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Abstract. Tree controlled grammars are context-free grammars where the
associated language only contains those terminal words which have a derivation
where the word of any level of the corresponding derivation tree belongs to a
given regular language.

In this paper, we consider first the case that we take only such regular lan-
guages as the control set which can be represented by finite unions of monoids.
We show that the corresponding hierarchy of tree controlled languages collapses
already at the level 2. Moreover, we present a characterization of both levels
by well-known language families generated by extended Lindenmayer systems.

Furthermore, we give some comments on the hierarchy of tree controlled
languages if one restricts the number of states allowed in the accepting automa-
ton of the regular control language.
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1 Introduction

It is a well-known fact that the most investigated classes of formal languages, the reg-
ular and context-free languages, are not able to cover all phenomena which are known
from natural languages, programming languages etc. Thus, there have been introduced
many grammars with a context-free core and some mechanism which controls the se-
quences of rules in a derivation or the applicability of a rule etc. (see [2] and [6]).
One such control mechanism was introduced by Culik II and Maurer in [1] where
the structure of the derivation trees is restricted by the requirement that all words
belonging to a level of the derivation tree have to be in a given regular language. Păun
proved that the generative power of these grammars, called tree controlled grammars,
coincides with that of context-sensitive grammars (if erasing rules are forbidden) or
arbitrary phrase structure grammars (if erasing rules are allowed). Therefore most of
the classical decision problems are undecidable or NP-hard. But if one restricts the
underlying context-free grammars to be unambiguous, then the membership problem
can be solved in quadratic time and a lot of important non-context-free languages can
be generated. Thus it is a natural question to consider restricted versions of tree con-
trolled grammars. In [3] the generative power has been studied in those cases that one
restricts the control language to special subclasses of the family of regular languages,
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e. g. to monoids, nilpotent, combinational, definite, non-counting, regular suffix-closed
and regular commutative languages.

In this paper, we consider first the case that we take only such regular languages
as the control set which can be obtained from singletons, consisting of the empty
word or a letter of the underlying alphabet, and the empty set by the use of union
and Kleene closure. It follows easily that such languages can be represented by finite
unions of monoids. Therefore we have an obvious hierarchy with respect to the number
of unions. We first show that the corresponding hierarchy of tree controlled languages
collapses already at the level 2. Moreover, we present a characterization of both levels
by well-known language families generated by extended Lindenmayer systems.

Furthermore, we give some comments on the hierarchy of tree controlled languages
if one restricts the number of states allowed in the accepting automaton of the regular
control language.

2 Definitions
Throughout the paper, we assume that the reader is familiar with the basic concepts
of formal language theory; for details we refer to [6], [5], and [2].

With any derivation in a context-free grammar G, we associate a derivation tree.
With any derivation tree t of height k and any number 0 ≤ j ≤ k, we associate the
words of level j and the sentential form of level j which are given by all nodes of depth j
read from left to right and all nodes of depth j and all leaves of depth less than j read
from left to right, respectively.

Obviously, if w and v are sentential forms of two successive levels, then w =⇒∗ v
holds and this derivation is obtained by a parallel replacement of all nonterminals
occurring in w.

A tree controlled grammar is a quintuple G = (N,T, P, S,R) where
• (N,T, P, S) is a context-free grammar with a set N of nonterminals, a set T of

terminals, a set P of context-free non-erasing rules, and an axiom S,
• R is a regular set over (N ∪ T )∗.
The language L(G) generated by a tree controlled grammar G = (N,T, P, S,R)

consists of all words z ∈ T ∗ such that there is a derivation tree t where z is the word
obtained by reading the leaves from left to right and the words of all levels of t – besides
the last one – belong to R.

Example 1. We now consider the tree controlled grammar

G = ({S,A,B,C}, {a, b}, P, S,R)

with P = {S → AB,A → aAb,B → Ba,A → ab,B → a,A → aCb,C → Cb,C → b}
and R = ({a, b, S, C}∗{A,B}{a, b, S,A,C}∗{B}{a, b, S, C}∗)∗ ∪ {a, b, S, C}∗. Due to
the given productions and the control set, the words of a level of a derivation tree can
only be from the set {S,AB, aAbBa, aba, aCba, Cb, b}. Therefore any derivation has
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the form S =⇒ AB =⇒ aAbBa =⇒ · · · =⇒ an−1Abn−1Ban−1 =⇒ anbnan or

S =⇒ AB =⇒ aAbBa =⇒ · · · =⇒ an−1Abn−1Ban−1 =⇒ anCbnan

=⇒ anCbn+1an =⇒ · · · =⇒ anCbn+m−1an =⇒ anbn+man

with n ≥ 1 and m ≥ 1. Thus, L(G) = {anbn+man | n ≥ 1, m ≥ 0}.

Given a set R of regular languages, we denote by T C(R) the set of all languages
generated by tree controlled grammars G = (N,T, P, S,R) with R ∈ R.

Lemma 2. [3] If X ⊆ Y holds for two sets X and Y of regular languages, then also
the inclusion T C(X) ⊆ T C(Y ) holds. 2

An extended tabled interactionless L system (ET0L system for short) is a quadru-
ple G = (V, T,P, ω) where V is an alphabet, T is a subset of V , ω ∈ V ∗ and,
P = {P1, P2, . . . , Pr} for some r ≥ 1 where, for 1 ≤ i ≤ r, Pi is a finite subset of
V × V ∗ such that, for any a ∈ V , there is at least one element (a, v) in Pi. The
elements Pi, 1 ≤ i ≤ r, are called tables.

As usual, we shall write a→ v instead of (a, v). A word x ∈ V + directly derives a
word y ∈ V ∗ (written as x =⇒ y), if
– x = x1x2 . . . xn for some n ≥ 1, xi ∈ V , 1 ≤ i ≤ n,
– y = y1y2 . . . yn and
– there is a natural number j, 1 ≤ j ≤ r such that xi → yi ∈ Pj for 1 ≤ i ≤ n.

The language L(G) generated by an ET0L system G is defined as

L(G) = {z | z ∈ T ∗, ω =⇒∗ z} ,

where =⇒∗ is the reflexive and transitive closure of =⇒.
By ET0L and ET0Lr we denote the families of all languages generated by ET0L

systems and ET0L systems with at most r tables, respectively. An ET0L system with
only one table is also called an E0L system; we write E0L for the class ET0L1.

We recall the following theorem on the hierarchy with respect to the number of
tables; a proof of it can be found in [5].

Theorem 3. For any ET0L system G, there is an ET0L system G′ such that G′ has
at most two tables and L(G′) = L(G), i. e., ET0Lr = ET0L2 for any r ≥ 2. 2

3 A Collapsing Hierarchy
Let X be an infinite set. We consider only languages L ⊂ (X ′)∗ where X ′ is a finite
subset of X. Let us consider regular sets which are obtained by application of union
and Kleene closure from the basic sets {x} with x ∈ X, {λ} and ∅. By (A∗)∗ = A∗

and (A∗ ∪ B∗)∗ = (A ∪ B)∗, it follows easily by induction on the number of applied
operations that any infinite such restricted regular set is of the form A∗1 ∪A∗2 ∪ · · · ∪A∗n
for some n ≥ 1 and some (finite) alphabets Ai ⊂ X, 1 ≤ i ≤ n, i. e., it is a union of n
monoids for some n ≥ 1.
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For any natural number n ≥ 1, let MON n be the set of all languages that can be
represented in the form A∗1 ∪A∗2 ∪ · · · ∪A∗k with 1 ≤ k ≤ n where all Ai (1 ≤ i ≤ k) are
alphabets. Obviously, MON 1 ⊂ MON 2 ⊂ · · · ⊂ MON j ⊂ · · · . By Lemma 2 and [3],
we obtain the following results.

Proposition 4. T C(MON 1) ⊆ T C(MON 2) ⊆ · · · ⊆ T C(MON j) ⊆ · · · . 2

Proposition 5. T C(MON 1) = E0L. 2

We now show that every language in T C(MONk) (k ≥ 1) can be generated by an
ET0L system with k+1 tables. In [1], it was shown that every tree controlled grammar
G = (N,T, P, S,R) with R = N∗1 ∪N∗2 ∪ · · · ∪N∗k where N = N1 ∪N2 ∪ · · · ∪Nk and
Ni ∩Nj = ∅ for i 6= j generates an ET0L language. Our result is in that sense sharper
that we allow an arbitrary control set R ∈ MON k.

Theorem 6. For all k ≥ 1, the inclusion T C(MON k) ⊆ ET0Lk+1 holds.

Proof : Let L be a language generated by a tree controlled grammar

Gt = (N,T, P, S,R)

where R is the union of at most k monoids: R = R∗1 ∪R∗2 ∪ · · · ∪R∗k.
If S /∈ R then L = ∅ and we take the ET0L system G = ({S }, ∅, {h1 }, S) with

h1(S) = S. Since L(G) = ∅, we have L = L(G). Let us now consider S ∈ R.
We construct an ET0L system G = (V ∪ {F }, T, {h1, h2, . . . , hk+1 }, S) as follows:

V = N ∪ T,
h′i(A) = {w | A→ w ∈ P and w ∈ R∗i } for i = 1, 2, . . . , k and A ∈ N,

h′k+1(A) = {w | A→ w ∈ P and w ∈ T ∗ } for A ∈ N,

hi(A) =

{
h′i(A) if h′i(A) 6= ∅,
{F } otherwise,

for i = 1, 2, . . . , k + 1 and A ∈ N ,

hi(a) = { a } for i = 1, 2, . . . , k + 1 and a ∈ T ∪ {F }.

The trap symbol F is introduced to meet the definition that hi(A) 6= ∅ for
i = 1, 2, . . . , k + 1 and A ∈ N . The sentential forms containing F do not contribute to
the language L(G). By induction on the derivation length, it can be proved that G
generates the given language L. Hence, T C(MON k) ⊆ ET0Lk+1. 2

According to Theorem 3, we even have the next result.

Corollary 7. For all k ≥ 1, the inclusion T C(MON k) ⊆ ET0L2 holds. 2

We now show that the inversion holds for k ≥ 2.

Theorem 8. Every ET0L language can be generated by a tree controlled grammar with
a control set composed of two monoids: ET0L ⊆ T C(MON 2).
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Proof : Let L be an ET0L language. Then, by Theorem 3, there is an ET0L system
G = (V, T, {h1, h2 }, ω) with two tables that generates the language L.

With every symbol x ∈ V , we associate two new symbols x1 and x2. We set

V1 = {x1 | x ∈ V } and V2 = {x2 | x ∈ V }.

The corresponding isomorphisms are denoted by η1 and η2, respectively:

η1 : V ∗ → V ∗1 with η1(x) = x1 and η2 : V ∗ → V ∗2 with η2(x) = x2.

Additionally, let S /∈ V ∪ V1 ∪ V2 be a new symbol.
We now construct a tree controlled grammar Gt = (N,T, P, S,R) as follows:

N = {S } ∪ V1 ∪ V2,

P = {S → ηj(ω) | j ∈ { 1, 2 } }
∪ { ηi(x)→ ηj(w) | i, j ∈ { 1, 2 }, x ∈ V and w ∈ hj(x) }
∪ { ηi(x)→ x | i ∈ { 1, 2 } and x ∈ T },

R = (V1 ∪ {S })∗ ∪ V ∗2 .

We prove that the tree controlled grammar Gt generates the given ET0L language L.
(I) L ⊆ L(Gt).

We show for every sentential form w of G by induction on the derivation length
that η1(w) and η2(w) are words of a level of a derivation tree of Gt.

For the axiom ω of G, the words η1(ω) and η2(ω) are obtained by Gt using
the rule S → η1(ω) or S → η2(ω). The words S, η1(ω) and η2(ω) belong to R,
so η1(ω) and η2(ω) appear as words of a level of a derivation tree of Gt.

Let w be a sentential form of G. By induction hypothesis, η1(w) and η2(w)
occur as a level in a derivation tree of Gt. Let u ∈ hi(w) be a derivative of w
by a table hi (i ∈ { 1, 2 }). Due to the construction of the rule set P , we can
derive ηi(u) in Gt. Since ηi(u) ∈ V ∗i , the word ηi(u) belongs to R and it is a
level of a derivation tree of Gt. If w ∈ T ∗, then we can derive w itself from
η1(w) or η2(w) in Gt by applying the terminating rules and obtain w ∈ L(Gt),
which proves L ⊆ L(Gt).

(II) L(Gt) ⊆ L.
Every derivation tree of Gt has as root the nonterminal symbol S. We show
for every word w that occurs at a level (apart from the first and last ones) of
a derivation tree of Gt by induction on the derivation length that there are a
number i ∈ { 1, 2 } and a word w′ such that w = ηi(w′) and w′ is a sentential
form of G.

Let w be a word of the second level of a derivation tree. Then w is a
derivative of S in Gt. Since there are only two rules for S, there is a natural
number i ∈ { 1, 2 } such that w = ηi(ω). Furthermore, ω is a sentential form
(the axiom) of G.

Let w be a word of a further level of a derivation tree of Gt. By induction
hypothesis, there are a number i ∈ { 1, 2 } and a word w′ such that w = ηi(w′)
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and w′ is a sentential form of G. Let u be the next level after w. Then u is a
derivation of w and u ∈ R ∪ T ∗. If u ∈ R, then there is a number j ∈ { 1, 2 }
such that u ∈ V ∗j , because S does not occur on the right hand side of a rule.
Then, according to the rules of Gt, there is a word u′ such that u = ηj(u′) and
u′ ∈ hj(w′). Hence, u′ is a sentential form of G. If u ∈ T ∗, then terminating
rules were applied to w. According to the rules in P , we have u = w′. In this
case, we obtain that u is a sentential form and even a terminal word of L(Gt).
Thus, every word generated by Gt is also generated by G.

Together, we obtain L = L(Gt), which completes the proof that every ET0L language
is also generated by a tree controlled grammar where the control set is described by
two monoids. Hence, the inclusion ET0L ⊆ T C(MON 2) holds. 2

This theorem improves the result ET0Lk ⊆ T C(MON k+1) of the paper [1].
By Proposition 4, Proposition 5, Corollary 7 and Theorem 8, we obtain the hierarchy

shown in Figure 1 where an arrow from a class X to a class Y indicates X ⊆ Y .

ET0L

zz

E0L

��

//

T C(MON1) //

OO

T C(MON2) //

99

T C(MON 3) //

FF

· · · // T C(MON k) //

ff

· · ·

Figure 1. Hierarchy of the classes T C(MON k) and ET0L

From Figure 1, one can immediately see that the classes T C(MON k) and ET0L are
pairwise equivalent for k ≥ 2.

Theorem 9. The classes T C(MON k) for k ≥ 2 coincide with the class ET0L. 2

For k ≥ 1, the inclusions and equivalences hold as shown in Figure 2. An arrow
from a class X to a class Y indicates the proper inclusion X ⊂ Y .

CS

ET0L = T C(MON2) = T C(MON 3) = · · · = T C(MON k) = · · ·

OO

E0L = T C(MON1)

OO

Figure 2. Characterization of the classes T C(MON k)

We have shown that the languages generated by tree controlled grammars with the
union of finitely many monoids as the control set can already be generated by a tree
controlled grammar with the union of two monoids as the control set. We obtained
a two level hierarchy where the first level (using one monoid) is characterized by the
family of E0L languages and the second level by the family of ET0L languages.
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4 A Hierarchy with Respect to the Size of Automata
Let R be a regular language. Its descriptional complexity c(R) is defined as the number
of states of a minimal finite deterministic automaton that accepts R (which is unique
up to isomorphism of finite deterministic automata). For any n ≥ 1, by REGn we
denote the family of regular languages R such that c(R) ≤ n. It is known that

REG1 ⊂ REG2 ⊂ REG3 ⊂ · · · ⊂ REGn ⊂ · · · .

Obviously, by Lemma 2,

Lemma 10. T C(REG1) ⊆ T C(REG2) ⊆ T C(REG3) ⊆ · · · ⊆ T C(REGn) ⊆ · · · . 2

If an automaton with input alphabet X has exactly one state z, then the accepted
set is the empty set (if the set of accepting states is empty) or X∗ (if the set of
accepting states is {z}). Since a tree controlled grammar G = (N,T, P, S, ∅) generates
the empty set, and the empty set is also generated by any tree controlled grammar
G′ = (N,T, P, S, V ∗) with V ∩ (N ∪ T ) = ∅, we get the following statement.

Theorem 11. T C(REG1) = T C(MON 1) = E0L. 2

We consider the language

L(G) = {anbn+man | n ≥ 1, m ≥ 0}

from Example 1. By [5], Corollary 4.7, L(G) /∈ E0L. Hence, by Theorem 11, we obtain
L(G) /∈ T C(REG1).

Moreover, it is easy to see from Example 1 that L(G) is in T C(REG2) since the
language R from Example 1 is accepted by the deterministic finite automaton

A = ({z0, z1}, {a, b, S,A,B,C}, z0, δ, {z0})

where the transition function δ corresponds to the graph given in Figure 3 1.

start // ONMLHIJKGFED@ABCz0
A,B

//

S,C,a,b
�� ONMLHIJKz1

Boo

S,A,C,a,b
��

Figure 3. Transition graph of A

Therefore the following result holds.

Theorem 12. T C(REG1) ⊂ T C(REG2). 2

Let L be a language and V = alph(L) be the minimal alphabet of L. We say that L
is combinational if and only if it can be represented in the form L = V ∗A for some
subset A ⊆ V . By COMB , we denote the family of all combinational languages.

With respect to the hierarchy obtained in [3], we immediately get the following
result.

1In all figures displaying transition graphs of automata in this paper, the word start points to the
start state and all accepting states are marked by a surrounding double circle.
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Theorem 13. T C(COMB) ⊆ T C(REG2).

Proof : Every combinational language L can be represented as V ∗A with V = alph(L)
and A ⊆ V . Such a language can be accepted by a deterministic finite automaton with
two states and the transition function shown in Figure 4.

start // ONMLHIJKz0
A

//

V \A
�� ONMLHIJKGFED@ABCz1

V \A
oo

A
��

Figure 4. Automaton for accepting the language V ∗A

Hence, COMB ⊆ REG2. By Lemma 2, we obtain T C(COMB) ⊆ T C(REG2). 2

Theorem 14. ET0L ⊆ T C(REG4).

Proof : By Theorem 9, for any ET0L language L, there is a tree controlled grammar
G = (N,T, P, S,A∗1 ∪ A∗2) where A1 ⊆ N ∪ T and A2 ⊆ N ∪ T such that L(G) = L.
The finite automaton

A′ = ({z0, z1, z2, z3}, N ∪ T, z0, δ′, {z0, z1, z2})

with the transition function δ′ defined according to the transition graph shown in
Figure 5 accepts the language A∗1 ∪A∗2.

ONMLHIJKGFED@ABCz1
V \A1

''NNNNNNNNNN

A1

��

start // ONMLHIJKGFED@ABCz0
V \(A1∪A2)

//

A1∩A2

��

A1\A2

77pppppppppp

A2\A1 ''NNNNNNNNNN
ONMLHIJKz3 V

ll

ONMLHIJKGFED@ABCz2
V \A2

77pppppppppp

A2

PP

Figure 5. Transition graph of A′ (with V = N ∪ T )

Therefore L = L(G) ∈ T C(REG4). 2

We now show that this inclusion is strict. We give a language that is not generated
by an ET0L system but by a tree controlled grammar with a control set which is
accepted by a deterministic finite automaton with four states.

Lemma 15. The language L = { cn(abm)n | n ≥ m ≥ 1 } is not generated by an ET0L
system.

Proof : Suppose, there is an ET0L system generating L. Then also the language
L′ = { (abm)n | n ≥ m ≥ 1 } is an ET0L language because the family of ET0L lan-
guages is closed under homomorphisms. But L′ is not an ET0L language ([5]). So,
neither is L. 2
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Theorem 16. The language L = { cn(abm)n | n ≥ m ≥ 1 } is generated by a tree
controlled grammar where the control set is accepted by a deterministic finite automaton
with four states.

Proof : Let A = ({ z0, z1, z2, z3 }, {S,A,B,B′, b, c }, z0, δ, { z0, z3 }) be a deterministic
finite automaton where the transition function is defined according to the diagram of
Figure 6. The language accepted by this automaton is denoted by T (A).

start // ONMLHIJKGFED@ABCz0
c,B′,b

//

S,A,B
�� ONMLHIJKz1

A //

c,S,B,B′,b
�� ONMLHIJKz2

B′,b
//

A
��

c,S,B
oo

ONMLHIJKGFED@ABCz3

B′,b
��

B,A,S,c

aa

Figure 6. Transition graph of A

Let T = {a, b, c} and G = ({S,A,B,B′}, T, P, S, T (A)) be a tree controlled gram-
mar with the rule set

P = {S→ASB,S→AB,A→A,A→c,B→B,B→B′b, B→ab,B′→B′b, B′→ab}.

We now prove L = L(G).
(I) L ⊆ L(G).

Let n,m be two natural numbers with 1 ≤ m ≤ n. One derivation tree of the
word cn(abm)n is given in Figure 7.

Level Sentential form

0 S
�� ?? S

1 A

����
S

����
8888 B

999 ASB

...
���� · · · · · · ...

��� 888 · · ·
::::

...

n− 1 A
��

A
��

· · · · · · · · · A
��

S
��

B · · · B An−1SBn−1

n A A · · · · · · · · · A A B
;;; B · · · B

99 AnBn

n + 1 c A A A · · · · · · A B′

999 b · · · B′

777 b cAn−1(B′b)n

n + 2 c A A A · · · A B′

6666 b · · · B′

4444 b c2An−2(B′b2)n

...
. . .

...
... · · · ...

...
6666 · · · ...

444
...

n + m− 1 c A · · · A B′

999 b · · · B′

777 b cm−1An−(m−1)(B′bm−1)n

n + m c · · · c a b · · · a b cn(abm)n

Figure 7. Derivation tree of the word cn(abm)n

The words of the levels 0 to n are accepted in state z0; the words of the
levels n + 1 to n + m − 1 are accepted in state z3. The last level contains a
terminal word.
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(II) L(G) ⊆ L.
We show inductively which words can be derived and belong to the control set R.
The start symbol S is accepted by the automaton A. From S, the words AB
and ASB can be derived (and only these two). Both words are also accepted
by A. The sentential form AB derives the words
– cab ∈ T ∗, which belongs to the language L, too,
– Aab, cB′b, AB′b, cB, which are not accepted by A, and
– AB ∈ T (A).

The sentential form ASB derives the words
– cAσBab, AAσBab, cAσBB′b, AAσBB′b, cAσBB with σ ∈ {S, λ }, but all

these words are not accepted by A, and
– AAσBB ∈ T (A) with σ ∈ {S, λ }.

The new sentential forms accepted by A are A2SB2 and A2B2. The sentential
form AiSBi with i ≥ 2 leads to
– the word AiS′Bi ∈ T (A) with S′ ∈ {ASB,AB },
– a word wS′v with w ∈ { c, A }∗, S′ ∈ {ASB,AB }, v ∈ {B,B′, a, b }∗, and

#c(w) > 0 or #{a,B′}(v) > 0, but then wS′v /∈ T (A).
Hence, the only sentential forms derived from AiSBi and accepted by A are
Ai+1SBi+1 and Ai+1Bi+1. The sentential form AiBi with i ≥ 2 leads to
– the word ci(ab)i ∈ T ∗, which belongs to the language L, too,
– the word AiBi ∈ T (A),
– a word wA(B′b)i ∈ T (A) with w ∈ { c, A }∗ and #c(w) > 0,
– another word wv /∈ T ∗ with w ∈ { c, A }∗ and v ∈ {B,B′, a, b }∗, but then
wv /∈ T (A).

Hence, the only new sentential form that is accepted by A is wA(B′b)i with
w ∈ { c, A }∗, #c(w) > 0, and i ≥ 2.

We now consider a word wA(B′b)i with w ∈ { c, A }∗, #c(w) > 0, and i ≥ 2
that occurs at some level of a derivation tree. It corresponds to a sentential form
sA(B′bk)i with the following properties: k < i, s ∈ { c, A }∗, |sA| = i, there are
letters x1, x2, . . . , xn and words y1, y2, . . . , yn+1 such that w = x1x2 . . . xn and
s = y1x1y2x2y3 . . . ynxnyn+1 (w is a scattered subword of s) and the remaining
subword s − w = y1y2 . . . yn+1 does not contain the letter A (for the induction
base, we have w = s and k = 1).

Such a word wA(B′b)i (w ∈ { c, A }∗, #c(w) > 0, i ≥ 2) with a corresponding
sentential form sA(B′bk)i (k < i) derives
– the word cj(ab)i with j = #A(w)+1 and the corresponding sentential form
ci(abk+1)i, which is a word of the language L,

– a word w′A(B′b)i ∈ T (A) with #c(w′) > 0 and the corresponding sentential
form is s′A(B′bk+1)i with i ≥ 3 (in this case, w contains at least one c and
at least one A to produce a c in w′, hence |wA| ≥ 3), k+1 < i, s′ ∈ { c, A }∗,
|s′A| = i, w′ is a scattered subword of s′ and the remaining subword s− w
belongs to the set { c }∗,

– another word wv /∈ T ∗ with w ∈ { c, A }∗ and v ∈ {B′, a, b }∗, but then
wv /∈ T (A).
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Hence, we obtain again a word of the form wA(B′b)i with a corresponding
sentential form sA(B′bk)i or a terminal word that belongs to the language L.

Thus, all terminal words generated by G are also words of the language L.
Together, we obtain L = L(G) which completes the proof that the tree controlled

grammar G ∈ T C(REG4) generates the non-ET0L language L. 2

Together with Theorem 14, we obtain the strict inclusion.

Corollary 17. ET0L ⊂ T C(REG4).

Finally, we give the following statement.

Theorem 18. Every language that is generated by a context-sensitive grammar with
exactly r non-context-free rules p1, p2, . . . , pr and ni symbols on the left hand side of
the rule pi (1 ≤ i ≤ r) is also generated by a tree controlled grammar where the control

set is accepted by a deterministic finite automaton with at most 2 +
r∑

i=1
(ni − 1) states.

Proof : Let L be a language generated by a context-sensitive grammar G = (N,T, P, S)
with exactly r non-context-free rules p1, p2, . . . , pr and ni symbols on the left hand side
of the rule pi (1 ≤ i ≤ r). For each terminal symbol, we introduce a non-terminal
to postpone the termination. Let NT = {Ta | a ∈ T }. Further, let V = N ∪ T ,
W = N ∪ NT and η : V ∗ → W ∗ be the isomorphism defined by η(A) = A and
η(a) = Ta.

The non-context-free rules have the form pi = Ai,1Ai,2 . . . Ai,ni → Bi,1Bi,2 . . . Bi,ni

with Ai,k ∈ V and Bi,k ∈ V + for 1 ≤ i ≤ r, 1 ≤ k ≤ ni. Let

Xi,k = (η(Ai,k), pi, k, η(Bi,k))

for 1 ≤ i ≤ r, 1 ≤ k ≤ ni, pi = Ai,1Ai,2 . . . Ai,ni → Bi,1Bi,2 . . . Bi,ni and

M = {Xi,k | 1 ≤ i ≤ r, 1 ≤ k ≤ ni }.

The language L can be generated by a tree controlled grammar similar to [2, The-
orem 2.3.2].

The terminal symbols are derived in the last step (because otherwise it is not to
be seen whether two adjacent symbols in a word of some level are neighbours in the
sentential form, if they wrongly would be regarded as adjacent, then a rule could be
applied that is not applicable to the sentential form).

We construct a tree controlled grammar G′ = (N ′, T, P ′, S,R) as follows:

N ′ = W ∪M,

P ′ = {A→ η(w) | A→ w ∈ P for A ∈ N and w ∈ V + }
∪ {A→ Xi,k | Xi,k = (A, pi, k, B) ∈M }
∪ {Xi,k → B | Xi,k = (A, pi, k, B) ∈M }
∪ {A→ A | A ∈W } ∪ {Ta → a | a ∈ T },

R = W ∗ ∪ (W ∗{Xi,1Xi,2 . . . Xi,ni | 1 ≤ i ≤ r }W ∗)∗.
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In each step, context-free rules, chain rules and rules simulating non-context-free
rules can be applied simultaneously. It is easy to see that the tree controlled grammarG′

generates the language L.

The control set R is set is accepted by a finite automaton with 2+
r∑

i=1
(ni−1) states.

The transition graph is illustrated in Figure 8.
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Figure 8. Automaton for R

The start state z0 is the only accepting state, we have one ‘trap’ state z1 for errors
and further states zi

k after reading a symbol Xi,k (1 ≤ i ≤ r, 1 ≤ k ≤ ni − 1) – after
reading Xi,ni correctly, we return to z0. 2

However, the sets T C(REGn), n ≥ 1, do not form an infinite hierarchy. As shown by
Stiebe, every context-sensitive language language can be generated by a tree controlled
grammar whose control language is accepted by a deterministic finite automaton with
at most five states ([7]).

References
[1] K. Culik II and H. Maurer, Tree controlled grammars. Computing 19 (1977) 129–139.

[2] J. Dassow and Gh. Păun, Regulated Rewriting in Formal Language Theory. EATCS
Monographs on Theoretical Computer Science 18, Springer-Verlag, 1989.

[3] J. Dassow and B. Truthe, Subregularly tree controlled grammars and languages. In:
E. Csuhaj-Varjú and Z. Ésik (eds.), Automata and Formal Languages. 12th Inter-
national Conference, AFL 2008, Balatonfüred, Hungary, May 27–30, 2008. Proceedings.
Computer and Automation Research Institute, Hungarian Academy of Sciences, 2008,
158–169.

[4] Gh. Păun, On the generative capacity of tree controlled grammars. Computing 21 (1979)
213–220.

[5] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Academic
Press, 1980.

[6] G. Rozenberg and A. Salomaa (Eds.), Handbook of Formal Languages, Vol. I – III.
Springer-Verlag, Berlin, 1997.

[7] R. Stiebe, The hierarchy T C(REGn) collapses. Manuscript, 2008.


