
J. Dassow, B. Truthe (Eds.): Colloquium on the Occasion of the 50th Birthday of Victor Mitrana.
Otto von Guericke Universität Magdeburg, Germany, June 27, 2008. Proceedings, pages 29 – 36.

On the Complexity of the Control Language in
Tree Controlled Grammars

RALF STIEBE

Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik
PSF 4120, D-39016 Magdeburg, Germany

stiebe@iws.cs.uni-magdeburg.de

Abstract: It is shown that any context-sensitive language can be generated by a
tree controlled grammar whose control language is accepted by a deterministic finite
automaton with at most 5 states.

Keywords: Tree controlled grammar, regular control, state complexity.

1. Introduction

Regulated rewriting is a common means to increase the generative power of context-free
grammars. A context-free core grammar is combined with a mechanism which controls
the derivation process. For a thorough introduction to regulated rewriting, see [2, 1].
In tree controlled grammars, introduced by Čulik and Maurer [5], the structure of the
derivation trees is restricted as all words belonging to a level of the derivation tree have
to be in a given regular language. It was shown by Păun [4] that tree controlled grammars
with λ-free context-free core grammars are equivalent to context-sensitive grammars.

Recently, Dassow and Truthe [3] have investigated the generative power of tree con-
trolled grammars when restricting the control language to subfamilies of the regular lan-
guages. In particular, they discussed the generative power with respect to the state com-
plexity of the control language. The problem whether the hierarchy defined by the state
complexity collapses was left open. We will settle this problem by showing that a state
complexity of 5 for the control language is sufficient to obtain the full generative power
of tree controlled grammars.

2. Definitions and Basic Notations

We assume that the reader is familiar with the basic concepts of formal language theory.
The families of regular, context-free, context-sensitive, recursively enumerable languages
are denoted by REG, CF, CS, RE, respectively.

29

30 Ralf Stiebe

For a derivation tree T of height k for a derivation in a context-free grammar and a
number 0 ≤ j ≤ k, the word of level j is given by the nodes of depth j read from left to
right.

Definition 1. A tree controlled grammar is a tuple

G= (N,T,P,S,R),

where G′ = (N,T,P,S) is a context-free grammar and R ⊆ (N ∪T)∗ is a regular lan-
guage.

The language L(G) consists of all words w ∈ T ∗ generated by G′ with a derivation
tree whose words of all levels (except the last one) are in R.

LetL be a subfamily of REG. By T Cλ(L) (T C(L), respectively) we denote the family
of languages generated by tree controlled grammars with control languages from L and
arbitrary context-free core grammars (λ-free context-free core grammars, respectively).
It is known that T Cλ(REG) = RE and T C(REG) = CS [4].

For n ≥ 1, let REGn be the family of languages that are accepted by deterministic
finite automata with at most n states. Dassow and Truthe studied the families T C(REGn)
and obtained the following results, where E0L and ET0L denote the families generated by
E0L and ET0L systems.

Theorem 2 [3].

1. T C(REG1)⊆ T C(REG2)⊆ T C(REG3)⊆ ·· · ⊆ T C(REG) = CS.

2. E0L = T C(REG1)⊂ T C(REG2).

3. ET0L⊂ T C(REG4).

The principal proof technique for our result will be the simulation of queue automata
by tree controlled grammars. Intuitively, a queue automaton consists of a finite control
with a queue as storage. In a step of the automaton, the first symbol of the queue is
removed and a sequence of symbols is appended to the end of the queue.

Definition 3. A queue automaton is a tupleA= (Z,Σ,Γ, δ,z0,F), where Z is the finite set
of states, Σ is the input alphabet, Γ is the tape alphabet with Σ⊆ Γ, δ ⊂ Z×Γ×Z×Γ+

is the finite transition relation, z0 ∈ Z is the initial state, F ⊆ Z is the set of accepting
states.

The automatonA is called a linearly bounded queue automaton if δ ⊆ Z×Γ×Z×Γ.
A configuration of A is given by a pair (z,w), where z ∈ Z, w ∈ Γ+. The successor

relation ` on the set of configurations is defined as (z,aw) ` (z′,wx) iff (z,a,z′,x) ∈ δ.
The language accepted by A, L(A), is defined as

L(A) = {w ∈ Σ
+ : (z0,w) `∗ (zf ,y), for some zf ∈ F,y ∈ Γ

∗}.

On the Complexity of the Control Language in Tree Controlled Grammars 31

It is well-known that the language family accepted by queue automata is equal to the
family of recursively enumerable languages. The proof is usually performed by construct-
ing an equivalent queue automaton from a given Turing machine, and vice versa. These
constructions preserve linear boundedness. Hence, the language family accepted by lin-
early bounded queue automata equals the family of context-sensitive languages. More-
over, the following technical result on queue automata can be easily shown analogously
to similar results for Turing machines (we leave the proof to the reader).

Lemma 4. Any recursively enumerable (context-sensitive) language can be accepted by
a (linearly bounded) queue automaton A= (Z,Σ,Γ, δ,z0,{q}), such that

• all reachable accepting configurations of A have the form (zf ,2n),n ≥ 1, for a
special symbol 2 ∈ Γ\Σ (called the blank symbol);

• δ∩{q}×Γ×Z×Γ+ = ∅ (the accepting state q has no successor);

• δ∩Z×Γ×{z0}×Γ+ = ∅ (the initial state z0 has no predecessor).

3. The Result

The idea of the construction is to rewind the accepting computation of a linearly bounded
queue automaton by means of a tree controlled grammar. We will first give a simple
construction where the size of the deterministic finite automaton for the control language
depends on the size of the tape alphabet of the queue automaton. Later, this construction
will be refined to limit the number of states by 5.

For a Cartesian productX1×X2×·· ·×Xn, let pri :X1×X2×·· ·×Xn→Xi denote
the projection on the i-th component, i. e., the mapping

pri : X1×X2×Xn→Xi

with

pri(x1,x2, . . . ,xn) = xi.

Lemma 5. For any linearly bounded queue automatonA, there is a tree controlled gram-
mar G such that L(G) = L(A).

Proof. Let A = (Z,Σ,Γ, δ,z0,{q}) be in the normal form as in Lemma 4 with the blank
symbol 2.

32 Ralf Stiebe

The tree controlled grammar G is obtained as G= (N,Σ,P,S,R), where

N = N1∪N2,

N1 = Γ×Γ,

N2 = Γ×Γ×Z,
P = {p1}∪P2∪P3∪P4,

p1 = (2,2, q)→ (2,2, q)(2,2),
P2 = {(a,x)→ (y,a) : a,x,y ∈ Γ},
P3 = {(b,x,z′)→ (y,a,z) : x,y ∈ Γ,(z,a,z′, b) ∈ δ},
P4 = {(a,b)→ b,(a,b,z0)→ b : a,b ∈ Σ},

S = (2,2, q),
R = {A1A2 · · ·An : n≥ 1,A1 ∈N2,Ai ∈N1 for 2≤ i≤ n,

pr1(A1) = pr2(An),pr1(Ai) = pr2(Ai−1) for 2≤ i≤ n}.

A word in R can be seen as the encoding of a configuration of A. More specifically, a
configuration (z,a1a2a3 · · ·an−1an) is encoded by

(an,a1, z)(a1,a2)(a2,a3) . . .(an−1,an) ∈R.

We now consider the tree of a successful derivation in G in detail. As noted above, all
level words (except the last one) are encodings of configurations of A. On the root level
we find the word (2,2, q), i. e., the encoding of the accepting configuration of length 1.
Now suppose that some level contains a word (2,2, q)(2,2)j−1, encoding the accepting
configuration of length j. If the first symbol is replaced using rule p1, the next level must
have the form (2,2, q)(2,2)(x1,2) · · ·(xj−1,2), as the remaining symbols are replaced
using rules from P2. The control language requires that xi = 2, 1≤ i≤ j−1, and thus the
next level word is (2,2, q)(2,2)j , encoding the accepting configuration of length j+1.

Next, consider a level encoding a non-initial configuration (z′,a1a2 · · ·an) where
z′ 6= z0, i. e., with the word (an,a1, z

′)(a1,a2)(a2,a3) · · ·(an−1,an). The first symbol has
to be rewritten using a rule from P3, the remaining symbols are rewritten using P2, giving
a word of the form (xn,a0, z)(x1,a1)(x2,a2) · · ·(xn−1,an−1), where (z,a0, z

′,an) ∈ δ. In
view of the control languageR, xi = ai−1 has to hold, for 1≤ i≤ n. Hence, the next level
word describes a configuration (z,a0a1a2 · · ·an−1) with (z,a0, z

′,an) ∈ δ, i. e., a prede-
cessor configuration. On the other hand, for any predecessor configuration, the encoding
word can be obtained at the next level by choosing for the replacement of the first symbol
that rule from P3 which corresponds to the appropriate transition and for the replacement
of the other symbols the appropriate rules from P2.

Finally, consider a level encoding a configuration (z0,a1a2 · · ·an), i. e., with the word
(an,a1, z0)(a1,a2)(a2,a3) · · ·(an−1,an). The only possibility to rewrite the first symbol
is to use the rule (an,a1, z0)→ a1 if an,a1 ∈ Σ. Hence the next level of the derivation
tree is the final. The remaining symbols have to be rewritten using rules of P4, implying

On the Complexity of the Control Language in Tree Controlled Grammars 33

that a1,a2, . . . ,an ∈ Σ and giving the word a1a2 · · ·an as the next level and as the yield of
the derivation.

Consequently, a terminal word is generated by G iff it is accepted by A. 2

A deterministic finite automaton accepting the control language R in the above proof
requires |Γ|2 + 2 states, as it must store the second component of the current symbol for
comparison with the next symbol and the first component of the first symbol for compar-
ison with the last symbol; moreover two separate initial and failure states are needed. To
construct a tree controlled grammar with a control language with a fixed number of states,
we modify the grammar as follows. The symbols of the queue automaton are encoded by
a bit vector of length k = dlog2 |Γ|e. A reverse computation step of A is simulated in k
derivation levels of the tree controlled grammar. In each sub-step, one bit is passed from
a symbol to its right neighbour. The details of the construction will be given in the proof
of the following theorem.

Theorem 6. T C(REG5) = CS.

Proof. LetA= (Z,Σ,Γ, δ,z0,{q}) be a linearly bounded queue automaton as in the proof
of Lemma 5 with the blank symbol 2 ∈ Γ. Let k = dlog2 |Γ|e and let ϕ : Γ→ {0,1}k be
an encoding of Γ with ϕ(2) = (0,0, . . . ,0).

The tree controlled grammar G is obtained as G= (N,Σ,P,S,R), where

N = N1∪N2,

N1 = {0,1}k+1,

N2 = {0,1}k+1×Z×{1,2 . . . ,k},
P = {p1}∪P2∪P3∪P4∪P5,

p1 = (0k+1, q,1)→ (0k+1, q,1)0k+1,

P2 = {(a1, . . . ,ak,ak+1)→ (y,a1, . . . ,ak) : a1, . . . ,ak+1,y ∈ {0,1}},
P3 = {(a1, . . . ,ak,ak+1, z, i)→ (y,a1, . . . ,ak, z, i+1) :

a1, . . . ,ak+1,y ∈ {0,1}, z ∈ Z,1≤ i < k},
P4 = {(ϕ(b),x,z′,k)→ (y,ϕ(a), z,1) : x,y ∈ {0,1},(z,a,z′, b) ∈ δ},
P5 = {(y,ϕ(b))→ b,(y,ϕ(b), z0,1)→ b : b ∈ Σ,y ∈ {0,1}},

S = (0k+1, q,1),
R = {A1A2 · · ·An : n≥ 1,A1 ∈N2,Ai ∈N1 for 2≤ i≤ n,

pr1(A1) = prk+1(An),pr1(Ai) = prk+1(Ai−1) for 2≤ i≤ n}.

We set N2,i = {0,1}k+1×Z ×{i}, for 1 ≤ i ≤ k. A word from R encodes a con-
figuration of the queue automaton as follows. A configuration (z,a1a2a3 · · ·an−1an) is
encoded by

(prk(ϕ(an)),ϕ(a1), z,1)(prk(ϕ(a1)),ϕ(a2))(prk(ϕ(a2)),ϕ(a3)) . . .(prk(ϕ(an−1)),ϕ(an)).

34 Ralf Stiebe

Similar to the proof of Lemma 5, we will now discuss the successful derivation trees
in G. On the root level, we find the word S = (0k+1, q,1), which encodes the accepting
configuration of length 1. If the word of some level encodes the accepting configuration
of length j and rule p1 is applied to the first symbol, then the next level encodes the
accepting configuration of length j+1.

Now consider a level word α1 = A1A2 · · ·An encoding a configuration. The symbols
have the forms

A1 = (an,k,a1,1,a1,2 . . . ,a1,k, z
′,1),

Ai = (ai−1,k,ai,1,ai,2, . . . ,ai,k), for 2≤ i≤ n.

As α1 encodes a configuration of the queue automaton, (ai,1,ai,2, . . . ,ai,k) = ϕ(xi) has
to hold for appropriate xi ∈ Γ, 1 ≤ i ≤ n. The symbol A1 has to be rewritten using a
rule from P3 (with the exception of z′ = z0, discussed below), which implies that the
remaining symbols are replaced using rules of P2. In view of R, the next level has to be
labelled α2 = A2

1A
2
2 · · ·A2

n with

A2
1 = (an,k−1,an,k,a1,1,a1,2 . . . ,a1,k−1, z

′,2),

A2
i = (ai−1,k−1,ai−1,k,ai,1,ai,2, . . . ,ai,k−1), for 2≤ i≤ n.

By analogous arguments for words in N2,jN
∗
1 , 2≤ j < k, we obtain after k−1 levels the

word αk = Ak1A
k
2 · · ·Akn ∈R with

Ak1 = (an,1,an,2, . . . ,an,k,a1,1, z
′,k),

Aki = (ai−1,1,ai−1,2, . . . ,ai−1,k,ai,1), for 2≤ i≤ n.

On the next level, Ak1 is replaced using a rule from P4 and the remaining symbols using a
rule from P2. One obtains a word αk+1 = Ak+1

1 Ak+1
2 · · ·Ak+1

n ∈R with

Ak+1
1 = (an−1,k, b1,1, . . . , b1,k, z,1),

Ak+1
2 = (b1,k,a1,1, . . . ,a1,k),

Ak+1
i = (ai−2,k,ai−1,1,ai−1,2, . . . ,ai−1,k) = Ai−1, for 3≤ i≤ n,

where (b1,1, . . . , b1,k) = ϕ(x0), (z,x0, z
′,xn) ∈ δ. Hence, the configuration encoded by

αk+1 is a predecessor of that encoded by α1. On the other hand, the encoding of any
predecessor configuration can be reached by choosing the appropriate rules.

Finally, if and only if a level word describes an initial configuration of A, the input
word can be reached as terminal word on the next level by using the rules of P5.

The control language R can be accepted by a deterministic finite automaton with
six states. However, note that the rules of G imply that any derivable sentential form
over N is a word from N2N

∗
1 . Instead of R, we can use any regular language R′ such

On the Complexity of the Control Language in Tree Controlled Grammars 35

that R′∩N2N
∗
1 =R. Such a language is the one accepted by the deterministic finite

automaton

M= ({z00, z01, z10, z11, fail},N ∪Σ,f,z00,{z00, z11})

with the transition function f defined as

f(zab,(b,a1, . . . ,ak)) = zaak
, for a,b,a1, . . . ,ak ∈ {0,1};

f(zab,(a0,a1, . . . ,ak, z, i)) = za0ak
, for a,b,a0,a1, . . . ,ak ∈ {0,1}, z ∈ Z,i ∈ {1, . . . ,k};

f(z,A) = fail, in all other cases.

Obviously,M accepts only words over N . When receiving an input from N2N
∗
1 ,M

works as follows. A state of the form zab is meant to store two bits: the first bit of the
symbol from N2 is a, while the last bit of the currently read symbol is b. If the first bit of
the next symbol is unequal to the stored one, the input is rejected. Finally,M accepts iff
it reaches a state zaa, thus if additionally the last bit of the last symbol is equal to the first
of the first one. 2

Corollary 7. T Cλ(REG5) = RE.

Proof. Note that any recursively enumerable language L′ can be expressed as h(L) for
appropriate homomorphism h and context-sensitive language L. In the construction of
the tree controlled grammar for L as in the proof of Theorem 6, one has just to change
the rules in P5 by replacing on the right-hand sides the letters from Σ by their images
under h. 2

References

[1] J. DASSOW, GH. PĂUN, and A. SALOMAA, Grammars with controlled derivations.
In: G. ROZENBERG and A. SALOMAA (eds.), Handbook of Formal Languages, Vol-
ume II, Springer-Verlag, Berlin, 1997, 101–154.

[2] J. DASSOW and GH. PĂUN, Regulated Rewriting in Formal Language Theory,
EATCS Monographs in Theoretical Computer Science 18, Springer-Verlag, Berlin,
1989.

[3] J. DASSOW and B. TRUTHE, On Two Hierarchies of Subregularly Tree Controlled
Languages. In: C. CÂMPEANU and G. PIGHIZZINI (eds.), 10th International Work-
shop on Descriptional Complexity of Formal Systems, DCFS 2008, Charlottetown,
Prince Edward Island, Canada, July 16–18, 2008, Proceedings. University of Prince
Edward Island, 2008, 145–156.

36 Ralf Stiebe

[4] GH. PĂUN, On the generative capacity of conditional grammars. Information and
Control 43 (1979), 178–186.

[5] K. ČULIK and H. A. MAURER, Tree controlled grammars. Computing 19 (1977),
129–139.

