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Abstract

In this paper we examine context-free cooperating distributed (CD) gram-
mar systems where the cooperation protocol is based on the competence (ca-
pability) of the component grammars in rewriting. We study the power of a
derivation mode where every component is allowed to start the generation only
if it has a prescribed level of competence and it is allowed to finish the work
if it is not competent anymore. The competence level of a component on a
string is the number of different nonterminal occurrences in this word that can
be rewritten by the production set of the grammar. We show that if the pre-
scribed level of competence of the grammar to start the derivation is equal to
k or is at least k, for some natural number k£ > 2, then these CD grammar
systems as powerful as the ETO0OL systems with random context conditions. If
this competence level is exactly one, or at least one, or it is at most k, where
k > 2, then the class of ET'0L languages is determined by these constructions.
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1 Introduction

Cooperating distributed grammar systems (CD grammar systems, for short) are dis-
tributed models of language which were motivated by the syntactic properties of the
blackboard architectures known from the theory of cooperative distributed problem
solving [5]. A blackboard architecture consists of several autonomous agents which
jointly solve a problem in turn, in such way that the agents have access to a global
database, called the blackboard, which stores information on the actual state of the
problem solution and the problem solving process. The problem is solved by modify-
ing the contents of the blackboard step by step. Furthermore, the blackboard is the
only mean of communication among the agents. A cooperating distributed grammar
system is a construction, where several grammars jointly generate words of a lan-
guage, in turn, in such way that any moment of time exactly one grammar performs
a derivation step on the actual sentential form. This grammar is chosen according to
the cooperation protocol of the grammars in the system, to the so-called derivation
mode or cooperation strategy. According to this model, the grammars correspond
to the agents, the sentential form in generation corresponds to the blackboard, and
the generated language represents the set of possible problem solutions.

The idea of cooperating grammars dates back to 1978, when Meersman and
Rozenberg [12], motivated by the theory of two-level grammars, introduced this
term, but the theory has only been extensively and intensively explored after then
Csuhaj-Varji and Dassow [5] introduced the notion in a more general form namely, as
a cooperating/distributed grammar system, and related that to the above concepts
of distributed artificial intelligence, to the blackboard architectures. The interested
reader can find further information in [7] and [10]. An on-line annotated bibliography
on the area can be found at [8], see http://www.sztaki.hu/mms/bib.html.

Since the beginnings, cooperation protocols based on the competence (capability)
of the component grammars in rewriting have outstanding role in the theory. A
grammar is said to be competent on a string, if it is able to rewrite at least one
nonterminal occurrence in it, and thus, the competence level of a grammar on a
string is the number of different nonterminal occurrences in this word that can be
rewritten by its production set.

For example, in [12] the cooperation protocol in the CD grammar system is
defined as follows: a grammar is allowed to start with the derivation only if it is
able to rewrite any nonterminal occurrence in the generated string, that is, the
component is fully competent on the word, and it has to stop with the work if it
does not have this property anymore. Later, this cooperation protocol was called s f-
mode of derivation [1]. These CD grammar systems with context-free components
determine the class of programmed languages with appearance checking.

According to the cooperation protocol in [5], the grammar is allowed to start
the generation if it is competent on the string and it has to continue the derivation
as long as it has this property. These context-free CD grammar systems prove to
be essentially less powerful than the previous ones, they generate the class of ET0L
languages. This derivation mode is called ¢-derivation (terminal mode of derivation)
and it is one of the most extensively investigated cooperation protocols.

Continuing this line of investigations, in [6] the power of a derivation mode,
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the so-called maz-mode of derivation, is examined where the active grammar is
always a one with the highest competence among the other components and it has
to continue the derivation until and unless it does not loose this property. The
generative power of these systems is between the power of the two previous variants
of CD grammar systems, namely, they define a class of languages included in the
class of languages of ET0L systems with random context conditions. A series of
papers, [2], [3], and [4] discussed cooperation protocols, where the grammars can
start with the derivation if they have a prescribed level of competence and loose
the right for continuing the derivation if they do not have the property anymore.
These are the CD grammar systems with (= k, comp)-mode, (< k, comp)-mode, and
(> k, comp)-modes of derivation. For example, in [2] it is shown that if the prescribed
level of competence is exactly 2, then these CD grammar systems are as powerful
as the CD grammar systems with sf-mode of derivations, that is, they generate the
class of programmed language with appearance checking. That is, even a small level
of prescribed competence leads to the same power as the demand of full competence.
In [3], however, it is proved that if the prescribed level of competence is given as
an upper or a lower bound, then, for competence level 2, the class of languages of
random context ET0L systems is defined by these systems. This class of languages
is included in the class of programmed languages with appearance checking, but the
problem of the properness of the inclusion is still open.

As a continuation of the previous works, the power of a derivation mode is
investigated in this paper where a component is allowed to start the generation only
if it has a prescribed level of competence and it is allowed to finish the work if it is
not competent anymore. It is shown, that if the prescribed level of competence of
the grammar to start the derivation is equal to & or is at least k, for £ > 2, then these
CD grammar systems are as powerful as the ET0L systems with random context
conditions. But, if this competence level is exactly 1, or at least 1, or at most k
for k£ > 2, then the class of ET0L languages is determined by these constructions.
Notice that the case when the competence level of the grammar on the string is
at least one when it starts with the derivation and finishes the work when it is
no competent on the string in generation anymore is exactly the working mode by
t-derivation.

2 Basic definitions

Throughout the paper we assume that the reader is familiar with formal language
theory. For further information consult [7, 11, 14].

The set of nonempty words over an alphabet V is denoted by V7, if the empty
string, A, is included, then we use notation V*. A set of strings . C V* is said to be
a language over V.

For a string w € V*, we denote the length of w by |w|, and for a set of symbols
U C V we denote by |w|y the number of occurrences of letters U in w.

For a finite language L, the number of strings in L is denoted by card(L).

We specify a context-free grammar by G = (N, T, P, S), where N is the set of
nonterminals, 7' is the set of terminals, P is the set of context-free productions
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and S is the start symbol. We use the notation dom(P) for the set {A € N |
there is a production A — « € P}.

We also will refer to the notion of an FTOL system. An ETO0L system is an
n + 3-tuple G = (N, T, Py,...,P,,w), with n > 1, where N and T are defined as
in the case of context-free grammars, that is, the set of nonterminals and terminals,
w € (NUT)* is the axiom (the initial word), and P;, for 1 < i < n, is a complete
set of context-free productions over (N U T')*. This means that for any symbol
X € (N UT), the production set P; has a rule with X being on its left-hand side.
The direct derivation in an ET0L system G is defined as follows: For two strings
x=x1...20, and y = y1...,y,, with r > 1, where z; € (NUT),y; € (NUT)*,
1 <4 < r, we say that z directly derives y, denoted by = = y, if z; — y; € P}
holds for 1 <7 < r, for some j, 1 < j <.

By an ETOL system with random context conditions or a random context ET0L
system, in short, we mean an n + 3-tuple G = (N, T,Q1 : P1,...,Q, : P,,w), with
n > 1, where N, T, w, and P;, 1 <1 < n, are defined in the same way as for usual
ETOL systems, and @); is a finite (possibly empty) set of symbols from (N U T),
called the random context condition associated to the table P;, for 1 < i < n. The
direct derivation in a random context ET0L system is defined in the same way as
for usual ETOL systems, except that a table P;, for 1 < i < n, can be applied in a
derivation step x = v, if and only if each symbol of @); has at least one occurrence
in . If Q; is the empty set, then no context check is necessary; in this case we can
omit the indication of the context condition.

If no confusion can arise, we can omit the subscript G from the above notations
QG -

For a grammar or a system G, of the above types, L(G) denotes the language
generated by G.

In the following we shall introduce the notion of a context-free CD grammar
system where the components cooperate according to a derivation strategy which is
based on the competence level of the component grammars in rewriting, related to
the current string in generation. We first need an auxiliary notion from [6].

Definition 2.1 Let G = (N,T,P,S) be a context-free grammar and let w € (N U
T)*. We say that production set P is of competence level k on w, k > 0, if |[dom(P)N
alphy (w)| = k holds.

Throughout, we use notation clev(P,w) = k to denote that P is with competence
level k on w.

In other words, production set P is of competence level k on w if there are exactly
k different nonterminals of G with an occurrence in w such that these symbols can
be rewritten by a production in P. If clev(P,w) > 1, then we say P is competent
on w. If K = 0, then either the production set is not competent on the string having
at least one nonterminal occurrence or the string is a terminal word (including the
empty word).

Now we define the notion of a context-free CD grammar system. We give the
definition in a slightly different form from that can be found in [7] or in [10], since
these CD grammar systems may use words longer than one as axioms. The reason
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of defining the concept in this way is to provide a sufficiently convenient starting
mechanism which is also consistent with the customary definitions of the different
variants of ET0OL systems. We note that both in the case of {-derivations and in
the case of sf-mode of derivations the generative power of context-free CD grammar
systems does not change if the system may start from a longer axiom than a symbol.

By a context-free CD grammar system we mean an n + 3-tuple I' = (N, T, Py,
ooy Ppyw), with n > 1, where N, T, w are the set of nonterminals, the set of
terminals and the axiom, as in the case of ETO0L systems, and P;, with 1 <14 < n,
are finite sets of context-free productions over (N UT'), called the components of
the system. Observe that the quadruple G; = (N, T, P;,w), for 1 < i < n, with
N, T, P;,w, as above, can be considered as a context-free grammar with word as
axiom therefore we can also speak about a component grammar or a grammar of
the CD grammar system.

For two sentential forms, u and v over (N UT)*, we say v is directly derived
(derived) from u in I" denoted by u = v (v = v), if there is a component P;,
1 <4 < m, such v is generated from u by a direct derivation step (by a derivation)
using production set F;.

Now we define the cooperation protocol where the component grammar starts
its work if it has a prescribed level of competence and finishes the derivation if it is
not competent on the string in generation anymore.

Definition 2.2 LetT' = (N, T, P,... P,,w), withn > 1, be a context-free CD gram-
mar system and let z,y be two sentential forms over (N UT)*. For k > 1, we say
that y is directly derived from xz in T in the (= k,t)-mode of derivation, denoted

=k
by x (———g)r y, if the following conditions hold: there is a component P; in I', with
1 <4 <n, such that

1. clev(P;,z) =k and

2. clev(P;,y) = 0 or, in other words, there is no word z € (N UT)* such that z
can be directly derived from y in P; by applying a rule of P;.

We say that the above direct derivation step is a (< k,t)-mode of direct derivation
step or a (> k,t)- mode of direct derivation step, respectively, if condition (1) is
modified as clev(P;,z) < k or clev(P;, x) > k, respectively.

For f e {=k,< k,> k| k > 1}, we denote by (L—’tgr the transitive reflexive

(f:t) ) . . .
closure of =5r. If no confusion can arise, then we can omit I' from the previous
notations.

Definition 2.3 Let I' = (N,T,Py,... P,,w), with n > 1, be a context-free CD
grammar system.

The language Lz (L), called the language of T' in the (f,t)- mode of derivation,
for fe{=k <k, >k|k>1}, is defined as follows:

sy (D)
Ligpn(T) ={uv eT" | w = u}.
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That is, the language of an above type of CD grammar systems consists of those
terminal words which, after starting the derivation from the axiom, can be obtained
by an (f,t)-mode of derivation. If there is no component with competence level f
on w, then the generated language is empty.

To help the reader in understanding, we show an example.

Example 2.1 Let I' = ({S, X, X", Y,Y'}, {a,b,c}, P, Py, P5,S) be a CD grammar
system, with

P ={S— XY, X' 5 aXb,Y' - Yc},
P,={X - XY >Y'}
P;={X = ab,Y — c}.

Then, Li—4)(T') = L(>2,)(I') = L(<2,4)(I') = {a"b"c" | n > 1} But L=, (') =
Lis3p(T) = 0, however Li<3(T) = {a"b"c" | n > 1}.

Before turning to the results, we introduce some notations.

We denote the class of context-free languages and the class of ET0L languages
by L(CF) and L(ETOL). The class of languages of random context ET0L systems
without A-rules is denoted as L(RC, ETOL), if A-rules are allowed then we denote
the corresponding language class by L(RC, ET0L, \). If in the statement we would
like to refer to both cases, then we use notation L(RC, ETOL, [)\]).

Similarly, for f € {= k,< k,> k | k > 1}, we denote by L, (CF) the class of
languages generated by context-free CD grammar systems with components without
A-rules in the (f,¢)-mode of derivations. If the A-rules are allowed, then the notation
of the language class is L (CF, ), and if we would like to refer to both cases,
then we write L s ) (CF, [A]).

It is known by the literature that L(CF) C L(ETOL) C L(RC, ETO0L, \). More-
over, the A-rules have no relevance in the case of context-free grammars and that of
ETOL systems, the generated classes of languages are the same with and without
A-rules.

3 Results

We study the generative capacity of CD grammar systems working under the (f,%)-
mode of derivations, where f € {= k,< k,> k} for k > 1. We prove that for
derivation modes = k and > k with & > 2 these CD grammar classes determine the
class of languages generated by random context ET(0L systems, while in the case
of derivation modes f' € {=1,> 1} U{< k | k > 1} a significantly less generative
power, namely the generative power of ET(0L systems can be obtained.

Lemma 3.1
1. Ly (CF,[A]) € L(RC, ETOL, [A]), where f € {=k,>k |k >1};

2. Li<ky)(CF,[A]) C L(ETOL), where k > 1.
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Proof. We start with the case of (= k, t)-derivations where k > 1.

Let ' = (N,T,Py,...,P,,w) be a CD grammar systems working in the (= k,)-
mode of derivation, where k£ > 1. We construct an (RC, ET0L,[)]) system G =
(N',T,Qq: Hy,...,Qy : Hy,w), with r > 1, such that L—;(T') = L(G) holds.

(G is defined as follows. To help the legibility, we list only the tables of G.

Let us define for every letter A € (NUT), every set of symbols M with card(M) =
kE and M C dom(PF;), 1 <i < n, new symbols (4,4, M). For a word w = z71 ... Z,
with z; € (NUT), 1 < i < m, let (w,i, M) = (x1,i,M)...,(Tm,i, M) and let
(A3, M) = A

Let us define tables

Hppyp=M:{A— (Ai,M)| Aec (MUTU(N \dom(P;)))}U{A—>F|Ac
(dom(P;) \ M)},

HPZ-’M’Q = {(A,Z,M) — (w,i,M) ‘ A e NA - w € B} U{(B,i,M) —
(B,i,M) | B e (NUT)}, and, finally

Hp ps ={(A4,i,M) - A| AeTU(N\dom(P))}U{(A4,i,M) - F | A€
dom(P,)}.

We show that any derivation in I' can be simulated with a derivation in G. Let
v be a sentential form generated in [' and let us suppose that a component of T’
just finished the derivation by obtaining v. Then, either v is a terminal word, or to
obtain a terminal word, some of the components, say P;, 1 <4 < n, must continue
the derivation. But this is possible if and only if there are exactly k£ elements in
dom(P;) which have an occurrence in v. But this condition holds if and only if for
some M, with M C dom(P;), card(M) = k, table Hp, ar,1 can be applied to v and the
resulted string, v’, does not contain any occurrence of the trap symbol, F. Suppose
that this is the case, that is, the application of table Hp, 31 resulted in sentential
form o' without any occurrence of F. Then, the derivation in G continues with
the subsequent application of table Hp, ys2 which corresponds to a derivation in I’
performed by P;. In CD grammar system I', component P; stops with the derivation
if it has no more productions applicable to the sentential form. This takes place
exactly in the case when table Hp, ys 3 can be applied to a sentential form without
introducing an occurrence of F. Thus, we can see that the subsequent application of
tables Hp, rr1, then Hp, a9 several times and, finally, Hp, 33 simulates a (= k,t)
derivation performed by component P; in I'.

Moreover, it is also easy to see that any sentential form over (N UT) in G is
a sentential form in I’ and reversely. (The axiom, w, is the same for both genera-
tive mechanisms.) Thus, I' and G generate the same language. Notice that if the
language of I' is the empty set, then it is the language of G as well.

For the case of (> k,t)-derivations, the result can be obtained by replacing table
Hp, p,1 with table H}Di,M’l =M:{A—=(Ai,M)]|Ac (NUT)}.

For the case of (< k,t) derivations, we can obtain the result by modifying table
Hp, .1 as follows:

HJ’PZ_’M’1 ={A—> (A i,M)| A€ MUTU(N\dom(F)))}U{A — F | Ac¢€
(dom(B) \ M)}.

The reader can observe that if the CD grammar system I' has A-rules, then the
random context KT0L system or the ET0L system G has A-rules as well, otherwise
both systems are without A-rules. m
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Now we prove that random context ET0L systems can be simulated with CD gram-
mar systems with A-rules using the (= k,¢)-mode of derivations and the (> k,t)-
mode of derivations for & > 2.

Lemma 3.2
L(RC, ETOL,[X]) C L (CF,N),

where f € {=k,>k |k >2}.

Proof. As in the previous case, we start with the case of (= k,t)-derivations; we
prove first the statement for k = 2. Let G = (N,T,Q1 : Hy,...,Qp : Hy, w), where
n > 2, be a random context ET0L system.

Without the loss of generality we may assume that (J; C N, and any production
in Hj, 1 <j<n-—1,isover N and for Q, : H, it holds that @, = 0 and H,, is the
set of productions A — a, with A € N and a € T.

(That is, no terminal symbol appears in any table H;, 1 < j <n—1; it is the last
table H, which introduces the terminal symbols.) Suppose that G is of the above
form.

Moreover, we also may assume without the loss of generality that Q; # 0 for
1 <j <n—1.If this is not the case for some j, then we add tables {A} : H; for any
nonterminal letter A to the set of tables.

Now we construct a CD grammar system I' = (N', T, Py,..., P.,w'), r > 1, such
that L(G) = L(—4)(T'). The idea of the construction of I is as follows.

For each table @Q); : H; of G, where 1 < i < n, and for each M C (N UT) with
Qi € M, we shall define a group of components Py ; of I'. These grammars are
dedicated to simulate the application of table Q; : H; to sentential forms v with
alph(v) = M.

Moreover, for any terminating derivation w = u; —= ... = u,, = v € T" in
G, where n > 1, the simulating derivation in I" will be of the form w' = BwC =
Bu,C =* ... =" Bu,C = u, = u, that is, the sentential forms u;, 1 < j <
n — 1, in G correspond to sentential forms Bu;C in I', where B and C new letters
not in (N UT).

Now we construct the components of I'. First, let a for each pair (Q;, M), with
1 <i<mn,and M C (N UT), defined above, with card(M) = s; ps, let us define
new letters (B,i, M,1),...,(B,i, M,2s; pr).

Let M = {Ay,..., As, ,, }, and without the loss of generality we may assume that
Aq,..., Aj, are the letters being elements of @);, where 1 < j <'s; 7/.

Now, let us define components in Pys,; as follows.

Let P pr,; have the following rules:

B — (B,i,M,1), Ay — (A,i,M,1), and X — F, for any letter from (N UT)\

(This component grammar is for checking whether or not symbol A; appears
in the sentential form and also checks whether or not the sentential form is over
alphabet M. Notice that it is not guaranteed that any letter from M occurs in the
sentential form.)
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Then, for j = 2,...,s; s we define P; pr; withrules (B,i, M,j—-1) = (B,i, M, j),
Aj — (A,Z,M,j)

(These components are for checking whether or not letters Ao, ... s As; py from
M appear in the sentential form.)

For [ = Si,M + 1,...,282',]\/[ , we define Pl,M,i with rules (B,’i,M,l — 1) —
(B,i, M,l) and (A, i, M,l — s;m) = a, for A, ,, — ain Q; : H;.

Finally, let Py ar 2, ,, with rules (B4, M,2s; ) — B) and (A, i, M, 2s; p1) — a,
for Aj_gi p — @ in Q; : H;.

(These last components simulate the application of table H;.)

To remove the marker symbols from the sentential form and to check whether
the other letter occurrences in it are only terminal letters, we define a dedicated
component, Pr;, with rules B — X\, C' — X, and A — F, for any letter A € N.

Now we show that any terminating derivation in G can be simulated by a termi-
nating derivation in I'. Suppose that we would like to apply table Q; : H;, 1 <1 < n,
to a sentential form v at some stage of a derivation in G. The application is suc-
cessful is any letter from (); appears in v, and then, by using productions of H;, any
letter in v is rewritten in parallel.

This derivation step will be simulated in I' as follows. First, we guess that
alph(v) = M and then we consider the dedicated group of components P; 7. Ob-
viously, if we guess that v is over another alphabet, say, Mi, then we turn to the
group of productions, P; ys,. These groups of productions are constructed in such
way that any letter from M but not more has to occur in v, thus, the cases where
the alphabets have common symbols are separated.

Moreover, Q; € M holds by definition, thus condition @; of table H; need not
to be separately checked under the simulation.

Now, the first component in P; ar, P am,; checks if the first letter of M appears
in the sentential form and no other letter from (N UT)\ M has an occurrence in
it. This is done in such way that this grammar can start with the derivation (it is
=2-competent on the sentential form) only in this case. Then, the grammar rewrites
marker symbol B and also any occurrence of the previously mentioned nonterminal,
say A1, to be an indexed version.

After this, only components Pj ar;, for j = 2,...,s; pr, where card(M) = s; ur,
can follow in succession, and they rewrite the indexed version of marker symbol B
onto a corresponding indexed version (they realize a counting) and at the same time
they rewrite the so far non-indexed versions of the next corresponding nonterminals
from M onto their indexed versions.

If any of these grammars cannot start with the derivation, then the simulation
aborts and this means that our guess M = alph(v) was wrong.

But if these grammars successfully finish their work, then we obtain a sentential
form of the form DvC, where D and v’ are indexed versions of B and v, proving
that alph(v) = M, and Q; C M, that is, table @); : H; can be applied to v.

Then, the derivation in I' continues by the work of components P, as;, where
I =s;m+1,...,25; u in succession. These grammars rewrite the indexed versions
of letters from (N UT) onto words over (N UT') that correspond to the right-hand
side of the productions in H;, and modify the indexed version of marker symbol B.
The grammar in the group activated last time rewrites the indexed version of B
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onto B and simulates the application of the corresponding productions.

Under the above phase of the derivation no components of I' from other groups
can be activated, thus the successful derivation performed by elements of P; ps cor-
responds to a correct simulation of the application of table @); : H; to a sentential
form v with alph(v) = M.

The reader can observe, that the above procedure can be repeated, by using the
same or different groups of components of I', thus derivations in G can be correctly
simulated by derivations in I'. By the construction of the grammars of I', we also
can see that any derivation in I' corresponds to a derivation in G and reversely.

To finish the derivation, component Pp;, has to be active. But this is possible if
and only if the only two nonterminals in the sentential form are B and C.

Thus, we proved that Ly (') = L(G).

The above construction gives a proof for the case (> 2,t) as well, thus the
statement holds for k = 2.

For the case of k > 3, we make the following modifications: we add further
markers to increase the competence level of the components from 2 to k. That is,
instead of markers B and C, we use markers By, ... B 1 at the beginning, that is,
the axiom of G will have the form B1Bjy...Bj_jwC. Then, we modify the other
components according to this change, that is, we also take into considerations the
indexed versions the markers By, ..., Bx_1. The modified proof works for the (= k, t)
and for the (> k,t) derivations for k£ > 3. m

By the previous two results we obtain the following theorem.

Theorem 3.1
L(RC,ETOL,)\) = E(fyt) (CF, ),

where f € {=k,>k |k >2}.

Now we prove that for the case of & > 1 CD grammar systems using the (< k,t)-
mode of derivations determine the class of ET0L languages. Moreover, this is the
language class of CD grammar systems working with the (= 1,¢)-mode of derivations
or the (> 1,%)-mode of derivations as well.

Theorem 3.2
L(ETOL) = E(fyt)(CF, AD,

where f e {=1,>1}U{< k| k> 1}.

Proof. We first start with the case of (> 1,¢) derivations.

By definition, £(>1 4 (CF, [X]) = Li(CF,[}]), thus L5, (CF,[\]) = L(ETOL).
Now, we prove that the generated language class does not change if consider (= 1,1)-
mode of derivations or (< 1,¢)-mode of derivations. Notice that it is sufficient to
give the proof for the case of (= 1, ¢)-mode of derivation, by definition, the statement
follows for (< 1,¢)-mode of derivations as well.

We first show that inclusion £_; ;) (CF,[A]) € L(ETOL) holds. Let, for n > 1,
= (N,T,P,...,P,,w) be a CD grammar system working in the (= 1,¢)-mode
of derivation. We construct an ETOL system G = (N',T,Hy,...,H,,w'), with

10
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r > 1, such that L ;(I') = L(G) holds. The proof is analogous to the proof of
Lemma 3.1.

GG is constructed as follows. To help the legibility, again, we list only the tables
of G. Let us define for every symbol A € (NUT)), 1 < i < n, a new symbol
(A,4), and let us denote for w = x ...z, with z; € (N UT), where 1 < i < m,
(w,i) = (£1,1) ..., (Tm,1) and let (X, i) = X. Let F' be a new nonterminal, the trap
symbol.

Let us define tables

Hpoai = {A = (A,)} U{D = (D,i) | D € (N UT)\ dom(P,))} U{B — F |
B € (dom(P)\ {A})}.

Hp a2 = {(Ayi) = (w,i) | A€ NA - w e P} U{(B,i) = (B,i) | B €
(N UT)}, and, finally

Hp, a3 ={(Ai) > A| A€ TU(N \dom(P;))} U{(A,i) = F | A€ dom(F;)}.

Using analogous arguments to the proof of Lemma 3.1., it is easy to see that the
application of table Hp, 41 without introducing the trap symbol, F', corresponds
to the case when component F; is exactly 1-competent on a sentential form, with
nonterminal A providing the competence. Then, we also can easily see, that the
application of table Hp, 42 corresponds to a derivation performed by F;, continuing
the one that started before, and, finally, the application of table Hp, 43 without
introducing the trap symbol means that P; stopped with the derivation after per-
forming a t-derivation. Similarly to the argumentation used in the proof of Lemma
3.1, we can show that L_; ;) (T') = L(G) holds. Obviously, the same proof can be
used for proving the statement for the case of (< 1,¢)-derivations.

Now we prove that the reverse inclusion, that is, L(ETOL) C L—; ,(CF,[)])
holds. The proof is based on similar considerations as the proof of Lemma 3.2.

Let G = (N,T,Hy,...,H,,w), withn > 1, be an ET0L system. We construct a
CD grammar system I' = (N',T, Py, ..., P,,w'), with v > 1, such that L_, ,(T') =
L(G) holds.

For each table H;, 1 < i < n, and for each subset M of (NUT'), we shall construct
a group of components P; s of I' which is dedicated to simulate the application of
table H; to a sentential form v with alph(v) = M. For this reason, we introduce new
letters (A,1, M) and (A,i, M)’ for each letter A € (NUT), each table H;, 1 < i <n,
and for each M C (N UT). Moreover, for any table H; and any set M, defined as
above, we introduce new marker symbols (B, i, M).

Now we construct the components in P; 5s as follows. Let us assume that M =
{A1,..., A}, r > 1. First, let P; 59 with the only production B — (B, i, M). (This
component indicates that we simulate the application of table H; to a sentential
form over alphabet M.

Then, for 1 < j <r, where card(M) = r, we set

P; pr; with productions A; — (4,4, M), (Aj,i, M) — F,for Il > j,1 <1 <mn,
A, - F,1<h<j B— Fand (B,j,M') for 1 < j #1i<mn,and M # M, with
M' C N.

(These components rewrite the letters occurring in the sentential form to their
indexed version; the rewriting is possible only if the components follow the order of
symbols Aq,..., A,, and for each symbol A, there is at least one occurrence in the
sentential form.)

11
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The next component in P; as is P; ar,. with production (B, i, M) — (B,i, M)".

(This component indicates that the previous ”colouring” procedure has been
finished, and the simulation of the application of the productions will follow.)

To do this, we define a series of components as follows: for 1 < j < r we set

Pi”M’j with productions (4;,i, M — «), where A; — « € H;, and « is the primed
version of a, and (A4;,i, M) — F, for [ > j.

(These components rewrite the indexed versions of the symbols according to the
productions in table H;.)

Finally, there is a component P; y, fi, with the only production (B,i, M) — B.

(This component resets the marker symbol, B.)

In order to guarantee the correct simulation of the ET0OL system, we define the
axiom w' of the CD grammar system I" as w' = wB, and we add a further component
Py;p, with productions B — F and X — F for any letter X which is not a terminal
symbol.

We can easily see that the terminating derivations in I' simulate the terminating
derivations in G and only that. The derivation in [' can start with the work of
component Py ; ps for some i, 1 <4 < n, which by introducing the marker symbol
(B, i, M) indicates that the simulation of the application of table H; follows. Suppose
now that the current sentential form is v(B,i, M), where v € (N UT)*. Then,
production sets P; s ; must follow each other, checking whether alph(v) = M holds.
If no trap symbol is introduced, then the marker symbol (B,i, M) is changed for
(B,i, M)', and the next series of components, PZ-”MJ- rewrite the indexed versions of
the letters in M according to the corresponding productions in H;. These production
sets must follow each other in succession, no other productions set can be active
during this phase of the derivation without introducing the trap symbol, F. After
the end of this derivation phase, the marker symbol will be reset to B, and the
procedure is repeated as many times as necessary to obtain a terminal word with
production set Pp;,. The components of I' were defined in such way that only the
derivations described above lead to terminal words. Thus, I' and G determine the
same language. Hence, we proved the result.

The reader can notice that the proof of the inclusion L(ETOL) C L(—; ;) (CF, [A])
above is a proof for the inclusion L(ETOL) C L<j (CF,[A]), for k& > 1, as well,
since I' was constructed in such way that to obtain a terminal word the component
grammars had to be of competence level = 1 when they started the derivation.
Combining this proof with the proof of the corresponding statement of Lemma 3.1.,
we obtain the result. m
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