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Abstract: We show that every context-sensitive language can be accepted by an
accepting network of non-increasing evolutionary processors with one substitution
processor and one output node whose communication is controlled by regular lan-
guages. Every recursively enumerable language can be accepted by a network with
three evolutionary processors: one substitution processor, one insertion processor
and one output node. Also with insertion and deletion processors only (without sub-
stitution nodes), all recursively enumerable languages can be accepted. Then one
insertion node, one deletion node and one output node are sufficient.
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plexity.

1. Introduction

Motivated by some models of massively parallel computer architectures (see [10, 9]) net-
works of language processors have been introduced in [6] by ERZSEBET CSUHAJ-VARJU
and ARTO SALOMAA. Such a network can be considered as a graph where the nodes are
sets of productions and at any moment of time a language is associated with a node.

Inspired by biological processes, JUAN CASTELLANOS, CARLOS MARTIN-VIDE,
VICTOR MITRANA and JOSE M. SEMPERE introduced in [4] a special type of networks
of language processors which are called networks with evolutionary processors because
the allowed productions model the point mutation known from biology. The sets of pro-
ductions have to be substitutions of one letter by another letter or insertions of letters or
deletion of letters; the nodes are then called substitution node or insertion node or deletion
node, respectively. Results on networks of evolutionary processors can be found e. g. in
[4,5,3,2].

Accepting networks of evolutionary processors with regular filters were first investi-
gated by JURGEN DASSOW and VICTOR MITRANA in [7]. Especially, they have shown
that every network of non-increasing processors accepts a context-sensitive language.
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In [8] and [1], we investigated the generative capacity of networks with evolutionary
processors where only two types of nodes are allowed. Especially, we proved two results:

o Networks with substitution nodes and insertion nodes (but without deletion nodes)
generate all context-sensitive languages and one substitution node and one insertion
node are sufficient.

e Networks with insertion nodes and deletion nodes (but without substitution nodes)
generate all recursively enumerable languages and one insertion node and one dele-
tion node are sufficient.

In the present paper, we show the dual case:

e Every context-sensitive language can be accepted by an accepting network of evo-
lutionary processors with regular filters and with one substitution node, one deletion
node and one output node.

e Every recursively enumerable language can be accepted by an accepting network
of evolutionary processors with regular filters and with one insertion node, one
deletion node and one output node.

Further, we show that every recursively enumerable language can be accepted by a
network with one substitution processor, one insertion processor and one output node.

Whereas networks consisting of substitution processors only cannot generate other
languages than finite ones, accepting pure substitution networks can accept infinite lan-
guages. The reason is that generating networks start with a finite set (and substitution
nodes cannot increase the length of the words) while accepting networks can get infinitely
many input words. We show that all context-sensitive languages can be accepted by net-
works of substitution processors and that one substitution processor is sufficient (apart
from an output node).

2. Definitions

We assume that the reader is familiar with the basic concepts of formal language theory
(see e. g. [13]). We here only recall some notations used in the paper.

By V* we denote the set of all words (strings) over V' (including the empty word \).
The length of a word w is denoted by |w|.

In the proofs we shall often add new letters of an alphabet U to a given alphabet V. In
all these situations, we assume that VN U = ().

A phrase structure grammar is specified as a quadruple G = (N, T, P,S) where N is
a set of non-terminals, 7' is a set of terminals, P is a finite set of productions which are
written as « — [ with o € (NUT)*\T* and § € (NUT)*, and S € N is the axiom.
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The grammar G is called monotone, if |«| < |3| holds for every rule & — /3 of P where
the exception S — A is permitted if S does not occur on a right hand side of a rule.
A monotone grammar is in Kuroda normal form if all its productions have one of the
following forms:

AB—CD, A—CD, A— z, where A,B,C,D e N, x € NUT,

again, S — )\ is permitted if .S does not occur on a right hand side of a rule.
We call a production o — [ a
— substitution if |a| = |5| =1,
— deletion if |a| =1 and 3 = A.

We regard insertion as a counterpart of deletion. We write A\ — a, where a is a letter. The
application of an insertion A — a derives from a word w any word wjaw, with w = wjw;
for some (possibly empty) words w; and wy.

We now introduce the basic concept of this paper, the accepting networks of evolu-
tionary processors.

Definition 1.

(i) An accepting network of evolutionary processors of size n is a tuple
N(n) = <U7MN17N27"'7NH7E7jaO)

where

e U andV are finite alphabets (the input and network alphabet, resp.), U C V,
e for1 <i<n, N;=(M;1;,0;) where
— M, is a set of evolution rules of a certain type, M; C {a — b|a,be V}
orM; C{a—AaeV}orM;CT{\—=b|beV}
— I; and O; are regular sets over V,
e FEisasubsetof{1,2,...,n} x{1,2,...,n},
e j is a natural number such that 1 < j <n, and
e Oisasubsetof {1,2,...,n}.
(ii) A configuration C of N is an n-tuple C = (C(1),C(2),...,C(n)) if C(i) is a
subset of V* for 1 <1i <n.
(iii) Let C' = (C(1),C(2),...,C(n)) and C" = (C'(1),C"(2),...,C"(n)) be two config-
urations of N™. We say that C derives C' in one
— evolution step (written as C = C') if, for 1 < i <mn, C'(i) consists of all

words w € C(i) to which no rule of M; is applicable and of all words w for
which there are a word v € C (i) and a rule p € M; such that v =>) w holds,
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— communication step (written as C'+= C') if, for 1 <i <mn,

C'(i) = (C@H\OHU | Ck)NOxN 1.
(kg)eFE

The computation of a network N ") on an input word w € U* is a sequence of
configurations C}¥ = (C{*(1),C{*(2),...,C{(n)), t > 0, such that
(

- CY =(C{(1),C¥(2),...,C¥(n)) where C§(j) = {w} and C’'(i) =0
for 1 <izj<n,

— foranyt >0, C3} derives C’%H in one evolution step: C5, = C'%H,
— foranyt >0, C5; | derives C3;  , in one communication step: C3, = C5; .

(iv) The languages Ly (N') weakly accepted by N and Lg(N') strongly accepted by N
are defined as

LyN)={weU*|3t>030c0:C{(0) #0},
LiN)={weU"|Ht>0YocO:C"(0)#0},

where C{' = (C{*(1),C}*(2),...,C{(n)), t > 0 is the computation of N on w.

Intuitively a network with evolutionary processors is a graph consisting of some, say
n, nodes Ni, N,,..., N, (called processors) and the set of edges given by £ such that
there is a directed edge from Ny, to N; if and only if (k,i) € E. The node N; is called
the input node; every node N, with o € O is called an output node. Any processor N;
consists of a set of evolution rules );, an input filter /; and an output filter O;. We say
that N; is a substitution node or a deletion node or an insertion node if M; C {a — b |
a,beV}iorM;C{a—AlaeV}orM; C{\—b|beV}, respectively. The input
filter I; and the output filter O; control the words which are allowed to enter and to leave
the node, respectively. With any node N; and any time moment ¢ > 0 we associate a
set C(i) of words (the words contained in the node at time ¢). Initially, the input node N;
contains an input word w; all other nodes do not contain words. In an evolution step,
we derive from Cy(i) all words applying rules from the set M;. In a communication
step, any processor N; sends out all words Cy(7) N O; (which pass the output filter) to all
processors to which a directed edge exists (only the words from Cy(7) \ O; remain in the
set associated with V;) and, moreover, it receives from any processor N such that there is
an edge from Vi to N; all words sent by Vi and passing the input filter /; of NV, i.e., the
processor N; gets in addition all words of (C¢(k) NOy) N I;. We start with an evolution
step and then communication steps and evolution steps are alternately performed. The
language accepted consists of all words w such that if w is given as an input word in
the node NN; then, at some moment ¢, ¢ > 0, one output node contains a word (weak
acceptance) or all output nodes contain a word (strong acceptance).
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3. Networks of Non-Increasing Nodes

Deletion and substitution nodes do not increase the length of the words. Such nodes are
also called non-increasing. In a network with only non-increasing nodes, the length of
every word in every node at any step in the computation is bounded by the length of the
input word.

In this section, we show that every context-sensitive language can be accepted by an
accepting network of evolutionary processors with deletion and substitution nodes but no
insertion nodes. Especially, one substitution node (which is the input node), one deletion
node and one output node are sufficient.

This is the inverse situation to that one considered in [8], where we have shown that
networks with insertion nodes and substitution nodes (but without deletion nodes) gener-
ate all context-sensitive languages and one insertion node and one substitution node are
sufficient.

Theorem 2. For any context-sensitive language L, there is an accepting network N of
evolutionary processors with exactly one substitution node, one deletion node and one
output node without rules that weakly and strongly accepts the language L:

L= LW(N) = LS(N)

Proof.  Let L be a context-sensitive language and G = (N, T, P,S) be a grammar in
Kuroda normal form with L(G) = L. Let Ry, Ry, ..., R7 be the following sets:

Ri={z—xp0, 1po— A|A—>2€ P, Ac N,z € NUT},
Ry={C—Cy|p=A—CDePorp=AB—CDeP, AB,C,DeN},
Ry={D—D,,|p=A—-CDePorp=AB—-CDeP, A, B,C,De N},
Ry={Cp1—Cp3|p=A—-CDecPorp=AB—-CDecP, A,B,C,DEN},
Rs = {Dys— Dy4|p=A—CDePorp=AB—~CDeP, A,B,C,DeNY},
Re={Cp3s—A|lp=A—-CDePorp=AB—-CDeP, AB,C,De N},
Ry ={Dps—B|p=AB—-CDeP, A\ B,C,De N }.

We construct a network of evolutionary processors
N = (T,V,(M1,V*,01), (M2, 1, V"), (0, 13,0),{ (1,2),(2,1),(1,3),(2,3) }, 1,{3})
with

V=NUTU J {zpo}U |J {Cp1.Dp2.Cp3,Dps},

p=A—zx p=A—CD
p=AB—CD

M, =RiURyUR3UR4UR5U RgU R7,

O1 = {S,A}UVE\ (NUT) O(NUT)),
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where

O={zpo|p=A—2z€P, AeN, 2€e NUT}
U{Cp1|p=A—CDePorp=AB—~CD€P, A,B,C,DEN}
U{Cp1Dp2|p=A—CDecPorp=AB—CDecP, A,B,C,DE N}
U{Cp3Dp2|p=A—CDecPorp=AB—~CD€cP, A,B,C,DEN}
U{Cp3Dps|p=A—CDecPorp=AB—CDecP, A,B,C,DE N}
U{AD,4|p=AB—CD€eP, A,B,C,De N}

U{A},
and

MzZ{Dp74—>/\|p:A—>CDEP, A,B,C,DEN},
L=(NUT)*{AD,4|p=A—CDeP, A,B,C,DeN}NUT)",

= {S,\} ifAelL,
T {S}  otherwise.

The network A has only one output node. Therefore, there is no difference between weak
and strong acceptance, and we write L(N) for the language accepted by the network N

First, we prove that every word w € L(G) is accepted by the network N

If X € L(G) then ({A\},0,0) = ({A\},0,0) - (0,0,{\}) and X is accepted by the
network .

Any derivation w =" v with v # X of the grammar G can be simulated by the net-
work A in reverse direction (by a reduction v =* w). We show that the application of a
rule of the grammar G can be simulated by the network A in reverse direction. A direct
reduction v = w always starts in the first node, the first step is an evolution step, and
ends in the first node after a communication step (so the next step would be an evolution
step again). Then v € Cy(1) and w € Cy(y44(1) for two numbers ¢ > 0 and £ > 0. In
the sequel, A, B, C, D are non-terminals, z is a non-terminal or terminal symbol and
wiwy € (NUT)*.

Case 1. Application of arule p=A — x € P to a word w; Aw.
This application leads in the grammar G to the word wjzw;. We assume that the word
wyrw; is in the first node at some moment before an evolution step (wjzwy € Cyi(1)).
We apply the rule x — x,, o € R and obtain the word w;x;, ow, which cannot pass the
output filter, so it remains in the first node. Then we apply the rule z,0 — A € Ry
and obtain wjAw, € (N UT)*. This word also does not pass the output filter, so it
remains in the first component: wyAwy € Cy(147) (1). Hence, the application of a rule
p=A—x € P toaword w; Aw, can be simulated reversely in two evolution steps
(the two corresponding communication steps have no effect).

Case 2. Application of arule p=AB — C'D € P to a word w; ABw;.
We assume w;C' Dw, € Cy(1). This word is changed to w;C), ; Dw, (by an appropri-
ate rule of R;) which cannot pass the output filter, so it remains in the first node. It
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is then changed to w1 C), 1 Dy 2wy (by R3), and further, without leaving the first node,
changed to w1 C)p 3Dy, 2wy (by Ry), to w1Cp 3D, 4ws (by Rs), to wiAD) 4w, (by Re)
and finally to w; ABw; (by R7). This word is not communicated in the next step, since
it cannot pass the output filter and we have w1 ABw; € Cy;16)(1). Hence, the appli-
cationofarule p=AB — C'D € P to a word w; ABwj, can be simulated reversely in
six evolution steps (the six corresponding communication steps have no effect).

Case 3. Applicationof arule p=A — C'D € P to a word w; Aws.

We assume wC' Dwy € Cy(1). As in the case before, this word is changed to the word
w1 Cyp,1 Dwy and further, without leaving the first node, changed to wC), 1 Dy 2w» (by
arule of R3), to wleﬁDp’zwz (by Ry), to wle73Dp74w2 (by Rs), and to wlADpsz
(by Rg). This word passes the output filter of the node and the input put filter of the
second node. So we have w1 AD, 4w> € Cz(t+5)(2)- The second node changes the
word to wy Aw,. In the next communication step, this word moves to the first node
and we obtain w) Awy € Cy(;46)(1). Hence the applicationof arulep=A — CD € P
to a word w; Aw; can be simulated reversely in six evolution steps and two effective
communication steps (the other four have no effect).

For any derivation S =* w in the grammar G to a terminal word w € T™", there is a
computation Cy, C, ..., Cyyq with Co = ({w},0,0) and Corr 1 = (Cor1(1),Cor1(2),0)
with S € Cy41(1) U Cop1(2) (the final reduction to S is achieved by some rule z — S
in the first node or — if the first direct derivation is S =, AB — by the rule By, 4 — A in
the second node). From both nodes, S reaches the third node in the next communication
step. Hence, S € Cyy41)(3).

Thus, we have the inclusion L(G) C L(N'). We now show L(N) C L(G).

Let us first consider the case that the computation starts with X in the first node. No
rule can be applied. The word leaves the node (because it passes the output filter Oy). It
enters the third node if A belongs to L(G), otherwise the word is lost and there is no word
in the network any more. Hence, if A is not in L(G) the third node never obtains a word.

Thus, A € L(N) if and only if A € L(G).

We now show that if a word w € T'" is accepted by the network then, at some time, the
symbol S enters the third node and then a derivation S =>* w in G has been simulated
reversely by reducing w to .S in the network.

The computation starts in the first node with a word w € T". The word can only be
accepted if it can be reduced to S or A (only these can enter the third node). No word can
be reduced to )\, because if a word enters the deletion node, then it contains at least two
letters A and D) 4 for arule p = A — CD and only D), 4 can be deleted before the word
moves back to the first node. Hence, if a word is accepted then it can be reduced to S
(after the last reduction step, it moves from the first or second node to the output node).

In the sequel, A, B, C, D denote non-terminals, = denotes a non-terminal or terminal
symbol and wjw, € (NUT)*.

‘We now consider a word w = wjzw, in the first node after an even number of com-
putation steps (the next step is an evolution step). If we can apply arule x — w0 € %)
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to w then we obtain the word w; x;, gw, which does not leave the node (because it does not
pass the output filter). If now another rule than z, 0 — A is applied, then the word passes
the output filter and leaves the network. If z,,0 — A is applied, then we obtain the word
wi Awy which does not leave the node and the derivation wj Aw; = wjzw, is possible
in G (due to the construction of the set ).

Let us now consider a word w = w{C' Dw, in the first node after an even number of
computation steps (the next step is an evolution step). If a rule of R; is applied then we
have the situation described for the word w = wjzw;. If we can apply another rule, then
we have one of the following cases:

Case 1. Application of arule D — D),» € R3.
This leads to the word w;C' D), >w> in the first node, which is then sent out. Since the
other nodes do not accept it, the word is lost.

Case 2. Application of arule C' — (), 1 € R;.

This leads to the word w;C), 1 Dw> in the first node which is kept in the node. If the
next evolution step does not yield the word w;C), 1 Dp 2wy, then the word disappears
in the next communication step. (Here is the reason why the rules in R make the ‘de-
tour’ via intermediate symbols. If there would be direct rules x — A, we could apply
them here and had more cases to discuss.) Let us assume, we obtain w;C), 1 D) rw»,
then this word is kept in the first node. The next evolution step yields w1 C)3D), 2w
or the word is lost. Also this word remains in the node. The fourth evolution step
leads to w1C) 3D, 4w, or the word is lost. This word remains in the node, too. The
fifth evolution step leads to w1 AD,, 4w, or the word is lost. There are two possibilities
for the rule p that belongs to D, 4.

Case 2.1. p=A — CD. In this case, the word w; AD,, 4w is sent out and caught by
the second node. The second node deletes the symbol D), 4. In the next commu-
nication step, the word w; Aw, is sent back to the first node. The described six
evolution steps (together with the corresponding communication steps) represent
the inverse of the derivation w; Aw, = w;C' Dw, in G.

Case2.2. p=AB — CD. In this case, the word wiAD) 4w, remains in the first
node. The next evolution step yields wj ABw; or a word that is lost, because
applying any rule of R; U R, U R3 (rules of Rs, Rg, R7 and other rules of R4 are
not applicable) leads to a word which passes the output filter but no input filter.
The word w; ABw, remains in the first node. The described six evolution steps
(the communication steps have no effect) represent the inverse of the derivation
wlAsz — wchwz in G.

Hence, in this case, the derivation w; Aw, =—> w;C' Dw, or wi ABwy; — w1 C' Dw,

(which in G is obtained by the initially chosen rule p) is simulated reversely.

Other rules are not applicable to the word w.

By the case distinction above, we have shown that, for every reduction w = v in the
network A/, the derivation v = w is possible in the grammar G. Hence, if a word w can
be reduced to S, then the derivation S =" w exists in G. Together, we obtain that if a
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word w is accepted by the network N then it is generated by the grammar G.
With the first part of the proof, we obtain L(G) = Ly (N) = Lg(N) = L. O

In generating networks, only substitution nodes yield not more than finite languages.
But accepting networks can accept infinitely many input words. Surprisingly, even every
context-sensitive language can be accepted by a network with only one substitution node
(and one output node without rules). The trick is that the substitution processor can sim-
ulate the deletion by marking symbols as deleted. The filters then ‘ignore’ the deletion
markers.

Theorem 3. For any context-sensitive language L, there is an accepting network S of
evolutionary processors with exactly one substitution node and one output node without
rules that weakly and strongly accepts the language L:

L=Ly(S) = Ls(S).

Proof.  Let L be a context-sensitive language and G = (N, T, P,S) be a grammar in
Kuroda normal form with L(G) = L. The network S is constructed similarly to the net-
work N in the proof of Theorem 2.

Let Ry, Ry, ..., R7 be the sets used for A/ and let Rg be the additional set

Ry={Dps—_|p=A—-CDeP, A B,C,De N }.
We construct a network of evolutionary processors
S=(T,VS,(M},0,07),(0,15,0),{(1,2)},1,{2})
with

VSZNUTU{M}U U {xpjo}U U {Cp,l,Dp,27Cp,3,Dp,4}7

p=A—zx p=A—CD
p=AB—CD

M = R{URy UR3UR4URsURgUR7 U Ry,
07 = {F{SHP UPATUVA\ (NUTU{) O (NUTU{.})"),

where

O_S:{:cp,o p=A—zeP, Ae N,x € NUT}
U{Cp1|p=A—-CDePorp=AB—-CDeP}
U{Cpi1eDpr|p=A—CDePorp=AB—CDeP,cec{.}"}
U{Cp3eDpr|p=A—CDEPorp=AB—CDcP, cc{.}*}
U{Cp3eDps|p=A—CDePorp=AB—-CDeP, cc{.}}
U{AeDp4|p=A—CDePorp=AB—-CDeP,cc{.}"}
u{A},
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and
5 {{u}*{S}{u}* U{A} ifAeL,
2 {{SH M otherwise.

The network S has only one output node. Therefore, there is no difference between
weak and strong acceptance, and we write L(S) for the language accepted by the net-
work S.

The network S behaves almost in the same way as the network A in the proof of
Theorem 2 does. The main difference is that symbols are not deleted but marked by the
special symbol .. This can be done by the single substitution processor as well (using
rules of Rg). When simulating a derivation w = v in (G, we have to take into account
that the corresponding word in the substitution node may contain gaps in form of several
occurrences of the special symbol . This is realized by the new formulation of the set O°
of such subwords that are forbidden to leave the node.

An input word w € T can be reduced to a word s € {_}*{S}H{_}* if and only if w
is generated by the grammar GG. Then and only then, s moves to the output node. If the
input word is A, then it is not modified in the first node but sent out. The second node
receives the word if A € L. If A ¢ L then the output node does not receive anything.

Hence, we have proved L(G) = Ly(S) = Ls(S) = L. O

This number of processors is optimal since the input node and output node have to be
different (otherwise every input word would be accepted).

4. Networks of Non-Deleting Nodes

The main difference between context-sensitive and non-context-sensitive grammars is
that, in arbitrary phrase structure grammars, erasing rules (A-rules) are allowed. In or-
der to simulate a A\-rule in reverse direction, we introduce an insertion node.

Theorem 4. For any recursively enumerable language L, there is an accepting network N
of evolutionary processors with exactly one substitution node, one insertion node and one
output node without rules that weakly and strongly accepts the language L:

L= LW(N) = LS(N)‘

Proof. Let L be a recursively enumerable language and G = (N, T, P, S) be a grammar
in Kuroda normal form with L(G) = L.

The idea of the proof is to extend the network S constructed in the proof of Theorem 3
by an inserting processor who is responsible for the reverse simulation of A-rules, see
Figure 1.
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A—x -
A— BC \ ﬂ
AB —CD ﬂ ﬂ Q
\ Iy ={}{SH}

A— )\

Figure 1: A network for simulating a grammar in Kuroda normal form

For a formal definition, we have to implement that the insertion node gets the oppor-
tunity to do something (the substitution processor must indicate that a word can pass to
the insertion node).

We construct a network of evolutionary processors
N = (@ VN, 1,00, 0,18,0), (03, 1,04, {(1,2),(1,3),(3,1) }, 1,{2})
with
VN =vSulad |ze NUT},
M{V:Misu{xﬁxl]:vENUT}U{:c'—mc\:cENUT},
=R =0 =(NuTU{}) {2/ |r e NUT }(NUTU{.})*,
oY =07,
W1,
MY ={x—A|A— e P},

where V¢ , M is , Of ,and [’ is are defined as in the proof of Theorem 3.

Between two simulation phases, the substitution node can mark a symbol such that
the word can leave the node and enter the insertion node. This processor inserts a non-
terminal that belongs to a A-rule of the grammar GG and returns the word to the substitution
node. This processor then has to unmark the primed symbol. If marking or unmarking
is not performed in the correct moment, the word will be lost. Due to the definition of
the filters, we can connect all nodes with each other (to obtain a complete graph) without
changing the behaviour of the network. a

5. Networks without Substitution Processors

In [1], we have shown that every recursively enumerable language can be generated by
a network of one inserting processor and one deleting processor. Similar to the proof of
this statement, we can prove the following result.
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Theorem 5. For any recursively enumerable language L, there is an accepting network N
of evolutionary processors with exactly one insertion node, one deletion node and one
output node without rules that weakly and strongly accepts the language L:

L= Ly(N) = Ly(N).

Proof. Let L be a recursively enumerable language and G = (N, T, P,S) be a grammar
in Kuroda normal form with L(G) = L.

We define the sets of partial prefixes and partial suffixes of a word u by

PPref(u) = {z|u=wzy, [y| > 1},
PSuf(u) = {y |u ==y, |z| > 1},

respectively.

Let V= NUT and V.=V U{_}. We define a homomorphism A : V* — V* by
h(a) =afora € T and h(A) = A_for A € N and set

W={h(w)|weV*}.
We construct the following network

N = (T, X, (M, 11,04),(Ma, I, 02),(0,{5-},0), E,1,{3})
of evolutionary processors with

X = VMU U {pl,p27p3ap4}7

peP
Mi={A—= 2 YU{A—=p;|peP1<i<4}U{N—A|AcN},
Il:W\{SM}W

O1=X"\(WR W),
My={pi—A|peP1<i<4}U{z—A|lzeV },
I =WR W,
Oy = X\ (W R, W),
E={(1,2),(2,1),(2,3)}

where

Rip= | {pih(v),pih(v)p2, pipsh(v)p2, pipsh(v)papa}
p=u—veP

U{p1p3}PSuf (h(u)){h(v)p2pa})
Ry = {pip3sh(uv)pops | p=u—veP},
Rop=|J  ({pipsh(w)}PPref(h(v)){papa} U {psh(u)paps, p3h(u)pa, h(u)pa}).

p=u—veP
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The reverse simulation of the application of arule p =aj...as — by ...b; to a senten-
tial form aay - - - a5 with z = h(«) and y = h(/3) has the following form.

In the insertion node, we have

xh(by)...h(b)y = xpih(by)...h(bt)y
= xp1h(by) ... h(b)p2y
= zp1p3h(by) ... h(b)pay
= xp1p3h(b1) ... h(br)p2pay
= xp1p3-h(b1) ... h(be)p2pay
= xp1p3as-h(br) ... h(bt)papay
=" xp1p3age...aso(by) ... h(bt)papay
= Tp1p3-az-...as-h(by)... h(bi)p2pay
= Tp1p3ai-...ash(by) ... h(b:)papay.

h
h

This word leaves the insertion node and enters the deletion node. There, the evolution
continues to

apip3aro....asch(by)... h(b)papay =" zpipsar....as h(by)... h(bi—1 )papay
=" ap1p3ai....as h(b))papay
— POl epip3are. . aspapay
= IP3QA]-...As-P2D4Y
= XP3Q]-...0s5-P4Y
— TA]-...As-P4Y
— TaA|....05.0.

This word leaves the node and enters the output node if it is S. (corresponding to
the axiom of the grammar (7) or it enters the insertion node for the next simulation phase.
Only those words remain in the network that are obtained in the sequence described above;
all other words get lost. a

Every regular language R is accepted by a network of two nodes where none of the
nodes contains any rules. The input node keeps all words not belonging to R; all words
belonging to [ move to the output node which accepts all arriving words. Hence, the
network accepts exactly the language /2. Such networks are optimal with respect to the
number of processors, because input node and output node have to be different. Otherwise
the network would accept every input word.

Corollary 6. Every regular language can be accepted by a pure deleting or pure inserting
network with two nodes. This number of processors is optimal.

Pure deleting networks can accept non-context-free languages.
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Lemma 7. There is a network of deletion nodes only that accepts the language

L={d"0""|n>1}.

Proof. LetT = {a,b,c} and O = {a}"{b} T {c} . We construct the following network
N: (T7Ta Nin7NaaNb7NC7N0ut7E7 17{5})
of deletion processors with the nodes Ny, = (0,0,0), N, = ({x — A}, T*,0) forz € T

and Noy = (0,{ abc},0), and the set E{(1,5),(1,2),(2,3),(3,4),(4,2),(4,5) } of edges.
The network is illustrated in Figure 2.

O ={a}™{b}{c}"

Figure 2: A deleting network for accepting the language { a™b"c" | n > 1}

Every word which has not the form a”b%c"” with p > 1, ¢ > 1, r > 1, remains in the
first node for ever. The word abc will be sent directly to the output node and is accepted.
A word a?b?c” withp > 1, ¢ > 1, r > 1, and pgr > 1 is sent into the ‘cycle’ where one
letter of a, b and c is deleted. The word moves on to the next node only if there is one
letter of each kind left. If the word is stuck in a node, then it was abc when it entered
the node which deletes a or p, ¢ and r were not equal. If the word leaves the node which
deletes c, then it has the form a?~ 169~ 1¢" 1. If this word is abc it goes to the output node
and the input word is accepted. Otherwise it starts same cycle. Hence, a word is accepted
if and only if it belongs to the language L. a

In this manner, networks can be constructed for similarly structured languages. They
are accepted after a cyclic deletion process.

Also pure inserting networks can accept non-context-free languages.

Lemma 8. There is a network of insertion nodes only that accepts the language
L={d"V"c"|n>1}.
Proof. LetT ={a,b,c},V=TU{d,l/,}, and

O = {aa}*{a} {00/} {b} " {cc'} {c} .
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We construct the following network
N: (KT7NinaNa7Nb7N07N0utaE7 17{5})

of insertion processors with the nodes Ny, = (0,0,0), N, = ({ A —2'},V*,0) forz €T
and Noye = (0, {aa’} {00’} {cd' } T U{abc},0), and the set

£{(1,5),(1,2),(2,3),(3,4),(4,2),(4,5) }

of edges. The network is illustrated in Figure 3.

(2 @'

out A—c

Figure 3: An inserting network for accepting the language { a"b"c" |n > 1}

Every word which has not the form a?b%c” withp > 1, ¢ > 1, r > 1, remains in the first
node for ever. The word abc will be sent directly to the output node and is accepted. A
word aPblc” withp > 1, ¢ > 1,7 > 1, and pqr > 1 is sent into the ‘cycle’ where one letter
of a, b and c is marked (by inserting a primed version after the first non-marked letter).
The word moves on to the next node only if there is one unmarked letter of each kind left.
If the word is stuck in a node, then a primed letter was inserted at a wrong position. If
the word leaves the node which marks ¢, then it has the form aa’a? 160’9 1ed/ "1, This
word runs in the cycle until it stucks or it is transformed into the word (aa’)P(bb')?(cc’)".
In the latter case, we have p = ¢ = r, the word moves to the output node and, hence,
the input word is accepted. Hence, a word is accepted if and only if it belongs to the
language L. a

It remains as a task to characterize the family of languages that are accepted by pure
deleting networks (which have only deleting processors) and pure inserting networks.
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