Technical Report 2004/3,
Theoretical Computer Science Research Group, MTA SZTAKI, Budapest, 2004.

On A Competence-based Cooperation Strategy in CD
Grammar Systems*

Erzsébet Csuhaj -Varju
Computer and Automation Research Institute
Hungarian Academy of Sciences
Kende u. 13-17, H-1111 Budapest, Hungary
E-mail: csuhaj@sztaki.hu

Jirgen Dassow
Otto-von-Guericke-Universitat Magdeburg
Fakultat fir Informatik
PSF 4120, D-39016 Magdeburg, Germany
E-mail: dassow@iws.cs-uni.magdeburg.de

Markus Holzer
Institute fur Informatik
Technische Universitat Miunchen
Arcisstrasse 21, D-80290 Miinchen, Germany
E-mail: holzer@in.tum.de

Abstract

In this paper context-free cooperating distributed (CD) grammar systems
are examined where the cooperation strategy used by the component grammars
is based on their competence (capability) in rewriting. The power of a derivation
mode is studied where a component is allowed to start the generation only if
its competence level on the sentential form is greater than or equal to the
competence level of any of the other components and stops with the derivation
if it does not have this property anymore. The competence level of a component
on a string is the number of different nonterminal occurrences in this word that
can be rewritten by its production set. It is shown that these CD grammar
systems are more powerful than the Russian parallel grammars and at most as
powerful as the programmed grammars with appearance checking. If the finite
index restriction is applied, then the language class of these system is exactly
the class of programmed languages with finite index. We also demonstrate an
example of a non-ET0L language generated by these constructions.

*The work of the first two authors was supported by a research cooperation, performed in the
frame of the Hungarian-German Intergovernmental S&T Cooperation Programme, supported by
the Office of Research and Development Division of the Hungarian Ministry of Education and its
foreign contractual partner, BMBF. The work of the third author was supported by project Centre
of Excellence in Information Technology, Computer Science and Control, ICA1-CT-2000-70025,
HUN-TING project, workpackage 5.

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

1 Introduction

Cooperating distributed grammar systems (CD grammar systems, for short) are dis-
tributed models of language which can be considered as syntactic frameworks for the
blackboard architectures known from the theory of cooperative distributed problem
solving [2]. A blackboard architecture consists of several autonomous agents which
jointly solve a problem in turn, in such way that the agents have access to a global
database, called the blackboard, which stores information on the actual state of the
problem solution and the problem solving process. The problem is solved by modify-
ing the contents of the blackboard step by step. Furthermore, the blackboard is the
only mean of communication among the agents. A cooperating distributed grammar
system is a construct, where several grammars jointly generate words of a language,
in turn, in such way that any moment of time one grammar is allowed to perform
a derivation step on the actual sentential form. This grammar is selected according
to the cooperation protocol of the grammars in the system, to the so-called deriva-
tion mode or cooperation strategy. The reader can easily observe that the grammars
correspond to the agents, the sentential form in generation corresponds to the black-
board, and the generated language represents the set of possible problem solutions.
The idea of cooperating grammars dates back to 1978, when Meersman and Rozen-
berg [8], motivated by the theory of two-level grammars, introduced this term, but it
has only been extensively and intensively explored after Csuhaj-Varji and Dassow [2]
introduced the notion in a more general form, namely, as a cooperating/distributed
grammar system, and related that to the above concepts of distributed artificial
intelligence, to the blackboard architectures. The interested reader can find further
information in [3] and [6]. An on-line annotated bibliography on the area can be
found at [4], see http://www.sztaki.hu/mms/bib.html.

According to the cooperation protocol in [8], a component grammar of the sys-
tem is allowed to derive the sentential form if it is able to replace any nonterminal
occurrence in this string. This strategy was later called sf-mode of derivation [1].
If this property does not hold anymore, another grammar should continue the gen-
eration. In [2] another derivation mode was introduced and examined, called the
t-mode of derivation, where a grammar is allowed to start with the generation if it is
able to perform at least one derivation step and it must continue the derivation until
this property holds. If the grammar is not able to execute any derivation step on
the current string anymore and the string is not a terminal word, another grammar
must continue the derivation. If such grammar does not exist, the derivation stops
without generating a terminal word. It is easy to see that both strategies are based
on a property of the grammar that is related to the current sentential form, namely,
on its ability of replacing a nonterminal occurrence in that. We also can say that
a grammar is competent on the sentential form if it is able to rewrite at least one
nonterminal occurrence in this string. Thus, according to the derivation mode of
Meersman and Rozenberg [8] a grammar is allowed to work on the sentential form if
it is completely competent on the string (the agent is able to contribute to the solu-
tion of any open subproblem), and the derivation mode of Csuhaj-Varji and Dassow
[2] requires that after starting its work, the grammar continues the derivation until
it is not competent anymore, that is, the agent contributes with its full competence

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

to the problem solving process. It has turned out, that the first cooperation strat-
egy, based on the complete competence of the grammars, is more powerful than
the other one, these grammar systems with context-free components determine the
class of programmed languages with appearance checking, while the other derivation
mode, the t-mode of derivation leads to the power of ET0L systems.

In this paper we continue the above line of examinations, namely, we introduce
and study context-free CD grammar systems with another cooperation strategy,
based on the competence level of the grammars, called the maz-mode of derivation.
In this case, a grammar is allowed to start the derivation of the sentential form if
its competence level on the string is greater than or equal to the competence level
of any of the other grammars and it must continue the generation until it does not
have this property anymore. The idea behind the concept is to know whether or not
it is a reasonable strategy if any moment of time the agent that contributes to the
problem solving is one of the most competent ones.

We proved that the language class generated by these constructions (without
A-rules) is included in the class of programmed languages with appearance checking,
that is, any language which can be obtained by a context-free CD grammar system
with the maz-mode of derivation can be obtained with the sf-mode of derivation,
that is, cooperation based on maximal competence level is at most as powerful as
cooperation based on complete competence. The question whether this relation is
proper or not is open. Moreover, we showed that if we restrict the class of languages
generated by context-free CD grammar systems in the maz-mode of derivation to
that of with finite index, then we obtain exactly the class of programmed languages
with finite index. This result means that if the number of open subproblems is
bounded by a finite number at any stage of the problem solving process based on
the maz-mode cooperation strategy, then this process can be programmed only by
using “if-then” rules.

Furthermore, although we do not know in full details the relation of the class
of ETOL languages and the class of languages of context-free CD grammar systems
working in the maz-mode of derivation, we prove that a known subclass of the ET0L
language class, namely, the class of Russian parallel languages is strictly included
in the language class of the above CD grammar systems. This result demonstrates
that there are cases when the cooperation strategy based on the full competence of
the components and the cooperation strategy based on selecting a grammar which
is one of the most competent ones among the components are equally powerful. We
also demonstrate here an example for a non- ET0L language generated by these CD
grammar systems, and thus we prove that these constructions determine languages
that cannot be generated under the full competence strategy.

2 Preliminaries

Throughout the paper we assume that the reader is familiar with formal language
theory. For further information consult [3, 7, 10].

The set of nonempty words over an alphabet V' is denoted by V7, if the empty
string, A, is included, then we use notation V*. A set of strings . C V* is said to be

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

a language over V.

For a string w € V*, we denote the length of w by |w|, and for a set of symbols
U C V we denote by |w|y the number of occurrences of letters U in w.

For a finite language L, the number of strings in L is denoted by card(L).

We specify a context-free grammar by G = (N, T, P,S), where N is the set of
nonterminals, T' is the set of terminals, P is the set of context-free productions
and S is the start symbol. We use the notation dom(P) for the set {A € N |
there is a production A — o € P}.

Throughout the paper, we shall use the following variants of context-free gram-
mars with regulated rewriting. For details we refer to [5].

By a context-free programmed grammar with appearance checking we mean a
quadruple G = (N, T, P,S), where N and T are the set of nonterminals and the
set of terminals, respectively, as in the case of context-free grammars, S is the start
symbol, and P is a finite set of rules of the form (r : A — «,0(r),$(r)), where
A — « is a context-free production over N U T, the core production of the rule
labelled by r, and o(r) and ¢(r) are two sets of labels of such core rules.

A direct derivation step u =>¢ v in G is as follows: Either the core rule of some
rule (r : A — a,0(r),%(r)) can be applied to obtain v from u and then we use the
next rule from the set of productions labelled with o(r) or A — « cannot be applied
and then we pass on to a rule with a label from (r) in the next step. If ¢(r) is
the empty set for any rule in P, then we speak about a context-free programmed
grammar (without appearance checking).

By a context-free Russian parallel grammar we mean a quadruple G = (N, T, P, S)
whose components are defined as in a context-free grammar and the set P is divided
into two disjoint sets, P, and P,. The direct derivation relation u =>¢ v is defined
as follows: Either u = ujAjug, v = ujaug, where uj,ug € (NUT)*, A € N, and
A= a€ P,oru=uAuy.. . uyAuyi1, n > 1, v = ujauy ... u,0u,11, where
ULUY . . . UplUptq 18 in (NUT\{A})*, A€ N,and A — «a is in P,.

If P, is the empty set, then we speak of an (context-free) Indian parallel grammar.
Obviously, an empty set P defines the customary context-free grammar.

We also will refer to the notion of an ETO0L system (an ET0L grammar). An
ETOL system is an n+3-tuple G = (N, T, Py, ..., P,,S), withn > 1, where N,T, and
S are defined as in the case of context-free grammars, that is, the set of nonterminals,
terminals, and the start symbol, and F;, for 1 <14 < n, is a complete set of context-
free productions over (N UT')*. This means that for any symbol X € (N UT),the
production set P; has a rule with X being on its left-hand side. The direct derivation
in an ET0L system G is defined as follows: For two strings z = zy...2,, y =
YooY, r > 1, ;€ (NUT),y; € (NUT)*, 1 < i < r, we say that = directly
derives y, denoted by z =>¢ vy, if ; — y; € P; holds for 1 <4 < r, for some j,
1<j<r

If no confusion can arise, we may omit the subscript GG from the above notations
—a -

For a grammar G, of the above types, L(G) denotes the language generated by
G.

Finally, we define restricted variants of the above language generating mech-
anisms, called grammars with finite index. For details the reader should consult

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

[5].
Let G be a grammar of arbitrary type, and let N, T, S be its nonterminal
alphabet, terminal alphabet and start symbol, respectively. For a derivation

d:S=w) = w— ... w,=weT"
according to GG, we set
Ind(d,G) = maz{|w;|y | 1 <i <7},
and, for w € T*, we define
Ind(w,G) = min{Ind(d,G) | d is a derivation for w in G}.
The index of the grammar G is defined as
Ind(G) = sup{Ind(w,G) | w € L(G)}.

For a language L in the family of languages generated by grammars of some type
X, we define
Indx(L) =inf{Ind(G) | L(G) = L,G € X}.

When no danger of confusion turns out, then subscript X can be omitted.
For a language family £(X), we set

L,(X)={L|LeL(X),Indx(L) <n}, n>1,

ﬁfzn(X) = U En(X)
n>1

Now we introduce some notations.

We denote the class of context-free languages by L(CF), the class of ET0L
languages by L(ETOL), and the class of recursively enumerable languages by L(RFE).

If no A-rules are allowed, then we denote the class of languages of Indian parallel,
Russian parallel, programmed, programmed with appearance checking grammars by
L(IP(CF)), LIRP(CF)), LIPR(CF)), and L(PR,.(CF)), respectively. If A-rules
are allowed in the case of these grammars, we replace (CF) with (CF, \) for in the
notation of the corresponding language class. If we would like to refer to both cases,
then, we write (C'F, [\]) instead of (C'F'). If the finite index restriction is applied, then
we write L ¢, instead of £. We use analogously the notations L(ET0L), L(ETOL, A),
and L(ETOL, [A]). We note that L(CF) = L(CF,\) and L(ETOL) = L(ETOL, \).

The following relations are well-known among the above classes of languages [5]:

1. L(CF) C L(RP(CF)) C L(ETOL) C L(PR,.(CF,[N)),
2. L(IP(CF)) C L(RP(CF)),
3. LIIP(CF)) and L(CF) are incomparable,

4. L(PR(CF,[\)) C L(PRu(CF,[N)), and L(PRu(CF,\)) = L(RE),

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

5. L(RP(CF,[N])) C L(PR..(CF,)\)),

6. L(RP(CF)) and L(PR(CF)) are incomparable.
7. Lin(PR(CF)) = Lin(PRy(CF)),

8. Lfin(PR(CF)) = Lyin(PR(CF, X)),

9. Lin(RP(CF)) C Lin(PR(CF)).

Languages demonstrating the 6. relation are Ly = {a"b"c" | n > 1} ¢ L(RP(CF,[)]))
and Ly = {a®" | n > 1} ¢ L(PR(CF)). (See [7] for details.)

3 Definitions

In the following we introduce the notion of a context-free CD grammar system where
the components cooperate according to a derivation strategy which is based on the
competence level of the component grammars in rewriting, related to the current
string in generation.

Definition 3.1 Let G = (N,T,P,S) be a context-free grammar and let w € (N U
T)*. We say that production set P is of competence level k on w, k > 0, if |[dom(P)N
alphy (w)| = k holds.

Throughout, for demoting P with competence level k on w, we use notation
clev(P,w) = k.

In other words, production set P is of competence level k£ on w if there are exactly
k different nonterminals of G with an occurrence in w such that these symbols can
be rewritten by a production in P. If clev(P,w) > 1, then we say P is competent on
w. If K =0, then either the production set is not competent on the string having at
least one nonterminal occurrence or the string is a terminal word.

Now we recall the notion of a context-free CD grammar system according to [6].

By a context-free CD grammar system we mean an n + 3-tuple I' = (N, T, P,
ooy Pp,S), n > 1, where N, T', S are the set of nonterminals, the set of terminals and
the start symbol, as in the case of context-free grammars, and P;, with 1 <7 < n,
are finite sets of context-free productions over (N UT'), called the components of
the system. Observe that the quadruple G; = (N, T, P;,S), for 1 < i < n, with
N, T, P;, S as above, is a grammar, therefore we can also speak about a component
grammar or a grammar of a CD grammar system.

For two sentential forms, u and v over (N UT)*, we say v is directly derived
(derived) from u in I' by a component P, 1 <4 < n, denoted by u =p, v (u =},
v), if v is generated from wu by a direct derivation step (by a derivation) using
production set P;.

When jointly generating terminal words from the start symbol, the component
grammars of the CD grammar system can follow different strategies for cooperation.

In the following we introduce a cooperation strategy which is based on the com-
petence level of the components with respect to the actual string in generation.

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

Definition 3.2 LetI' = (N, T, Py,... P,,S), withn > 1, be a context-free CD gram-
mar system and let u € (N UT)*. We say that component P;, for 1 < i < n, is a
most competent one on u among the components of T, if clev(P;,u) > clev(P;,u)
holds for each component P;, where 1 < j < n.

Now we define a derivation mode for CD grammar systems where the grammars work
under the following cooperation strategy: at any step of the derivation there is no
component having greater competence on the actual sentential form than the active
component and the grammar remains active until it does not have this property
anymore.

Definition 3.3 Let ' = (N, T, Py,...P,,S), n > 1, be a contezt-free CD grammar
system and let

. . % k k .
d:S=w =P, W1 =>p, - W =>p, W =W,

r>l,weT* wye (NUT)*, 1 <i<r+1, ji,...,5, € {1,...,n} be a derivation
in T,

We say that d is a derivation in the max-mode in I' or a max-mode derivation
in ' if the following hold:

1

n,

o Let w; = w;p =p;, Wil =>p;, - =P, Wis; = Witl, 1 <3< s
be a subderivation of d. Then, clev(Pj,,w;) > clev(P,w;ig), 1 <1

>
<[l <
0<k<si 1, and

o clev(Pj;,wiy1) < clev(Pj,, ,wit1), 1 <i<r—1.

That is, when a component Pj,, 1 < i < r, starts deriving word w; 1, then its
competence level on w; 1 must be greater than or equal to the competence level of
the other component grammars and Pj; stops with the derivation when it does not
have this property anymore.

Definition 3.4 LetT' = (N, T, Py,... P,,S), withn > 1, be a context-free CD gram-
mar system. The language Ly,q. (1), called the language of maz-derivations of T, is
defined as

Lipaz(T) ={w e T* | d: S =" w, dis a mar — derivation in T'}.
We demonstrate the notion with an example.

Example 3.1 Let I' = (N, T, P, Py, P3,S) be a CD grammar system defined as
follows: N ={A,B,A",B"}, T ={a,b,c}, and

pP={A— A" ,B— B'S— AB},
P, = {A" = aAb, B' - Bc},
Py ={A"— ab,B' — c}.

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

Then Lyya, () = {a™b"c™ | n > 1}. This can be seen as follows. The derivation
starts with applying production S — AB of component Py, since it is the only com-
petent component in the system. Then, Py still remains a most competent one, thus,
either AB = A'B or AB = AB' follows. At this moment, any production set
is at the same level of competence on A'B or AB', namely, each component is able
to perform only one replacement, thus, the derivation will still be continued by P,
leading to sentential form A'B' in both cases. Then, either component Py or Py can
continue the derivation. Suppose that the derivation is continued by P», the case of
P; is treated analogously. Now, either A’ is replaced by aAb or B' with Be, both
cases result in a situation when each component will be on equal competence level on
the string. Then, as in the previous case, Py continues the derivation and generates
aAbBc. Thus, again, component Py can be active on the sentential form. Repeating
this procedure as many times as it is necessary and using component P3 in the final
phase, we obtain the language above.

The above language is a non-context-free context-sensitive language that cannot
even be generated by a Russian parallel grammar [5].

Finally, we introduce some notations.

Notation 1 The class of languages generated by context-free CD grammar systems
without A-rules in the max-mode of derivation is denoted by L(C Dy (CF)). If A-
rules are allowed, then we replace CF by C'F, X in the notation, if we would like to
refer to both cases, then we write CF,[\] instead of CF. Furthermore, if we consider
the subclass obtained by the finite index restriction, that is, the class of languages
of context-free CD grammar systems working in the max-mode of derivation with
finite index, then we write Ly, instead of L.

4 Generative capacity

In this section we deal with the generative power of context-free CD grammar sys-
tems working in the maz-mode of derivation. We show that the class of languages
generated by these systems strictly includes the class of Russian parallel languages
and we demonstrate how programmed grammars with appearance checking simu-
late the working of these constructions. Moreover, we prove that if we apply the
finite index restriction, then the obtained language class is the class of languages
of programmed grammars with finite index. We also demonstrate an example for a
non- FT0OL language generated by these CD grammar systems.

Theorem 4.1
L(RP(CF,[\)) C L(CDpax(CF,N)).

Proof. Let G = (N,T,P,S) be a Russian parallel grammar with P = P, U Py,
where P; is the set of productions applied in the customary context-free manner
and P, contains the rules that are applied in the same way as in the case of Indian
parallel grammars. (Note that any of P; and P, can be the empty set.) Suppose
that the productions in P are uniquely labelled and let us denote by Lab(P) the

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

set of these labels. We construct a CD grammar system I' = (N', T, Py, ..., P, S),
with [> 1, which, in the maz-mode of derivation, generates L(G). N’ will consist
of letters of NV and some new symbols as follows. For each production r : A — «
in P;, where A € N, a € (N UT)*, ris the label of the production, we introduce
new nonterminals, A!, A" and for each production s: B — (8 in P,, where B € N,
B € (NUT)*, s is the label of the production, we introduce a new nonterminal B.
Furthermore, we add a further new nonterminal, F', called the trap symbol, to the
nonterminal set.

Components of I' are defined in the following way.

For any production 7 : A — « in P;, where A € N, « € (N UT)*, and r is the
label of the production, I' has two components, namely, {A — Al A’} and {A4] —
a, Al = A} U{Cy — Flg € Lab(P),q: C -~y € P,C e N,ye (NUT)*, q #r}.

For any production s : B — 8 in P,, where B is a nonterminal, § is a string in
(N UT)*, and s is the label of the production, I" has two components {B — B}
and {B; — f} U{C, = Fl|q € Lab(P),q:C - y€ P,C € N,y € (NUT)*, q # s}.

We prove that I' simulates the derivations in (G. Suppose that at some stage of
the derivation in I' the actual sentential form is u, where v € (N UT)*. (When
starting the derivation with S, this is exactly the case.)

At this moment any component of the form {C — v} with an occurrence of C
in u, where C € N, v € (N’ — N)T, can be active, since these components are the
most competent grammars among the grammars of the system, namely, they are
of competence level one. Let us choose nondeterministically one of them. Suppose
that this component is of the form {C — C/C}'}, that is, it was constructed to a
production r : C' — 7 in Pj, to be applied in the context-free manner in G. The next
component to be applied must be {C] — ~,C)! = A} U{A4, — F|q € Lab(P),q :
A—a€eP,Ae Nae (NUT)* q# r}, since its competence is two. Then, this
component rewrites C, to v and cancels C]', and thus, simulates the execution of
the production C, — v in the context-free manner. If the sentential form u intended
to be derived further by component {C — C]C)'} contains an indexed nonterminal,
say, Ay, then, the component applied after this component introduces at least one
occurrence of the trap symbol F' and the derivation will never lead to a terminal
word.

Suppose now that to continue the derivation from u, a component of the form
{C — Oy} is selected, that was constructed to production s : C — v in Py, to
be applied in G in the Indian parallel manner. Then, this component replaces all
occurrences of C' in uw with Cy, and finishes its activity. To continue the deriva-
tion, there are the following possibilities: A component {Cy — v} U {4, — Flq €
Lab(P),q: A —»a€ PAec N,ae (NUT)* g # s} will be active and it replaces
all occurrences of Cy in the new string with «, thus, simulates the application of
production s : C' — v in G in the Indian parallel manner.

Or, a component, {A — A’ A"}, with competence level one, that was constructed
for the simulation of the application of a context-free rule in P;, will be active. If
this is the case, then, at the next step component {A], — a, A] = A}U{C, — F|q €
Lab(P),q: C — v € P,C € N,y € (NUT)*, q # r} has to be selected, and then, the
trap symbol F' will be introduced for replacing at least one occurrence of Cy, and thus
, the derivation never will end in a terminal word. Analogously, if after applying com-

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

ponent {C' — (s}, another component {B — B, }, introduced for simulating a pro-
duction applied in the Indian parallel manner, is executed, then the derivation in the
next step will introduce a trap symbol in the sentential form. In this case either com-
ponent {Cs — y}U{A, — F|q € Lab(P),q: A > a € P Ac N,a € (NUT)* q # s}
or component {B, — B} U{A;, = Flq € Lab(P),q : A - o« € PA € N,a €
(NUT)*,q # r} has to be applied, since they both are at competence level at
least two. But any of these two cases would lead to the introduction of symbol F.
By the above explanations we can see that the sequence of the active components
in the derivations which lead to a terminal word in I' follows the sequence of the
applied rules in a terminating derivation in G, that is, if a rule p in a successful
derivation of G is applied, then in the simulating derivation in I' the two compo-
nents constructed for p are and must be applied after each other in the appropriate
order. Moreover, the terminating derivations in G and only that are simulated by
the terminating derivations in I' in a correct manner, that is, L(G) = L(I') holds.
Thus, L(RP(CF,[))]) C L(CDpmaz(CF,\)). Because of Example 1, the inclusion is
proper. Hence the result follows. m

Corollary 4.1 L(IP(CF,[\])) C L(CDya(CF,[N])).

It is known that the class of Russian parallel languages is strictly included in the
class of ET0L languages [5]. The following statement demonstrates that CD gram-
mar systems working in the maz-mode of derivation are able to generate languages
outside from the FT0L language class. Notice that L(ET0L) = L(ETOL, \).

Theorem 4.2
L(CDpar(CF)) \ L(ETOL) # 0.

Proof. To prove the statement, we construct a CD grammar system I' which, in
the max-mode of derivation, generates a non-ET0L language. To help the legibility,
we list only the components of the system; the nonterminal set and the terminal set
of ' can easily be determined by these productions. In the following, capital letters
denote nonterminals and small letters denote terminals. The system starts its work
from axiom S.

The productions sets of I' are defined as follows:

P, ={S— ASB,S — AB}, P, ={B — B'b},

P3 = {BI — Bb}, P4 = {A — A1A2},
Ps={A; - ¢, Ay = ¢,B— B'b}, Ps={A1 — ¢,Ay — ¢, B' > Bb},
P; = {B — C}, P = {BI — C},

PQZ{A%F,C%CL}.

We show that L = L(T') = {¢*(ab®)" | s > n > 1}. Then, by applying homomor-
phism h : {a,b,c} — {a,b,c}, defined by h(a) = a, h(b) = b, h(c) = A\, we obtain
h(L(I')) = {(ab®)™ | s > n > 1}, and this language is not an ET0L language [5, 9].
Since ETOL languages are closed under homomorphisms [9], L = L(I') must not be
an EFTOL language, thus, the statement holds.

10

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

Now we prove that I' generates in the maz-mode of derivation L.

The derivation starts with applying production S — ASB of component P; and
continues with applying this rule several times and ends with applying production
S — AB of this component. The sentential form we have yield is of the form
A"B" for some n, n > 1. Then, components P,, Ps,P;, or Py, Py can continue
the derivation, since they are of equal competence level on the string and the most
competent ones. If Py is applied, then trap symbol F will be introduced in the
sentential form and we do not obtain a terminal word. If we apply P;, then all Bs
will be changed for C, and the next applicable component will be Py and thus the
derivation will end with a word contaning the trap symbol, F'.

Suppose that the next component we apply is P, (or Ps). Then, the component
finishes its work with a string of the form A™(B’b)". The possible continuation can
be done by components P3 or Ps or by components P, or Py. As in the previous
case, we can exclude the application of Py. Suppose now that component P3; will be
active, and the active period of components P, (or P5) and P3 (or Ps) following each
other is repeated several times. Since A is present in the sentential form, during
this phase, by the former reasoning, we can exclude the application of component
P; for rewriting Bs. Then, a string of the form A™(Bb")" is obtained, where r > 1.
Now the derivation is continued by component P; (and not with Py), and the new
string will be of the form w; A Asws(Bb")", where wiwy = A" . At this point,
P5 must continue the derivation, by rewriting all symbols from {A;, Ay, B}. This
component will replace Ay with ¢, Ay with ¢ and all occurrences of B with B’b. Until
the sentential form contains at least one symbol from {4, Ay, B}, this component
remains with the highest competence level among the grammars. Then, components
P3, Py, or components Py, Py can follow. As in the previous cases, we cannot choose
Py. If Py is selected, then, again, a letter A is changed for A; and A, and then
component Py must be activated. Examining components Py, P3, Py, P5, and Py, we
can see that their interplay leads to a sentential form of the form ¢?"(Bb*)", where
s > n. The relation s > n follows from that the elimination of any letter A from
the sentential form induces the introduction of at least n b-s in the sentential form.
We should notice that the elimination of A-s from the sentential form can precede
or can be combined with the increasing of the letters b in the sentential form by
the work of components P, P3, P5, and P, that is, we could choose component P,
instead of P, to be active at the beginning, for example, the result will be the same,
the number s being the exponent of b-s in the generated terminal words will be at
least as big as the number n of the exponent of the subwords of the form (ab®).

Now, at some stage, either the B-s or the B'-s in the sentential form are changed
for C' by the activity of P; or Pg, and then, the procedure is finished by compo-
nent Py that rewrites each C onto a. But, Py can be active only in the last phase
of the derivation when no A is present in the sentential form. Otherwise, if some
occurrences of A are found in the string, and the active component is Py, then trap
symbol F' is introduced in the sentential form. Thus, we obtain that the terminal
words which can be generated by I' are of the form ¢®"(ab®)”, where s > n > 1.
Hence, we proved the result. m

Obviously, any language generated by a CD grammar system working with the maax-

11

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

mode of derivations is a recursively enumerable language, thus, it can be generated
by a programmed grammar with appearance checking and with A-rules. Further-
more, for any context-free CD grammar system without A-rules and working in
the maz-mode of derivation a simulating programmed grammar with appearance
checking and without A-rules can be found.

Theorem 4.3
L(CDiaz(CF,[N]) C LIPRac(CF,[A])).

Proof. Let ' = (N, T, Py,...,P,,S), m > 1, be a context-free CD grammar system
working in the maz-mode of derivations. To prove the statement, we construct a
programmed grammar, G, with appearance checking such that L(G) = L(I")ab holds,
where a, b are terminal symbols of G not in N UT. Since the programmed languages
with appearance checking are closed under right derivative (see [5]), this assumption
does not mean the loss of the generality. In the construction of the simulating
programmed grammar G = (N',T U {a,b}, P',S"), with appearance checking, we
use the following ideas. Suppose that N = {A,,...,A,}, n > 1. At any step of
each derivation in the CD grammar system I', we can represent the occurrence of
the nonterminals of the system in the actual sentential form by an n-dimensional
vector (X1,...,X,) where X; = 1 if nonterminal A; is present in the string and
X; = 0 if the nonterminal does not occur in it. Suppose now that a derivation step
was successfully performed by component P;, for some 7, 1 < j < m, inI' on a
sentential form u and it resulted in sentential form v. Then, using the information
provided by the above vector and examining the productions of the components, we
can decide which component can continue the derivation of v. By definition, this is
P; if Pj is still is of the highest competence level on v among the components and
it is another component, if P; is not among the most competent grammars on .
These two dynamically changing parameters, represented by nonterminals, namely,
the nonterminal occurrence vector and the recent component to be activated, form
an implicit regulation over the use of the productions in I', which can be used in
the simulation of the working of I' by a programmed grammar with appearance
checking.

The functioning of the programmed grammar G is as follows: Until the derivation
ends by obtaining a terminal word, any sentential form derived by G is of the form
uw(X1,...,X,)C}, where u is a string over (NUT') and it is exactly the sentential form
of T" at the corresponding stage of the actual simulated derivation, (Xi,...,X,) is a
nonterminal symbol of G representing the nonterminal occurrence vector of I' over
u, and Cj, 1 < j < m, is a nonterminal symbol of G denoting that component P; is
active on u. Then, a production of P; is tried to be applied to u. If the application
is successful, resulting in a string v, then the new nonterminal, corresponding to
the nonterminal occurrence vector of v according to I' is going to be determined
(the occurrence of each symbol of N in the string is checked). Then, using the
information provided by the nonterminal occurrence vector of v and knowing which
was the last active component (letter Cj), the nonterminal (C},) representing the next
component of I' to be activated in the simulated derivation will be determined. After
this, as previously, a production of this component is going to be performed, and the

12

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

above checking/selecting procedure will be repeated. If the chosen production of the
active component grammar fails to be applied, another one is tried to be performed.
The derivation successfully ends if a nonterminal representing the occurrence vector
with only 0 components is obtained. Then this nonterminal and nonterminal Cj,
which corresponds to the recently active component, are replaced by letters a and b,
respectively in the sentential form. If no further active component can be found to a
nonterminal occurrence vector, then the derivation ends without deriving a terminal
word, and this holds for the simulating grammar G as well. By this explanation,
we can see that terminal words of G are of the form wab, where the words w are
exactly the terminal words of I'.

Now we construct grammar G. For legibility, we give the productions together
with some explanations. The set of nonterminals can easily determined by these
rules. To help the reader in following the construction, we use labels which provide
information on the role of the productions. By definition, productions are uniquely
labelled by different labels; for a set of productions P C P’, we denote by Lab(P)
the set of labels of its productions. Moreover, without loss of the generality, we may
assume that A; = S and there is at least one component of I' which has a production
with S on its left-hand side. Now, production set P’ is given as follows. It is the
disjoint union of production sets P;; U Pege U Prest U Poector—id U Pact U Prinish, where
the different subsets are defined in the following way.

e First, we have production set P;,; with productions of the form
(ini; : " = S(1,0,...,0)C;, Lab(P;), (), for any k, 1 < k < m, where P; has a

production of the form S — «, for some a € (N UT)*.

e Then, for any productionp: A — ain P;, 1 < i < m, P’ contains a production
of the following form, which, together, determine production set P.z.. These
productions are of the form

(p: A — a,{test,}, Lab(P;)), where test; is the label of a production.
Production p : A — « of P; is tried to be applied (supposing that P; was
the active component), and if the application was successful, then the new
sentential form is to be tested according to the occurrence of the nonterminals
in N. If the application of p failed, then another production of P; is tried to
be performed.

e Fori=1,...,n—1 let
(testi : Ai — Ai, [Al = 1], [Az = 0]), where
([Az = 1] : (Xl, ceny X5,y Xn) — (Xl, S ,Xn),testi+1,$) and
([Az = 0] : (Xl, ceny X5,y Xn) — (Xl, RN) P ,Xn),testi+1,@).
Moreover, let
(testy, : Ap — An, [An = 1],[4, = 0]), where
([An = 1] : (Xla R (Xla SRR 1)7 Lab(P'uectorfid)a Q)) and
([An = 0] : (Xla SRR (Xla cee 70)7 Lab(P'uectorfid)a Q))

13

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

These productions form production set P, and they are for checking whether
or not A;, with 1 < ¢ < n, appears in the sentential form, and rewrite the non-
terminal representing the current nonterminal occurrence vector, (X1, ..., X,),
by modifying X; to 1 or 0, according to the result of the check. After testing
the appearance of the last nonterminal, A,,, the procedure continues by simu-
lating how the next component grammar in I' to be activated is determined,
that is, which of the most competent grammars will continue the derivation (if
such one exists). The simulating derivation in G will continue by a production
from a set of rules P,.ctor—id-

Rules {r1,...,ron } form the production set P,ector—iq and they are for identify-
ing the nonterminal that was determined above, according to the nonterminal
occurrence vector of the new string in I'. Each rule in Pyec0r i identifies a
vector vy, = (X{k), ... ,X,(lk)), Xi(k) € {1,0},1 <i<n, 1<k <2" For vectors
being different from the zero vector, that is, from the vector having 0 at each
position, each rule is of the form

(re = (X, xW) = (XY, X)), Lab(Pa,), Lab(Poector—ia)): 2 <
k <2m.
The number of vectors is 2", since there are 2" different combinations of 1 and

0 at n positions. We suppose that the zero vector is labelled by v; and the
corresponding rule is labelled by ;.

That is, the production tries to verify the nonterminal representing the non-
terminal occurrence vector of the actual string in the simulated derivation. If
the check is successful, then the procedure follows with simulating the choice
of the next active grammar (the derivation continues at some production of

Pactr,c) , if the check fails, the appearance of another nonterminal is tried to
be verified.

For the zero vector, v1, we have production set Pp;p;sp, with productions
(r1:(0,...,0) = (0,...,0),{finish1 }, Lab(Pyector—id)),

where the corresponding rules are

(finishy : (0,...,0) — a, Lab(Py;y,),0) and

Py;y, consists of the rules

(finj : Cj — b,0, Lab(Py;y,)), for 1 < j < m.

That is, if no nonterminal from N is found in the sentential form, then the
nonterminal representing v; and the nonterminal Cj, being present in the
sentential form and representing the last active component are rewritten onto
a and b, respectively. Thus, a terminal word is derived.

Now let us return to the simulation of determining the next active component

in the derivation in I

e This is done by productions in PaCtrk’ defined as follows. For each nonterminal
representing a nonterminal occurrence vector vy, 2 < k < 2", defined above,
we define Act(vg) as the set of components of I' which are of the highest

14

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

competence level, among the grammars, on the longest prefixes over (N UT"™)
of the sentential forms which have nonterminal occurrence vector vg. Now, for
each vy, with Act(vg) # 0 we have productions in Py, of the form

(g = Cj — Cl,Lab(Pk),Lab(PactTk)), for P; ¢ Act(vg), P, € Act(vg), 1 <
.j’l S n’ and’

(g5.5 : Cj — Cj, Lab(Pj), Lab(Pycy,,), for P; € Act(vg), 1 < j <.

That is, if the simulated component remains of the highest competence level, it
will continue the derivation, but if it has lost this property, another grammar
will start with the generation.

For vy, # vy with Act(v) =), that is, when the sentential form still contains
nonterminals from N but there is no grammar which is able to continue the
derivation, we have productions

(tj : C; — F,0.0), where F' is a new nonterminal, called a trap symbol. In this
case the derivation will abnormally terminate, since it cannot be continued
and the sentential form is not a terminal word. The set of all productions,
which are in some Pactrk, 2 <k < 2" is denoted by P,.

Now we prove that any terminal word which can be generated by I' can also be
generated by G. Let

d:S=wy=p wi=p ...=p

5 Wr :>}jr Wy = W,
r>0,weT we (NUT)*, 0<i<r and j1,...,Jr € {1,...,n} be a maz-
derivation in I

Moreover, let w; = w; g = w;1 = ... w5, = wit1, 1 <@ <7, 5> 1.

Then a production of the form (ini; : " — S(1,0,...,0)C;,, Lab(P},),) must be
found in this production set, by the definition of P;,;, to indicate that the simulation
of derivation d begins.

Then, the derivation in G continues by repeating the next sequence of pro-
ductions as follows: for ¢ = 0 to ¢« = r and for £k = 0 to k = s; the following
procedure is executed: first, production p; ;, which is applied in the derivation step
wj) = W; y+1 by Pj;, is performed according to P,;., and then productions of P
are applied. This results in checking which nonterminals occur in w; 1. Then, the
procedure continues at Pjector—iq, and results in identifying the corresponding non-
terminal occurrence vector. Then, the derivation continues at production set P,..
If that production is applied which is constructed according to the nonterminal oc-
currence vector in w; k41, then nonterminal Cj, is updated, and either it remains
unchanged, or, in the case of w;,, it is changed to Cj, .
tinues again at production set Pe;. with a rule with core production either from Pj,
or Pj, .., depending on the result of the previous step.

Then the procedure is repeated, as many times as it is necessary. Since the
derivation in I ends with a terminal word, a nonterminal occurrence (0,...,0) in
the generated sentential form in G is guaranteed. Thus, the derivation in G also
will terminate successfully by applying productions of Pp;y,is,. By the construction
of the production sets of G we can see that any terminal word of I can be generated

Then, the derivation con-

15

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

in G as the longest prefix of a terminal word over (N UT)* and not more. More-
over, it also can be seen that if I' does not contain A-rules, then G does not contain
any A-rule either. By the property that the programmed languages with appearance
checking are closed under right derivative, L(I") € L(PR,.(CF,[A])) holds. If I" does
not contain A-rules, then L(I') € L(PR,.(CF)) holds. Hence the result follows. m

It is an open problem whether or not the class of languages determined by the
context-free CD grammar systems working in the maz-mode of derivation is strictly
included in the class of programmed grammars with appearance checking. The fol-
lowing statement demonstrates that if we restrict the class of CD grammar systems
working in the maz-mode of derivation to the subclass of these systems with fi-
nite index, then the generated language class is exactly the class of languages of
programmed grammars with finite index.

Theorem 4.4
£fm(CDmaI(CF, A])) = Efm(PR(CF)).

Proof. Inclusion L, (CDmaz(CF,[A])) C Lyin(PR(CF)) follows from the previous
statement and its proof.

To show that the equality holds, now we prove that for any programmed grammar
G = (N,T,P,S) with finite index we can construct a context-free CD grammar
system I' = (N'. T, Py,...,P,,S"), n > 1, such that L;,,,(I') = L(G) holds and T
is of finite index under the maz-mode of derivation. Let N = {A4;,..., As}, s > 1,
and let us assume that A4; = S.

Since G is of finite index, therefore we can list all sets of its nonterminals C' =
{A;,....,A;}, 1 <1 < Ind(G) which represent a set of nonterminal occurrences
in a sentential form appearing in a derivation in G. By [5], Lemma 3.1.4, pp. 155,
we know that for each matrix and thus, for any programmed grammar with finite
index an equivalent grammar of the same type can be constructed where all the
nonterminal occurrences in any sentential form are pairwise different. Let us denote
by Noc(G) the set of these sets of nonterminal occurrences, and let us denote by
Cy, = {S}. Let Lab(P) be the set of labels of productions of G. Let I' have each
nonterminal of G as a nonterminal symbol and some further new nonterminal letters.
Now for any nonterminal A; of G, with 1 < i < n, and production of the form (p :
A; — a,0(p)), with o € (NUT)*, and for any C' € Noc(G) with A; € C let (A;, p©)
be a new symbol, a new nonterminal of I', not in (N UT'). These nonterminals will
refer to the case when production (p : A; — «,0(p)) is applied to a sentential form
of G with a set of nonterminal occurrences C. Moreover, for any letter p € Lab(G),
and C' € Noc(G) let us introduce new symbols p© and (p©)’ which are not in (NUT)
and they are different from the new letters (A4;, p®), defined above. Furthermore, let
po, Y, F' be further new nonterminals. Symbol pgy helps in initializing the simulation
of the derivation of G in I', Y is an auxiliary symbol, and F' is a trap symbol playing
role in finishing the derivation in I'.

Now we shall construct the CD grammar system I'. For legibility, we list only
the components of the system.

For any nonterminal A;, 1 < 4 < n, in G and for any production of the form
(p: A = a,0(p)) in P, for any C € Noc(G), where C = {A4;,,..., A;.}, jc >

16

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

1, with A; € C, and for any ¢ € o(p), CD grammar system I'" has components
Pycg1, Pocg2s Ppcgs, and P, o 44, defined as follows: P, ¢ 4.1 has the following
productions: p© — p©, Aj, — A for 1 <4 # 5, < n, and 4; — (A;, p©),
Y — A, moreover, we add X — F for any other nonterminal letters of I' not in
{pcu Y, (Ahpc)} uc.

This component indicates that the application of production p is planned to a
sentential form with nonterminal occurrence set C'. Moreover, it removes the possible
appearance of auxiliary symbol Y from the sentential form and thus finishes the
simulation of the production applied before p.

Let P, c 42 be defined with the following productions: p¢ = (¢P)', where D ¢
Noc(G) and D is the set of nonterminals occurring in the sentential form of G
obtained from C' after applying production p and ¢ € Lab(p), and production ¢
can be applied for a sentential form with nonterminal occurrence set D. Moreover
let P, ¢ 42 contain also productions A; — Aj,, 1 < ji # i < n., and (4;,p°) —
(Al y pc).

This component indicates which production is intended to be applied after p.

Let P, 43 given with the following productions: (¢”) — (¢")', 4;, — Aj,,
1 < jr #i < ne, and (4;,p%) — aY.

This component starts simulating the application of rule p and indicates that we
intend to continue the computation by applying production ¢ to a sentential form
with nonterminal occurrence set D.

Moreover, let

P, ¢4 given with the following productions: (¢”) — ¢?, 4, — Aj,, 1 < ji #
1 <neandY — Y.

This component makes sure that production ¢ is intended to be applied.

To start with the simulation of the derivations of G by derivations in [' the
following component of I' is defined.

Let r1,...,r be the set of labels of productions in G that are for rewriting symbol
S, that is, let (r; : Ay =S = «,0(r;)), 1 <j <. Then we add component P, with
the following rules: py — rfl SY, for any rule r; defined above.

We also need components for finishing the derivations.

For each nonterminal p¢ with p € Lab(G) and C' € Noc(G) we define component
pr’ Zg with the productions

p¢ > ANY 5N A - F 1<i<n.

Furthermore let S’ = py.

Now we prove that any derivation which can be performed in G can be simulated
with a derivation in I' and reversely. To show this, we examine the derivation in T'.

It is obvious that any derivation in I' starts with the functioning of component
Py. Then, after applying a rule, the sentential form is of the form rjclAl = r}S}SY,
that is, it is of the form p“u, where p € Lab(P), C € Noc(G), and u € (NU{Y }T)*
with at least one occurrence of Y and exactly one occurrence of a nonterminal of G
in u. Moreover, (p: A; = a,0(p)) is a rule in P and A; € C.

Now, let us suppose that the sentential form in T' is exactly in the form p©u,
like above, and suppose that at this step of the derivation a new component has to
start its work. Let us examine the components of I'. The only components which

17

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

are able to continue without introducing trap symbol F' into the sentential form
are that ones which are able to rewrite every nonterminal in the sentential form
u and the marker nonterminal p®, or the corresponding component that belongs
to the group of components defined for finishing the derivation, but this case we
will discuss later. Let us suppose now that the derivation will be continued. Then a
successful continuation without an occurrence of the trap symbol is only possible if C
is exactly the set of nonterminals occurring in u. Notice that by the construction of
the component triples P, ¢ 4, 4 = 1, 2,3, if the marker nonterminal in the sentential
form is p©, then every nonterminal letter in C' appears in the sentential form and
only these nonterminals appear in it. Moreover, component Py p 1, for some rule r,
exists only if the letter rewritten by ¢ is in D. Now, let us suppose that the derivation
can be continued and let P, ¢, be the production set to be activated. (We guess
that the next production to be applied is ¢, that is ¢ € o(p).) Now, the component
rewrites nonterminal A; to nonterminal (4;,p®) and then it looses property being a
most competent one. The next component which is able to continue the derivation
is P, 4,2 This component rewrites symbol p¢ to symbol (¢”)’, indicating that the
next production to be applied is chosen as ¢ and the set of nonterminal occurrences
of the sentential form obtained from u by applying p is the set D. After applying the
production, component P, ¢ 42 is not the most competent component anymore, so a
new component must continue the derivation. The only component for this purpose
is P, ¢ 4,3, which rewrites (A;,p®) to aY. Then, this component looses the property
being the most competent grammar and since P, ¢ 44 is more competent than this
one, it continues the derivation. Thus, we obtained a sentential form of the form
g” v, where v has exactly one occurrence of Y, exactly as as p©u. It is also easy to
see that the functioning of the components simulated the application of production
p to sentential form u in G. If the set of nonterminals in D is not equal to the set
of nonterminals of G which appear in v or nonterminal A;, with (¢ : A; — ,0(q))
does not appear in v, then the next component will introduce trap symbol F' and
the derivation will never terminate with a terminal word. Thus, no derivation in I"
can occur which does not correspond to a correct derivation of G.

Finally, we have to finish the derivation and remove marker nonterminals p®.
This is possible with activating the corresponding member of the group of compo-
nents, prfg. This component removes the marker symbol p¢ and symbol Y without
introducing the trap symbol, F, if and only if p© is the only nonterminal in the
sentential form.

From the above explanations we can see that the terminating derivations of I'
simulate all terminating derivations of G and only that. Thus, L., (I') = L(G)
holds. Moreover, I' is with finite index under the max-mode of derivation.

Since we have L ¢in(CDpmay (CF,[A])) = Lfin(PR(CF)) C L§in(CDmaz(CF, X)),
we proved the equality. m

We obtain as corollary the following statement.

Corollary 4.2

Lin(CDpmaz(CF,N)) = Lin(CDpae (CF).

18

E. Csuhaj-Varja, J. Dassow, M. Holzer On A Competence Based Cooperation Strategy

5 Final remarks

The working of CD grammar systems under the maz-mode of derivations very much
differs from the functioning of grammars with the customary regulation mechanisms
in rewriting and from the behaviour of the different variants of CD grammar systems
have been studied so far. While in the latter cases a sequence of productions to be
applied under functioning can be prescribed, in the case of this new cooperation
strategy these standard regulation techniques do not work. Thus, we think, CD
grammar systems with max-mode of derivations can also introduce new aspects in
regulated rewriting. Determining the precise relation of their language class to the
known classes of languages is a topic of further research.

References

[1] H. Bordihn, E. Csuhaj-Varji: On competence and completeness in CD
grammar systems. Acta Cybernetica 12(4) (1996), 347-361.

[2] E. Csuhaj-Varjd, J. Dassow: On cooperating/distributed grammar systems.
Journal of Information Processing and Cybernetics EIK 26(1990), 49-63.

[3] E. Csuhaj-Varji, J. Dassow, J. Kelemen, Gh. Paun: Grammar Systems
- A Grammatical Approach to Distribution and Cooperation. Topics in
Computer Mathematics 5. Gordon and Breach Science Publishers, Yver-
don, 1994.

[4] E. Csuhaj-Varju, Gy. Vaszil: An annotated bibliography of grammar sys-
tems. See: http://www.sztaki.hu/mms/bib.html

[5] J. Dassow, Gh. Paun: Regulated Rewriting in Formal Language Theory.
EATCS Monograph on Theoretical Computer Scince 18, Springer-Verlag,
Berlin-Heidelberg-New York, 1989.

[6] J. Dassow, Gh. Paun, G. Rozenberg: Grammar Systems. Handbook of
Formal Languages. Vol 2., Chapter 4. (G. Rozenberg, A. Salomaa, eds.),
Springer Verlag, Berlin-Heidelberg-New York, 1997, 155-213.

[7] Handbook of Formal Languages, Vol. 1-3., (G. Rozenberg, A. Salomaa, eds.),
Springer-Verlag, Berlin-Heidelberg-New York, 1997.

[8] R. Meersman, G. Rozenberg: Cooperating grammar systems. In: Proc.
MFCS’78, Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1978, 364-373.

[9] G. Rozenberg, A. Salomaa: The Mathematical Theory of L. Systems. Aca-
demic Press, New York, 1980.

[10] A. Salomaa: Formal Languages. Academic Press, New York, 1973.

19

