 1≤ i≤m; equivalently, in the subnetwork, the
word remains in the node N ′ if it does not belong to V ∗

2 , otherwise it is communicated to the
nodes N b

i for 1 ≤ i ≤m and N c
i for 1 ≤ i ≤ k and exits the subnetwork if it passes the output

filter of one of the nodes N b
i . If it does not pass such an output filter, then it passes the output

filter of one of the nodes N c
i and is returned to node N ′ (which simulates that it remains in the

node N as well).
If we replace all nodes of the network N as described above, we obtain a network N ′ which

also generates the language L. Moreover, if V = {x1,x2, . . . ,xp }, then

V ∗{a}= ({x1}∗{x2}∗ · · ·{xp}∗)∗{a}.

Therefore all filters of the constructed network N ′ are union-free. Hence L ∈ E(UF). This
proves the other inclusion RE ⊆ E(UF). 2

By the relations shown Figure 1, Lemma 2.2, and Theorem 2.3, we obtain the following
theorem.

Theorem 4.5 E(ORD) = E(NC) = E(PS) = RE.

5. Computationally Non-Complete Cases
We first discuss the case of finite filters. We start with a certain normal form for networks with
finite filters.

Lemma 5.1 For each NEP N with only finite filters, we can construct a NEP N ′ with only one
processor and finite filters that generates the same language as N .

Proof. Let N = (V,N1,N2, . . . ,Nn,E,j) be a NEP with finite filters. Let Bj be the set of all
words that enter some time the node Nj :

Bj = {w ∈ V ∗ | ∃t∃i : (i, j) ∈ E and w ∈ C2t+1(i)∩Oi∩ Ij }

=

{
w ∈ V ∗ | ∃i : (i, j) ∈ E and w ∈Oi∩ Ij ∩

⋃
t≥0

C2t+1(i)

}
.

The set Bj is finite (Bj ⊆ Ij) and can be computed since the set L′(i) =
⋃

t≥0
C2t+1(i) is regular

(see proof of Theorem 5.2, the equation also holds for L′(i) instead of L(N )).
Let N ′ = (V,N ′

1,∅,1) be the NEP with the processor N ′
1 = (Mj ,Aj ∪Bj ,∅,Oj). Let C and

C ′ be the configurations of N and N ′, respectively. We show inductively that every word w
which is in node Nj at a time 2t′ or 2t′ + 1 (for a t′ ≥ 0) is also in node N ′

1 at a time 2t′′ or
2t′′+1 (for a t′′ ≥ 0), respectively, and vice versa.

• w ∈ C0(j). Then w ∈ Aj and therefore w ∈ C ′
0(1).

• w ∈ C2t′+1(j) with t′ ≥ 0. Then
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(a) w ∈ C2t′(j) and Mj is not applicable or
(b) there is a word v ∈ C2t′(j) which yields w (v =⇒Mj

w).

In Case (a), we have w ∈ C ′
2t′′(1) for a t′′ ≥ 0 by induction hypothesis. Since no rule is

applicable, we also have w ∈C ′
2t′′+1(1). In Case (b), we have v ∈C ′

2t′′(1) for a t′′ ≥ 0 by
induction hypothesis. Since v =⇒Mj

w it is w ∈ C ′
2t′′+1(1).

• w ∈ C2t′(j) with t′ ≥ 1. Then

(a) there is k with 1 ≤ k ≤ n, (k,j) ∈ E, and w ∈ C2t′−1(k)∩Ok ∩ Ij or
(b) w ∈ C2t′−1(j)\Oj .

In Case (a), we havew ∈Bj and thereforew ∈C ′
0(1). In Case (b), we havew ∈C ′

2t′′+1(1)
for a t′′ ≥ 0 by induction hypothesis. Since w /∈Oj we also have w ∈ C ′

2t′′+2(1).

• w ∈ C ′
0(1). Then

(a) w ∈ Aj or
(b) w ∈Bj .

In Case (a), we also have w ∈ C0(j). In Case (b), we have w ∈ C2t′(j) for a t′ ≥ 1.

• w ∈ C ′
2t′′+1(1) with t′′ ≥ 0. Then

(a) w ∈ C ′
2t′′(1) and Mj is not applicable or

(b) there is a word v ∈ C ′
2t′′(1) which yields w (v =⇒Mj

w).

In Case (a), we have w ∈ C2t′(j) for a t′ ≥ 0 by induction hypothesis. Since no rule is
applicable, we also have w ∈ C2t′+1(j). In Case (b), we have v ∈ C2t′(j) for a t′ ≥ 0 by
induction hypothesis. Since v =⇒Mj

w it is w ∈ C2t′+1(1).

• w ∈ C ′
2t′′(1) with t′′ ≥ 1. Then w ∈ C ′

2t′′−1(1)\Oj (because there is no ‘real’ communi-
cation). We have w ∈ C2t′+1(j) for a t′ ≥ 0 by induction hypothesis. Since w /∈ Oj we
also have w ∈ C2t′+2(j).

By this induction, it is shown that L(N ′) = L(N ). 2

Theorem 5.2 E(FIN)⊂ REG.

Proof. Let N = (V,N1,N2, . . . ,Nn,E,j) be a network with finite filters. Obviously, a word w
is in Nj if and only if it is in Aj or satisfies Ij or is obtained from a word in Nj by application
of a rule in Mj . We set

U = {a | λ→ a ∈Mj } , V ′ =
{
a′ | a ∈ V

}
, and U ′ =

{
a′ | a ∈ U

}
.

Let h : (V ∪V ′)∗→ V ∗ be the homomorphism defined by

h(a) = a for a ∈ V and h(a′) =

{
λ, for a′ ∈ U ′,

a, for a′ ∈ V ′ \U ′,

and τ : (V ∪V ′)∗→ V ∗ be the finite substitution where τ(a) = τ(a′) for a∈ V and τ(a) consists
of all b ∈ V ∪{λ} such that there are an integers s≥ 0 and b0, b1, . . . , bs−1 ∈ V and bs ∈ V ∪{λ}



Networks of Evolutionary Processors with Subregular Filters 17

such that a = b0, b = bs, and bi → bi+1 ∈Mj for 0 ≤ i ≤ s−1 (note that s = 0 implies a = b).
Furthermore, let

k = max{ |w| | w ∈Oj ∪ Ij ∪Aj }+1.

We note the following facts:
– Assume that there is a word w of length at least k in L(N ). Then w is in Ct(j) for some t.

By its length, it cannot leave the node, and thus all words which have a length at least k and
can be obtained by application of rules of Mj to w belong to L(N ), too.

– If w with |w| ≥ k+ 1 is in L(N ), then w is obtained from a word v ∈ L(N ) of length k by
application of rules in Mj (since substitutions and deletions do not increase the length, the
shortest words in L(N ) with length at least k are obtained by an insertion from a word of
length less than k and thus they have length k).

Now it is easy to see that

L(N ) = (L(N )∩
k−1⋃
i=0

V i)∪ (τ(h−1(L(N )∩V k))∩
⋃
i≥k

V i)

holds. Since finite languages are regular and regular languages are closed under inverse homo-
morphisms, finite substitutions, intersection, and union, L(N ) is regular. Hence E(FIN)⊆REG
holds.

Let V = {a} and L= {a}∪{an | n≥ 3}. Obviously, L is regular.
Suppose the language L is generated by a network with only finite filters. By Lemma 5.1,

there is then a network N with only one node N = (M,A,∅,O) that generates L. Since L is
infinite, this node must be inserting. Hence, the rule set is M = {λ→ a}. If the initial set A
contains λ then λ ∈ L(N ) which is in contrast to λ /∈ L. If the initial set A contains a or aa
then the word aa belongs to the generated language L(N ) which is in contrast to aa /∈ L. If
the initial set only contains words an with n≥ 3 then the word a cannot be generated but a ∈ L
which is a contradiction, too. Hence, there is no network with only finite filters that generates
the language L. Thus, L ∈ REG\E(FIN). 2

The following results show that the use of filters from the remaining language families, i. e.,
from MON or NIL or COMM leads to the same class of languages.

Theorem 5.3 E(MON) = E(COMM).

Proof. According to Lemma 2.2, we have the inclusion E(MON)⊆ E(COMM). We now show
the converse inclusion E(COMM)⊆ E(MON).

Let V = {x1,x2, . . . ,xr } be an alphabet. Let N be a network of evolutionary processors
with the working alphabet V and where all filters are commutative regular languages. We
assume that N has the property that all output filters are monoidal languages and that the nodes
with non-monoidal input filters have no evolution rules and no initial words (according to the
considerations in the beginning of this section).

We now show how a node N = (∅,∅, I,O) of the network N with an arbitrary commutative
regular input filter (and a monoidal output filter) can be simulated by a network where all filters
are monoidal.
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For the alphabet V , we define four sets Ṽ , V ′, Ṽ ′, and V̂ :

Ṽ = { x̃ | x ∈ V } ,
V ′ =

{
x′ | x ∈ V

}
,

Ṽ ′ =
{
x̃′ | x ∈ V

}
, and

V̂ = V ∪ Ṽ ∪V ′∪ Ṽ ′.

Furthermore, let h : V −→ Ṽ be the isomorphism with h(x) = x̃ for x ∈ V . By L̃, we denote
the language h(L).

Let G= (N,Ṽ ,P,S) be a regular grammar that generates the language Ĩ . We now create a
network that simulates Gi. We assume that all rules in P have the form A→ aB or A→ a for
nonterminals A,B ∈N and a terminal symbol a ∈ Ṽ . Additionally, the rule S→ λ is permitted
if the axiom S does not occur on the right hand side of a rule.

For each nonterminal X ∈N , we set

R(X) = { 〈aY 〉 |X → aY ∈ P }

as the set of symbols representing the right hand sides of the nonterminating rules,

Tt(X) =
{
a | a ∈ Ṽ and X → a ∈ P

}
as the set of all terminal symbols that are generated by X with terminating,

Npost(X) =
{
Y | Y ∈N and ∃a ∈ Ṽ : X → aY ∈ P

}
as the set of all nonterminals that are generated by X , and

Tpre(X) =
{
a | a ∈ Ṽ and ∃Y ∈N : Y → aX ∈ P

}
as the set of all terminal symbols that are generated at the same time asX . The terminating non-
terminals (those nonterminals X ∈N for which a rule X→ a ∈ P exists for a terminal symbol
a ∈ Ṽ ) are gathered in the set Nt. Furthermore, we set R= { 〈aY 〉 | ∃X ∈N : X → aY ∈ P }.

For every nonterminal X ∈N , we define two nodes

NX = (MX ,AX , IX ,OX) and NX ′ = (MX ′ ,AX ′ , IX ′ ,OX ′)

as follows:

MX = {λ→ 〈aY 〉 |X → aY ∈ P } , MX ′ = { 〈aX〉 → a | a ∈ Tpre(X)} ,
AX = ∅, AX ′ = ∅,
IX = (V ∪ Ṽ )∗, IX ′ = ({ 〈aX〉 | a ∈ Tpre(X)}∪V ∪ Ṽ )∗,
OX = (R∪V ∪ Ṽ )∗, OX ′ = (V ∪ Ṽ )∗.

We put an edge from NX to NY ′ if Y ∈ Npost(X) and an edge from NX ′ to NX for each
nonterminal X ∈N . In these nodes, the application of rules of the form X → aY is simulated.
First, the word is in node NX , then a is inserted somewhere in the word (by NY ′) and then the
word is in node NY .
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For each terminating nonterminal X ∈Nt, we additionally define a node

NXt = (MXt ,AXt , IXt ,OXt)

by the sets MXt = {λ→ a | a ∈ Tt(X)}, AXt = ∅, and IXt =OXt = (V ∪ Ṽ )∗ and connect the
node NX ′ to this node.

In these nodes, the simulation of the derivation ends. The resulting words move on to a
chain of nodes where one copy of each letter of V and Ṽ is inserted. Let these nodes be

Nxi = ({λ→ xi } ,∅,(V ∪ Ṽ )∗,(V ∪ Ṽ )∗) and Nx̃i = ({λ→ x̃i } ,∅,(V ∪ Ṽ )∗,(V ∪ Ṽ )∗)

for 1≤ i≤ r. We connect all nodesNXt forX ∈Nt toNx1 , every nodeNxi toNx̃i for 1≤ i≤ r,
and every node Nx̃i to Nxi+1 for 1 ≤ i ≤ r− 1. This ensures that every letter of V ∪ Ṽ occurs
at least once in a word (we need this for technical reasons in the sequel). The words obtained
move then to another chain of nodes where it is checked whether the original word (over V –
scattered over the whole word) is letter equivalent upto ·̃ (upto the isomorphism h) to the word
generated by the grammar Gi (over Ṽ – also scattered over the whole word). Let these nodes
be

Nx′
i
= (

{
xi → x′i, x

′
i → F

}
,∅, Ix′

i
, V̂ ∗)

with

Ix′
i
= (

j−1⋃
k=1

{
x′k, x̃

′
k

}
∪

r⋃
k=j

{
xk, x̃k,x

′
k, x̃

′
k

}
)∗

and
Nx̃′

i
= (

{
x̃i → x̃′i, x̃

′
i → F

}
,∅, V̂ ∗, V̂ ∗)

for 1≤ j≤ r. The symbol F is a new symbol that cannot be derived. If this symbol is introduced
then the word is kept inside the node forever.

In the end, we delete the symbols of Ṽ ′ from the word in node

NṼ ′ = (
{
x̃′i → λ | 1 ≤ j ≤ r

}
,∅,(V ′∪ Ṽ ′)∗,(V ′)∗)

and replace the primed symbols by their unprimed counterparts in node

NV ′ = (
{
x′i → xi | 1 ≤ j ≤ r

}
,∅,(V ′)∗,V ∗).

We connect Nx̃r to Nx′
1
, every node Nx′

i
to Nx̃′

i
and Nx̃′

i
to Nx′

i
for 1 ≤ j ≤ r, and every

node Nx̃′
i

to Nx′
i+1

for 1 ≤ j ≤ r− 1 as well as Nx̃′
r

to NṼ ′ and NṼ ′ to NV ′ . In this chain,
first the letters x1 and x̃1 are marked one by one. If the numbers are equal then the word can
move to node Nx′

2
were the marking of the letters x2 and x̃2 begins. If the numbers of xi

and x̃i are different for some j then the word cannot move on because an F is introduced. If for
1 ≤ j ≤ r the numbers of xi and x̃i coincide then the word finally arrives in node NṼ ′ where
the symbols x̃′i are removed and it continues to NV ′ where the original word is restored. Hence,
a word w passes the node Ni (the input filter Ii and output filter Oi anyway) if and only if there
is a computation in the network between the nodes NS′ and NV ′ described above such that the
word w finally leaves the node NV ′ .
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The network described above is illustrated in the following picture.

?> =<89:;x′1
//?> =<89:;x̃′1oo //?> =<89:;x′2

//?> =<89:;x̃′2oo // · · · //?>=<89:;x′r
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//

The filters are all monoidal. The entrance node of the network is NS′ . Hence, the edges that
lead toNi now lead toNS′ . The exit node of the network isNV ′ . Hence, the edges that leaveNi

now leave the node NV ′ .
If this construction is repeated for every node with a non-monoidal input filter, one obtains

a network that generates the same language as N and which has only monoidal filters. Hence,
the inclusion E(COMM) ⊆ E(MON) follows which yields with E(MON) ⊆ E(COMM) the
equality. 2

Theorem 5.4 E(MON) = E(NIL).

Proof. By Lemma 2.2, E(MON)⊆ E(NIL).
In order to prove the inverse inclusion, we first show that any language of E(NIL) can

be generated by an evolutionary network N where all filters are finite languages or monoidal
languages.

Let N be a NEP with a working alphabet V where all filters are nilpotent. The complement
of a nilpotent language is also a nilpotent language. According to the considerations in the
beginning of this section, we can assume that N has the property that all output filters are V ∗

and that the nodes with non-monoidal input filters have no evolution rules and no initial words.
We show how to simulate a node with an arbitrary nilpotent input filter by a network with

finite or monoidal filters only. Let N = (∅,∅, I,O) be such a node. If I is finite or monoidal
then the filter has already a desired form. Let I be an infinite, non-monoidal, nilpotent language.
Then I can be expressed as I = V ∗V k+1∪A with A⊂ Vk for some natural number k ≥ 0.

Let F be a symbol not in V and let

V ′ =
{
a′ | a ∈ V

}
,

V̂ = V ∪V ′,

V̂0 = V̂ ∪{〈i〉 | 0 ≤ i≤ k } ,
V̂1 = V̂ ∪{〈i〉 | 1 ≤ i≤ k+1} ,
V̂2 = V̂ ∪{〈k+1〉} ,
M ′ =

{
a→ a′

}
a ∈ V ∪{〈i〉 → F | 0 ≤ i≤ k } ,

M ′′ =
{
a′→ a

}
a ∈ V ,

Ms = { 〈i〉 → 〈i+1〉 | 0 ≤ i≤ k } .
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We construct the following network simulating the node N (all sets Ai are empty):

//

GF ED
@A BC
M1 = ∅,
I1 = V ∗,
O1 = V ∗

//

��

GF ED
@A BC
M2 = ∅,
I2 = A,
O2 = V ∗

//

GF ED
@A BC
M7 = M ′′,
I7 = (V ∪V ′)∗,
O7 = V ∗

//

GF ED
@A BC
M3 = {λ→ 〈0〉} ,
I3 = V ∗,
O3 = (V ∪{〈0〉})∗

//

GF ED

@A BC
M4 = M ′,
I4 = V̂ ∗

0 ,

O4 = V̂ ∗
0

��GF ED

@A BC
M5 = MI ,

I5 = V̂ ∗
0 ,

O5 = V̂ ∗
1

OO

//

GF ED

@A BC
M6 = {〈k+1〉 → λ} ,
I6 = V̂ ∗

2 ,
O6 = (V ∪V ′)∗

OO

Let w be a word of I . Then w belongs to A or it contains at least k+1 letters. If it belongs
to A, the word can pass the network via node N2. If it contains at least k+ 1 letters, the word
can take the other path through the network. In nodeN3, the symbol 〈0〉 is inserted. In the cycle
of the nodes N4 and N5, a letter a is marked as a′ and the symbol 〈i〉 is increased alternatingly
until k+ 1 letters are primed. Then the word moves to node N6 where the symbol 〈k+ 1〉 is
removed. It moves on to node N7 where the primed symbols are unmarked again to obtain the
word w.

If in node N4 a rule 〈i〉 → F is applied then the word cannot leave the node anymore. If a
word w does not belong to I , then it does not contain k+1 letters. The word enters the node N4
before 〈k+1〉 has reached and all letters are primed. Then the trap symbol F is introduced and
no word derived from w can leave the network (note, it does not pass node N2 either).

Hence, the network simulates the node N .
We now replace the nodes with finite input/output filter by nodes with monoidal filters and

change the graph in an appropriate way. (We note that this construction is not algorithmic since
we do not determine the filters; we only known that they can be chosen in that form.)

First let N = (M,A,I,O) be a node with a finite input filter I ⊂ V ∗. Since I is finite,
only a finite set I ′ ⊂ I can enter the node N during the computations. Therefore only the
words of the set A∪ I ′ ∪M(A)∪M(I ′) occur in the node N . Thus we replace N by the
node N ′ = (∅,A∪ I ′ ∪M(A)∪M(I ′),V ∗,O) and cancel all ingoing edges. Obviously, this
construction does not change the generated language. Moreover, all input filters of the obtained
network are monoidal.

Now letN = (M,A,I,O) be a node with a finite output filterO⊂ V
∗
. Then the set of words

which leave N during the computations is a finite subset O
′

of O. If N is not the output node,
we replace N

′
= (∅,O′

, I,V
∗
) and cancel all ingoing edges. Again, we obtain an evolutionary

network generating the same language as the given network. IfN is the output node, we replace
the node N by N

′
as above and add a node N

′′
= (M,A,I,V

∗
) which has no outgoing edges

and there is an edge from a node Z to N
′′

if and only there is an edge from Z to N . Again it is
easy to see that this construction does not change the generated language. Now, also all output
filters are monoidal languages.

Thus the language L(N ) belongs to E(MON). 2
We now present some relations of E(MON) to other language families.
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Theorem 5.5 E(FIN)⊂ E(MON).

Proof. Since FIN ⊂ NIL, we obtain E(FIN) ⊆ E(NIL) by Lemma 2.2. By Theorem 3.2, the
nilpotent language L = {a}∪ {an | n≥ 3} is contained in E(NIL). However, by the second
part of the proof of Theorem 5.2, L is not contained in E(FIN). Thus E(FIN) ⊂ E(NIL). The
statement now follows from Theorem 5.4. 2

Lemma 5.6 The family E(MON) contains a non-semi-linear (hence non-regular and non-con-
text-free) language.

Proof. Let V = {S,A,F,a} and N = (V,N1,N2,N3,N4,N5,E,5) be the following network:

GF ED

@A BC

M1 = {S→ A,A→ F } ,
A1 = {S},
I1 = {S,A}∗ ,
O1 = {S,A}∗

//

GF ED

@A BC

M2 = {λ→ A} ,
A2 = ∅,
I2 = {S,A}∗ ,
O2 = {S,A}∗

��

oo

GF ED

@A BC

M5 = ∅,
A5 = ∅,
I5 = {a}∗ ,
O5 = {a}∗

GF ED

@A BC

M3 = {A→ S } ,
A3 = ∅,
I3 = {A}∗ ,
O3 = {S }∗

@A

OO

//

GF ED

@A BC

M4 = {S→ a} ,
A4 = {S},
I4 = {S }∗ ,
O4 = {a}∗

OO

In the beginning, we have the word S in node N1. We consider a word Sn for n ≥ 1 in
node N1 in an even moment (in the beginning or after a communication step). One occurrence
of S is replaced by A, then the word is sent to node N2 where another copy of A is inserted.
This word w goes back to node N1 and it goes on to node N3 which takes it if no S appears in
the word. If in N1 the rule A→ F is applied then the symbol F is introduced which cannot be
replaced. Due to the output filter O1, the word will be trapped in N1 for ever. If, in the word w,
no S is present, then the only rule which can be applied is A→ F and the cycle is stopped.
If w still contains an S, then it is replaced by A and N2 inserts another A. So, the words move
between N1 and N2 where alternatingly an S is replaced by A and an A is inserted until the
word only contains As. The word is then An+1. Hence, the number of letters has been doubled.

In N3, each A is replaced by S. The word is Sn+1 when it leaves N3. It moves to N1 and
to N4. In N1, the cycle starts again with a word Sm for m ≥ 1. All arriving words in N4 have
the form Sn with n≥ 2. In order to cover also the case n= 1, the initial language of this node
consists of S. In N4, every letter S is replaced by the symbol a before the word leaves to node
and moves to the output node N5.

Hence, L(N ) =
{
a2n | n≥ 0

}
. 2

Corollary 5.7 NIL ⊂ E(MON) and COMM ⊂ E(MON).

Proof. The inclusions follow from Corollary 3.3 and Theorems 5.3 and 5.4. The strictness
follows from Lemma 5.6. 2

Finally, we give a result which can be understood as a lower bound for the generative power
of monoidal filters.

Theorem 5.8 Let L be a semi-linear language. Then Comm(L) ∈ E(MON). 2
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Proof. For each semi-linear language L, a regular grammar G can be constructed which
generates a language that is letter-equivalent to L, i. e., ψ(L(G)) = ψ(L) ([19]). Then we have

ψ−1(ψ(L(G))) = ψ−1(ψ(L))

and therefore Comm(L(G)) = Comm(L). Thus, for any semi-linear language L, a regular gram-
marG can be constructed with Comm(L(G)) = Comm(L). For a regular grammarG, a network
with only monoidal filters that generates the language Comm(L(G)) can be constructed analo-
gously to the construction in the proof of Theorem 5.3. 2

6. Conclusion
If we combine all the results of the preceding sections, we get the following diagram which we
state as a theorem.

Theorem 6.1 The following diagram holds.

RE = E(REG) = E(PS) = E(NC)
= E(ORD) = E(SUF) = E(CIRC)
= E(DEF) = E(COMB) = E(UF)

CF

66llllllllllllll

REG

OO

E(MON) = E(NIL)
= E(COMM)

eeKKKKKKKKKKKKKKKKKKKKKKKK

E(FIN)

OO 22ddddddddddddddddddddddddddddddddddddddddddddd
NIL

iiSSSSSSSSSSSSSSSSSSSSSSS

44iiiiiiiiiiiiiiiiiiiii
COMM

OO

llZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

FIN

OO 44iiiiiiiiiiiiiiiiiiiiiii
MON

OOkkWWWWWWWWWWWWWWWWWWWWWWWWWWWW

mm[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

The subregular classes considered in this paper are defined by combinatorial or algebraic
properties of the languages. In [11], subclasses of REG defined by descriptional complexity
have been considered. Let REGn be the set of regular languages which can be accepted by
deterministic finite automata. Then we have

REG1 ⊂ REG2 ⊂ REG3 ⊂ ·· · ⊂ REGn ⊂ ·· · ⊂ REG.

By Lemma 5.6 and [11], Lemma 4.1 and Theorems 4.3, 4.4., and 4.5, we get

E(REG1)⊂ E(MON)⊂ E(REG2) = E(REG3) = · · ·= RE

and the incomparability of E(REG1) with REG and CF.
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