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Abstract: We investigate some operations where essentially, from a given word w,
the word ww′ is constructed where w′ is a modified copy of w or a modified mirror
image of w. We study whether ww′ is a primitive word provided that w is primitive.
For instance, we determine all cases with an edit distance of w and w′ at most 2 such
that the primitivity of w implies the primitivity of ww′. The operations are chosen in
such a way that in the case of a two-letter alphabet, all primitive words of length at
most 11 can be obtained from single letters.
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1. Introduction

A word w over an alphabet V is said to be a primitive word if and only if there is no
word u ∈ Σ+ with w = un for some natural number n > 1. The set of all primitive words
over V is denoted by QV . There are a lot of papers on relations of QV to other language
families as the families of the Chomsky hierarchy (e. g. in [4] and [16], it has been shown
that QV is not a deterministic as well as not an unambiguous context-free language, in
[8] relations to regular languages are given), Marcus contextual grammars (see [6]), to
(poly-)slender languages (see [5]) and some languages and language families related to
codes (see e. g. [17]). Moreover, there are papers on combinatorial properties of primitive
words and of the sets QV ; we refer to [2], [1], [9].

However, there is only a small number of results concerning the closure of QV un-
der operations. There are some papers where it was investigated whether the application
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of homomorphisms to primitive words leads to primitive words in all cases or leads to
primitive words with a finite number of exceptions or to non-primitive words in all cases;
we refer to [12], [13], [14], [10]. Substitutions form another operation which was inves-
tigated with respect to preservation of primitivity. There were substitutions of very short
subwords in the focus, especially point mutations (deletions, insertions and substitutions
of one letter) were studied. We refer to [15] for details. A further study in this direction
concerns insertions (see [11]).

Obviously, there is a large variety of operations from which one can expect that QV

is closed under them (since the portion of primitive words is very high). In this paper
we consider some operations where essentially, from a given word w, the word ww′ is
constructed where w′ is a modified copy of w or a modified mirror image of w. The
modifications are of such a form that the edit distance of w and w′ is very small or very
large (i. e., it is very near to the length of w).

We have two reasons for this investigation. The first one is of combinatorial nature.
Obviously, ww is not primitive for all w. We are interested in conditions for changes
of the second copy w to w′ such that ww′ is primitive for all w. Especially, how many
changes or deletions or insertions of letters are necessary and how many such operations
are possible. For example, we shall determine all possible transformation where the edit
distance of w and w′ is at most two and primitivity is preserved.

The second reason comes from the theory of dynamical systems. In the paper [7] a
dynamical system based on regular languages has been proposed. The regular languages
are essentially described by primitive words. Since in dynamical systems one needs muta-
tions in order to develop the system, one is interested in devices which describe primitive
words and allow mutations. Here the use of operations which preserve primitivity is of
interest. Then a primitive word can be given as a sequence of operations; and a mutation
is the replacement of one operation by another one or a deletion or insertion of an op-
eration in the sequence. This ensures primitivity of the word obtained from the mutated
sequence of operations. Obviously, it is not necessary to generate all primitive words,
however, the set of generated primitive words should contain a good approximation of
any primitive word where the quality of approximations is determined by the dynamic
system (especially its fitness function). We have chosen the operations under which QV

is closed in such a way that, if the underlying alphabet V consists of two letters, then by
the operations we can generate all primitive words of length ≤ 11 (as can be shown by
computer calculations) and a sufficient large amount of primitive words of the length up
to twenty.

Thus this paper can also be considered as a continuation of the investigations of de-
vices generating only primitive words (see e. g. [3]).

The paper is organized as follows. In Section 2, we present and recall some notations
and some results on primitive words which are used in the sequel. In Section 3, we
introduce some operations where we first construct ww and perform then some small
modifications of the second copy yielding ww′. We prove that all operations where the
edit distance of w and w′ is 1 preserve primitivity. An analogous result is shown for the
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edit distance 2 if at least one change of a letter is used. In Section 4, we consider analogous
operations as in Section 2, but start from wwR and modify wR. In Section 5 we consider
ww′ where w′ is obtained from w or wR by a drastic change, i. e., the Hamming distance
of w′ and w or wR is almost the length of w. Moreover, we give some further operations
where the length is almost doubled and primitivity is preserved.

2. Some Notation and Facts

For a given alphabet V , we denote by V ∗ and V + the set of all and all non-empty words
over V , respectively. The empty word is designated by λ. Given a word w ∈ V ∗ and
x ∈ V , we denote its length by |w| and the number of occurrences of x in w by #x(w). For
a word w = x1x2 . . .xn ∈ V + with xi ∈ V for 1 ≤ i ≤ n, we define the mirror image wR

bywR = xnxn−1 . . .x1. Given two wordsw= x1x2 . . .xn ∈ V + andw′= y1y2 . . .yn ∈ V +

with xi,yi ∈ V for 1≤ i≤ n, the Hamming distance d(w,w′) is defined by

d(w,w′) = #({i | xi 6= yi})

and the edit distance ed(w,w′) of w and w′ is the minimal number of changes, deletions
and insertions of letters in order to transform w into w′.
Throughout the paper we assume that V has at least two elements.

A word w ∈ V + is said to be a primitive word if and only if there is no word u ∈ V +

such that w = un for some natural number n > 1. By QV we denote the set of all prim-
itive words over V . If V is understood from the context we omit the index V and write
simply Q.

Lemma 1. For any words v,v′ ∈ V ∗, vv′ ∈Q if and only if v′v ∈Q.

Proof. Let us prove one implication; the other one is analogous.
Let vv′ ∈ Q. Let us suppose v′v /∈ Q, that is, there exists u ∈ Q with |u| < |v′v| and
n > 1 such that v′v = un. Therefore v′ = ukp, v = qun−k−1 and u = pq for some words
p,q ∈ V ∗ and some k < n. That implies

vv′ = qun−k−1ukp= qun−1p= q(pq)n−1p= (qp)n /∈Q.

Thus we have a contradiction to our supposition which proves v′v ∈Q. 2

The following statement holds trivially.

Lemma 2. If w ∈Q, then also wR ∈Q. 2

Lemmas 1 and 2 can be interpreted as follows: If we apply a cyclic shift or the mirror
image to a primitive word, then we obtain a primitive word, again. Thus cyclic shifts and
reversal are operations which preserve primitivity.

For the following two lemmas, the reader is referred to [17] for the proof.
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Lemma 3. For two non-empty words u and v, uv = vu if and only if there is a word z
such that u= zn and v = zm for some natural numbers n and m. 2

Lemma 4. In a free monoid V ∗, the equation ambn = cp, where a,b,c ∈ V ∗ and
m,n,p≥ 2, has only trivial solutions, where a, b and c are powers of some word in V ∗. 2

Lemma 5. For any x ∈ V , y ∈ V and z ∈ V ∗, if xz = zy, then x= y.

Proof. If z = λ, then x = y immediately. If z = a1a2 . . .an with ai ∈ V for 1 ≤ i ≤ n,
then x= a1,a1 = a2,a2 = a3, . . .an−1 = an,an = y and consequently x= y. 2

In the sequel we shall use the following notation. Ifw=w1w2 . . .wr = z1z2 . . . zs for some
words w1, . . .wr, z1, . . . , zs ∈ V ∗ such that |w1w2 . . .wi|= |z1z2 . . . zj | for some i and j, we
write

w1w2 . . .wi|wi+1wi+2 . . .wr = z1z2 . . . zj |zj+1zj+2 . . . zs,

i. e., by the symbol | we mark a certain position in the word. Mostly, | will mark the
middle of a word of even length, or it will be put after the m-th letter if the word has odd
length 2m−1.

3. Operations with an Almost Duplication

Obviously, the word ww obtained from w by a duplication leads from any word w to a
non-primitive word. In order to obtain primitive words from a primitive word w one has
to perform some changes in the second occurrence of w, i. e., one has to consider words
of the form ww′ where w′ differs only slightly from w. In most cases the edit distance of
w and w′ will be at most 2, and thus ww′ can be considered as an almost duplication of w.
We start with the case where we only change some letters to obtain w′ from w.

Theorem 6.
(i) Let w be a primitive word of some length n and w′ an arbitrary word of length n

such that the Hamming distance d(w,w′) is a power of 2, then ww′ is primitive,
too.

(ii) If d is not a power of 2, then there are a primitive word w and a word w′ with
d(w,w′) = d such that ww′ is not a primitive word.

Proof. (i) Obviously, |ww′| is even. Let us suppose ww′ /∈ Q, that is, there exists p ∈ N
and v ∈ V + of length at least 2 such that ww′ = vp.
If p= 2, then ww′ = v2. Since |w|= |w′|, we get w=w′ = v and thus d(w,w′) = 0 which
contradicts the assumption on the Hamming distance of w and w′.
If p is even, and p > 2, we have p

2 ≥ 2 and v
p
2 = w /∈Q, which is a contradiction.
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If p is odd, i. e., p= 2m+1 for somem≥ 1, then |v| is even (since otherwise |vn|p= |ww′|
would be odd). Thus there are words v′ and v′′ of length |v|2 such that v = v′v′′. Then
we get w = vmv′ = (v′v′′)mv′ and w′ = v′′vm = v′′(v′v′′)m. The Hamming distance is
d(w,w′) = (2m+ 1)d(v′,v′′). Since 2m+ 1 is an odd number, d(w,w′) is not a power
of 2 in contrast to our supposition.

(ii) Let d be not a power of 2. Then there is an odd number q > 1 and a number p such
that d= qp. Let q = 2m+1 for some m≥ 1. We now set

v′ = 10p, v′′ = 11p, w = (v′v′′)mv′, and w′ = (v′′v′)mv′′.

Obviously, the word w is primitive, d(w,w′) = (2m+1)d(v′,v′′) = (2m+1)p= qp= d
and ww′ = (v′v′′)2m+1 /∈Q. 2

By part (ii) of the preceding theorem, if w is a primitive word and d(w,w′) is not a power
of 2, in general,ww′ is not a primitive word. However, if we require that the changes occur
in special positions it is possible to obtain preservation of primitivity. As an example we
give the following operation.

Definition 7. For any odd natural numbers n ≥ 3, any alphabet V , and any mapping
h : V → V with h(a) 6= a for all a ∈ V , we define the operation On,h : V n→ V 2n by

On,h(x1x2 . . .xn) = x1x2 . . .xnh(x1)x2 . . .xi−1h(xi)xi+1 . . .xn−1h(xn)

where i= n+1
2 .

Theorem 8. For any odd natural number n ≥ 5, any primitive word q of length n, and
any mapping h : V → V with h(a) 6= a for all a ∈ V , On,h(q) is a primitive word.

Proof. Let w = x1x2 . . .xn with xj ∈ V for 1≤ j ≤ n and i= n+1
2 . Then

On,h(x1x2 . . .xn) = x1x2 . . .xnh(x1)x2x3 . . .xi−1h(xi)xi+1xi+2 . . .xn−1h(xn)

has an even length.
Let us suppose that On,h(w) /∈ Q, that is, there exist a p ≥ 2 and v ∈ Q such that

On,h = vp.
If p is even and p > 2, then v

p
2 = w and p

2 ≥ 2, which contradicts w ∈ Q. If p = 2, then
x1x2 . . .xnh(x1)x2 . . .xn−1h(xn) = v2, that is,

v = x1x2 . . .xn−1xn = h(x1)x2x3 . . .xi−1h(xi)xi+1xi+2 . . .xn−1h(xn).

Thus xi = h(xi), which is a contradiction.
Thus p is odd, say p = 2m+ 1 for some m ≥ 1. As above there are words v, v1 and v2
such that v = v1v2 and |v1|= |v2| and

x1 . . .xn−1xn|h(x1)x2 . . .xi−1h(xi)xi+1 . . .xn−1h(xn) = (v1v2)mv1|v2(v1v2)m.
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Since v1 starts with x1 (first occurrence) and ends with xn (last occurrence in the first
part), v1 = x1v

′
1xn and analogously, v2 = h(x1)v′2h(xn). Therefore we have that On,h(w)

has the form

(x1v
′
1xnh(x1)v′2h(xn))mx1v

′
1xn|h(x1)v′2h(xn)(x1v

′
1xnh(x1)v′2h(xn))m.

Since the letters xi and xn do not occur in the first occurrence of v, by the definition of
On,h, the last letter of the first occurrence of v1 (in the first part of the word) and last letter
of the the first occurrence of v2 in the second part coincide, i. e., xn = h(xn) which is a
contradiction. 2

We now discuss some operations where the edit distance of w to w′ is at most 2 and at
least one deletion or one insertion is performed to obtain w′; more precisely, we consider

(a) the deletion of an arbitrary letter,
(b) the deletion of an arbitrary letter and the change of an arbitrary remaining letter,
(c) the insertion of an arbitrary letter,
(d) the insertion of an arbitrary letter and the change of an arbitrary letter of w.

We now give the formal definition of these operations.

Definition 9. For any natural numbers n,i, j, i′ with 1≤ i≤ n, 0≤ i′ ≤ n, 1≤ j ≤ n and
i 6= j, letters x,y,z ∈ V with x 6= y, and a word w = x1x2 . . .xn, xi ∈ V , of length n, we
define the following operations

Dn,i, Dn,i,j,x,y : V n→ V 2n−1 and In,i′,z, In,i′,z,j,x,y : V n→ V 2n+1

by

Dn,i(x1x2 . . .xn) = x1x2 . . .xnx1x2 . . .xi−1xi+1xi+2 . . .xn,

Dn,i,j,x,y(x1 . . .xn) =


x1 . . .xnx1 . . .xi−1xi+1 . . .xj−1yxj+1 . . .xn, xj = x,i < j,

x1 . . .xnx1 . . .xj−1yxj+1 . . .xi−1xi+1 . . .xn, xj = x,i > j,

undefined, otherwise,

In,i′,z(x1x2 . . .xn) = x1x2 . . .xnx1x2 . . .xi′zxi+1xi+2 . . .xn,

In,i′,z,j,x,y(x1 . . .xn) =


x1 . . .xnx1 . . .xi′zxi′+1 . . .xj−1yxj+1 . . .xn, xj = x,i′ < j,

x1 . . .xnx1 . . .xj−1yxj+1 . . .xi′zxi′+1 . . .xn, xj = x,i′ > j,

undefined, otherwise.

Theorem 10. If n≥ 2, 1≤ i≤ n, and q is a primitive word of length n, then Dn,i(q) ∈Q
also holds.

Proof. Let us assume i= 1. Let q = xw ∈Q, where x ∈ V and w ∈ V +.
Then Dn,i(q) = xww. Obviously, |xww| is odd.
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Let us suppose xww /∈Q, that is, there exists an odd number p ∈ N, i. e., p= 2m−1
for some m ≥ 2, and v ∈ V + such that xww = vp (without loss of generality, we can
assume that v ∈Q).

As in the preceding proof, there are words v′ ∈ V ∗ and v′′ ∈ V + such that v = xv′v′′

xw|w = (xv′v′′)m−1xv′|v′′(xv′v′′)m−1.

Then w = (v′v′′x)m−1v′ = (v′′xv′)m−1v′′. Since |(v′v′′x)m−1|= |(v′′xv′)m−1|, we have
v′ = v′′ = z.
Moreover, xw|w = (xzz)m−1xz|z(xzz)m−1. Thus w = (zzx)m−1z = (zxz)m−1z which
first implies (zxz)m−1 = (xzz)m−1, then zxz = xzz and finally xz = zx. By Lemma 3,
z is a power of x. Therefore q = xw = (xzz)m−1xz is a power of x which contradicts
q ∈Q. This contradiction proves xww ∈Q.

Let us consider i ≥ 2. Let q = wxw′ ∈ Q with |w| = i− 1. By Lemma 1, we have
xw′w ∈ Q. Hence, by the first part of this proof Dn,1(xw′w) = xw′ww′w ∈ Q, which
implies Dn,i(q) = wxw′ww′ ∈Q by Lemma 1. 2

Theorem 11. If w ∈ V + such that Dn,i,j,x,y(w) is defined, then Dn,i,j,x,y(w) ∈Q holds.

Proof. We first discuss Dn,n,j,x,y. Let w = x1x2 . . .xn. Then

Dn,n,j,x,y(w) = x1x2 . . .xj−1xxj+1xj+2 . . .xnx1x2 . . .xj−1yxj+1xj+2 . . .xn−1.

Let us assume that Dn,n,j,x,y(w) /∈Q. Then there is a word v ∈ V + such that

Dn,n,j,x,y(w) = vp

for some p≥ 2. SinceDn,n,j,x,y(w) has odd length, p and the length of v are odd numbers.
Let p = 2m+ 1 for some m ≥ 1. Thus there are words v1 ∈ V + and v2 ∈ V + such that
v = x1v1v2, k−1 = |v1|= |v2| and

x1x2 . . .xj−1xxj+1xj+2 . . .xn|x1x2 . . .xj−1yxj+1xj+2 . . .xn−1 = vmx1v1|v2v
m.

Then |v|= 2k−1. We set s= 2k−1. We distinguish some cases.

Case 1. Let 1≤ j ≤ k−1. Then by definition of Dn,n,j,x,y,

x1v1 = x1x2 . . .xj−1xxj+1 . . .xk−1xk = z1xz2xk

and

v2 = x1x2 . . .xj−1yxj+1 . . .xk−1 = z1yz2.

Thus, we get,

v = z1xz2xkz1yz2.
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If m≥ 2, the first part of the word is

z1xz2xkz1yz2z1xz2xkz1yz2v
m−2z1xz2xk (1)

and that of the second part is

z1yz2z1xz2xkz1yz2z1xz2xkz1yz2v
m−2 (2)

and these two words differ in the (|z1xz2xkz1yz2z1|+ 1)-st letter, which contradicts the
definition of Dn,n,j,x,y. If m= 1, we get a contradiction by the same arguments.

Case 2. Let j = k. Then the k-th letter in the second part is y. On the other hand, it is x1
since there starts the word v. Thus x1 = y. This gives

x1v1 = x1x2 . . .xk−1xk = yzx, v2 = x1x2 . . .xk−1 = yz and v = yzxyz

with z = x2x3 . . .xk−1. Then the first and second part are

yzxyzyzxyzvm−2yzx and yzyzxyzyzxyzvm−2,

respectively. We obtain zx = yz by looking on the words starting in the position |z|+ 3.
Thus by Lemma 5, x= y in contrast to the definition of Dn,n,j,x,y.

Case 3. Let k+1≤ j≤ 2k−1. Then v= x1v1v
′
2xv
′′
2 . Moreover, |v′2|= j−k−1. Further-

more, y stands in the j-th position of v′2xv
′′
2x1v1, i. e., x1v1 = x1v

′
1yv
′′
1 with

|v′1| = j − k− 1. Therefore v = x1v
′
1yv
′′
1v
′
2xv
′′
1 and |v′1| = |v′2| and |v′′1 | = |v′′2 |. Then

we get for the second part

x1v
′
1yv
′′
1v
′
2yv
′′
2x1v

′
1yv
′′
1v
′
2xv
′′
2x2s−1x2s . . .xn

by the definition of Dn,n,j,x,y and from the form

v′2xv
′′
2x1v

′
1yv
′′
1v
′
2xv
′′
2v

m−1

given by our assumption. Considering the words starting in the position (|x1v
′
1yv
′′
1 |+ 1)

and in the position (|x1v
′
1yv
′′
1v
′
2y|+1), we see that v′1 = v′2 = z and v′′1 = v′′2 = z′. Looking

on the subwords starting in the first position and in the position |v′1|+2, we get x1z = zx
and yz′ = xx1. By Lemma 5, x1 = x and y = x1, which contradicts x 6= y.

Case 4. Let j = hs+ q for some h ≥ 1 and 1 ≤ q ≤ k−1. Then xj = x is the q-th letter
of v. Thus v = v′1xv

′′
1v2 with |v′1|= q−1.

We now compute the position of y in v. Since the second part starts with v2 of length k−1
and hs+q = k−1+(h−1)s+s+q− (k−1) = k1 +(h−1)s+k+q, y is the (k+q)-th
letter of v. Therefore v = v′1xv

′′
1v
′
2yv
′′
2 with |v′1| = |v′2|. Moreover, |v′′1 | = |v′′2 |+ 1. Now

we get easily the same situation as in Case 1; thus we get (1) and (2) and a difference in
the (|z1|+1)-st position.
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Case 5. Let j = hs+ k for some h ≥ 1. Then x is the k-th letter of v. We compute the
position of y in v. Since the second part starts with v2 of length k−1 and

hs+k = k−1+hs+k− (k−1),

y is the first letter of v. Therefore we get v = yzxyz as in Case 2, which leads to a
contradiction.

Case 6. Let j = hs+ q for some h ≥ 1 and k+ 1 ≤ q ≤ 2k− 1. Then xj = x is the q-th
letter of v. Thus v= x1v1v

′
2xv
′′
2 with |x1v1v

′
2|= q−1≥ k. Furthermore, |v′′2 |= 2k−1−q.

We now compute the position of y in v. Since the second part starts with v2 of length k−1
and hs+ q = k−1+hs+ q− (k−1), y is the (q−k+1)-st letter of v. Therefore

v = x1v
′
1yv
′′
1v
′
2xv
′′
2 with |x1v

′
1|= q−k.

Therefore |v′′1 | = k− (q− k+ 1) = 2k− 1− q. Hence |v′′1 | = |v′′2 | and consequently also
|v′1| = |v′2|. Therefore we have exactly the situation of Case 3, which leads to contradic-
tion.

Let us now consider i= 1, i. e., the operation Dn,1,j,x,y. By the first part of this proof

Dn,n,n−j+1,x,y(wR) = xnxn−1 . . .x1xnxn−1 . . .xj+1yxj−1xj−2 . . .x2 ∈Q,

by Lemma 2,

x2x3 . . .xj−1yxj+1xj+2 . . .xnx1x2 . . .xn ∈Q,

and by Lemma 1

x1x2 . . .xnx2x3 . . .xj−1yxj+1xj+2 . . .xn =Dn,1,j,x,y(w) ∈Q.

We now consider the case j < i. We set

w = xi+1xi+2 . . .xnx1x2 . . .xi.

Moreover, let xj = x. By the first part of this proof we get

Dn,n,n−i+j,x,y(w) = xi+1 . . .xnx1 . . .xixi+1 . . .xnx1 . . .xj−1yxj+1 . . .xi−1 ∈Q.

Hence, by Lemma 1

x1 . . .xixi+1 . . .xnx1 . . .xj−1yxj+1 . . .xi−1xi+1 . . .xn =Dn,i,j,x,y(w) ∈Q.

If i < j we can prove that Dn,i,j,x,y(w) ∈Q analogously to the case j < i using Dn,1,j,x,y

instead of Dn,n,j,x,y. 2

Theorem 12. If q is a primitive word of length n, 0≤ i≤ n and z ∈ V , then In,i,z(q)∈Q.
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Proof. Let w be a primitive word of length n and a ∈ V . Then In,n,a(w) = wwa. Let us
assume that In,n,a(w) /∈Q. By Lemma 1, aww /∈Q. Now we conclude as in the proof of
Theorem 10 (Case i= 1) that w= (zza)m−1az and z is a power of a, which yields that w
is a power of a in contrast to the primitivity of w.
In order to prove the closure of In,i,z for 1≤ i≤ n−1 we use Lemma 1, again. 2

Theorem 13. If q ∈Q and In,i,z,j,x,y(q) is defined, then In,i,z,j,x,y(q) ∈Q.

Proof. Let w = x1x2 . . .xj−1xxj+1xj+2 . . .xn. Then

In,n,a,j,x,y = x1x2 . . .xnx1x2 . . .xj−1yxj+1xj+2 . . .xna.

If we assume that In,n,a,j,x,y is not in Q, then

x1 . . .xj−1yxj+1 . . .xnax1 . . .xn =Dn+1,n+1,j,y,x(x1 . . .xj−1yxj+1 . . .xna) /∈Q,

which is a contradiction to Theorem 11. The general case can be obtained using Lemmas 1
and 2. 2

Let a word ww′ be given with ed(w,w′) = 1. Then w′ is obtained by a change (i. e.,
d(w,w′) = 1 = 20), either by a deletion or by an insertion. By the Theorems 6, 10 and 12,
ww′ is inQ provided that w ∈Q. If ed(w,w′) = 2 we have again ww′ ∈Q if two changes,
or a deletion and a change, or a change and an insertion are performed (by Theorems 6,
11 and 13). In the remaining cases, in general, primitivity is not preserved. Performing
two deletions we can get a non-primitive word, as can be seen from w = 110p1 which
results in 110p1110p1 and gives 110p110p = (110p)2 /∈Q if we delete the first and last
letters of the second copy (note that the statement holds for any length n ≥ 4 since it
holds for any p ≥ 1). The same holds for two insertions; e. g. the duplication 10p10p of
w= 10p ∈Q yields 10p110p1 = (10p1)2 by inserting a 1 before and after the second copy
of 10p. Furthermore, if we cancel the first letter and insert a 1 before the last 0 in the
duplication 110110 of 110 ∈Q, we get 110110 = (110)2 /∈Q, again.
Therefore we have a complete picture for the case that the edit distance is at most 2.

4. Concatenation of an Almost Mirror Image

In this section, again, we consider words of the form ww′. However, instead of an almost
copy w′ of w we choose w′ in such a way that the Hamming/edit distance of w′ and the
mirror image wR is small.

We start with the remark that, in general, for a primitive word w, the word wwR is not
a primitive word. For example, if we concatenate 100110 and its mirror image, we obtain
100110011001 = (1001)3 /∈Q. Moreover, if we delete one letter in wR, the obtained
operation is not primitivity preserving as can be seen from the following counterexample.
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Let w = 01001. Since wR = 10010, wwR = 0100110010. If we delete the first letter of
wR, then we obtain 010010010 = (010)3 /∈Q.

We define formally three operations which are analogous to some with a small Ham-
ming distance d(w,w′) considered in the preceding section.

Definition 14. For any natural numbers n,i, j with 1 ≤ i ≤ n and 2 ≤ j ≤ n, all letters
x,y ∈ V with x 6= y, and a word w = x1x2 . . .xn, xi ∈ V , of length n, we define the
following operations

Mn,i,x,y : V n→ V 2n, and M ′n,j,x,y : V n→ V 2n−1

by

Mn,i,x,y(x1x2 . . .xn) =

{
x1x2 . . .xnxnxn−1 . . .xi+1yxi−1xj−2 . . .x1, xi = x,

undefined, otherwise,

M ′n,j,x,y(x1x2 . . .xn) =

{
x1x2 . . .xnxnxn−1 . . .xj+1yxj−1xj−2 . . .x2, xj = x,

undefined, otherwise.

For all odd natural numbers n, all mappings h : V → V with h(a) 6= a for all a ∈ V , and
all words w = x1x2 . . .xn, xi ∈ V , of length n, we define the operation O′n,h : V n→ V 2n

by

O′n,h(x1x2 . . .xn) = x1x2 . . .xnh(xn)xn−1 . . .xi+1h(xi)xi−1xi−2 . . .x2h(x1)

where i= n+1
2 .

Theorem 15. If w ∈Q such that Mn,i,x,y(w) is defined, then Mn,i,x,y(w) ∈Q also holds.

Proof. Let w = x1x2 . . .xn. Then

w′ =Mn,i,x,y(w) = x1x2 . . .xi−1xxi+1xi+2xnxnxn−1 . . .xi+1yxi−1xi−2 . . .x1.

Let u1 = x1 . . .xi−1 and u2 = xi+1 . . .xn. Then

w = u1xu2 and w′ = u1xu2u
R
2 yu

R
1 .

Let us assume that w′ /∈Q. Then w′ = vp for some p≥ 2 and some word v ∈ V +.
If p is even and p > 2, then v

p
2 =w and p

2 ≥ 2, which contradicts w ∈Q. If p= 2, then

v = u1xu2 = uR
2 yu

R
1 . (3)

We now count the number of occurrences of x and get

#x(u1xu2) = #x(u1)+1+#x(u2)
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and

#x(uR
2 yu

R
1 ) = #x(uR

2 )+#x(uR
1 ) = #x(u2)+#x(u1).

Thus

#x(u1xu2) 6= #x(uR
2 yu

R
1 )

which contradicts (3).

If p is odd, say p= 2m+1 for some m≥ 1, then w′ = vmv1v2v
m where v = v1v2 and

|v1| = |v2|. If i > |v|, then by the construction of w′ we get w′ = vzvR with
z = vm−1v1v2v

m−1 and by our assumption (w′ = v2m+1) we have w′ = vzv. Therefore
v = vR.

Now let i≤ |v|. Then v1 and v2 and v satisfy the following conditions:

• v2 = vR
1 (by construction),

• vR
2 = ((v1)R)R = v1,

• vR = (v1v2)R = vR
2 v

R
1 = v1v2 = v.

Hence in both cases we have v = vR.

Now assume that x occurs in the j-th factor v where 1 ≤ j ≤ m (or equivalently,
(j−1)|v|< i≤ j|v|), i. e., for this factor v we have v = v3xv4. Then

w′ = vj−1v3xv4v
m−jv1v2v

m−jvR
4 yv

R
3 v

j−1

by definition of Mn,i,x,y, and

w′ = vj−1v3xv4v
m−jv1v2v

m−jv3xv4v
j−1

by assumption. Therefore

v3xv4 = vR
4 yv

R
3

Now we can construct a contradiction as above by counting the number of occurrences
of x. Let x occur in v1, i. e., v1 = v5xv6. Then v2 = vR

6 yv
R
5 . Thus

v = v1v2 = v5xv6v
R
6 yv

R
5

Then

vR = v5yv6v
R
6 xv

R
5 6= v

in contradiction to v = vR. 2
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Theorem 16. If w ∈Q such that M ′n,j,x,y(w) is defined, then M ′n,i,x,y(w)∈Q also holds.

Proof. Let w = x1x2 . . .xn. Then

M ′n,j,x,y(w) = x1x2 . . .xnxnxn−1 . . .xj+1yxj−1xj−2 . . .x2.

Obviously, |Mn,j,x,y(w)|= 2n+1, i. e., the length of Mn,j,x,y(w) is odd.
If M ′n,j,x,y(w) is not a primitive word, then Mn,j,x,y(w) = vp for some primitive word v
of odd length and some odd number p with p≥ 3, say p= 2m+1 with m≥ 1. As in the
preceding proofs we get v = v1xnv2 with

M ′n,j,x,y(w) = vmv1xn|v2v
m = (v1xnv2)mv1xn|v2(v1xnv2)m

and |v1|= |v2|. Let |v1|= q, i. e., |v|= 2q+1.
Let 2 ≤ j ≤ 2q+ 1. Then considering the (m+ 1)-st factor v of M ′n,j,x,y(w), we

obtain v = v1xn|v2 = x1x2 . . .xqxn|xnxq . . .x2. Let z = x2x3 . . .xqxn. Then v = x1zz
R.

On the other hand, for 2≤ j≤ 2q+1, by definition ofM ′n,j,x,y(w) =M ′n,j,x,y(x1zz
Rv2m),

M ′n,j,x,y(w) does not end with (zzR)R = zzR. Thus we have a contradiction to the fact
that Mn,j,x,y(w) ends with v and therefore with zzR.

Let j = 2q+ 2. Then the (2q+ 2)-nd letter of w is x. Moreover, the (2q+ 2)-nd
letter of w is the first letter of the second factor v of M ′n,j,x,y(w) which is x1. Hence
x = x1. On the other hand, by the definition of M ′n,j,x,y(w), counting from the end,
y is the (2q+ 1)-st letter of M ′n,j,x,y(w), which means that y is the first letter of the last
factor v ofMn,j,x,y(w). Thus y= x1. Hence we get x= y in contradiction to the definition
of M ′n,j,x,y.

Let 2q+ 3 ≤ j ≤ n. Then we can derive a contradiction by analogous argument (in
the case that m(2q+1)< j ≤ n, we get v = v1xnv2 = x1zz

R by considering the first
factor v1 and the last factor v2 in M ′n,j,x,y(w)). 2

Finally in this section, we give a result which is the counterpart of Theorem 8. We omit
the proof which can be given in analogy to the proof of Theorem 8.

Theorem 17. For any odd natural number n ≥ 5, any primitive word q of length n, and
any mapping h : V → V with h(a) 6= a for all a ∈ V , O′n,h(q) is a primitive word. 2

5. Further Operations with an Almost Duplication
of Length

First in this section, we discuss the situation where w′ in ww′ is obtained from w or wR

by large changes.
If we change all letters in the second part, primitivity is not preserved in general. For

instance, if we take the primitive word w = 100110, then by changing all letters of w we
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obtain 100110011001 = (1001)3 /∈Q; and starting with the primitive wordw= 10010110
and changing all letters of wR we get 1001011010010110 = w2 /∈Q.

Theorem 18. Let w and w′ be two words of length n such that n− d(w,w′) is a power
of 2, then ww′ is a primitive word.

Proof. The proof can be given in a way analogous to the proof of Theorem 6. 2

The following definition and result are analogies to Dn,n and Theorem 10.

Definition 19. For any natural numbers n, any natural number i with 1≤ i≤ n, and any
mapping h : V → V with h(a) 6= a and h(h(a)) = a for all a ∈ V , we define the operation
Dn,h : V n→ V 2n−1 by

Dn,h(x1x2 . . .xn) = x1x2 . . .xnh(x1x2 . . . . . .xn−1).

Theorem 20. For any natural numbers n, any natural number i with 1 ≤ i ≤ n, any
mapping h : V → V with h(a) 6= a and h(h(a)) = a for all a ∈ V , and any w ∈ Q,
Dn,h(w) ∈Q also holds.

Proof. Let w = x1x2 . . .xn with xj ∈ V for 1≤ j ≤ n. Then

Dn,h(x1x2 . . .xn) = x1x2 . . .xnh(x1 . . .xn−1)

has an odd length.
Let us suppose that Dn,h(w) /∈ Q, that is, there exist a p ≥ 2 and v ∈ Q such that

Dn,n,h = vp.
Thus p is odd, say p = 2m+ 1 for some m ≥ 1. As above there are words v, v1 and v2
such that v = v1xnv2 and

x1x2 . . .xn|h(x1 . . .xn−1) = (v1xnv2)mv1xn|v2(v1xnv2)m.

Since |(v1xnv2)mv1|= |v2(v1xnv2)m|, |v1|= |v2|.
Furthermore v2 = h(v1) by definition of Dn,h. Therefore we get

x1x2 . . .xn|h(x1 . . .xn−1) = (v1xnh(v1))mv1xn|h(v1)(v1xnh(v1))m.

Thus (h(v1)h(xn)v1)mh(v1) = h(v1)(v1xnh(v1))m, that is,

(h(v1)h(xn)v1)mh(v1) = (h(v1)v1xn)mh(v1).

Hence h(xn)v1 = v1xn. Therefore, by Lemma 5, h(xn) = xn in contrast to the supposition
concerning h. 2

By Theorem 18, from a word w ∈ Q we obtain a primitive word ww′ where w′ is con-
structed from w by changing all letters except one letter. This result does not hold for
the mirror image, i. e., if one concatenates w with its mirror image and changes all letters
of the mirror image besides one letter, in general, one does not obtain a primitive word.
For example, if w = 11100 ∈Q and i= 3, then we obtain 1110011100 = (11100)2 /∈Q.
However, if we restrict to special positions, then the corresponding statement is true, as
shown by the following two theorems.
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Definition 21. For any natural numbers n and iwith 1≤ i≤n and any mapping h : V → V
with h(a) 6= a for all a ∈ V , we define the operations

Mn,1,h, Mn,n,h : V n→ V 2n

by

Mn,1,h(x1x2 . . .xn) = x1x2 . . .xnxnh(xn−1xn−2 . . .x1),
Mn,n,h(x1x2 . . .xn) = x1x2 . . .xnh(xnxn−1 . . .x2)x1.

Theorem 22. For any n ≥ 2, any mapping h : V → V with h(a) 6= a for all a ∈ V and
any w ∈Q, Mn,1,h(w) ∈Q also holds.

Proof. Let w = x1x2 . . .xn, where xi ∈ V . Then

Mn,1,h(w) = x1x2 . . .xn−1xnxnh(xn−1xn−2 . . .x1)

has an even length.
Let us suppose that Mn,1,h(w) /∈ Q, that is, there exists a p ∈ N and v ∈ Q such that

x1x2 . . .xn−1xnxnh(xn−1xn−2 . . .x1) = vp.

If p is even and p > 2, then v
p
2 = w and p

2 ≥ 2, which contradicts w ∈ Q. If p = 2,
then x1x2 . . .xn−1xnxnh(xn−1xn−2 . . .x1) = v2, that is,

v = x1x2 . . .xn−1xn = xnh(xn−1xn−2 . . .x1).

Then xn = x1 and xn = h(x1), which is a contradiction.
If p is odd, then p= 2m+1 for somem≥ 1 and v= x1v

′xnv
′′ with v′,v′′ ∈ V ∗, which

can be shown as in the proof of Theorem 11. Since

x1 . . .xn−1xn|xnh(xn−1xn−2 . . .x1) = vmx1v
′|xnv

′′vm, |v′|= |v′′|.

We distinguish the cases v′ 6= λ 6= v′′ and v′ = λ= v′′.
Supposing v′ 6= λ 6= v′′ and v′ = y1 . . .yr and v′′ = z1 . . . zr. Then

x1 . . .xn−1xn|xnh(xn−1xn−2 . . .x1)
= (x1y1 . . .yrxnz1 . . . zr)mx1y1 . . .yr|xnz1 . . . zr(x1y1 . . .yrxnz1 . . . zr)m

and yr = xn. Since h(x1y1y2 . . .yr) = zrzr−1 . . . z1xn by construction, h(yr) = xn, which
contradicts yr = xn

Supposing v′ = λ= v′′, we get

x1 . . .xn−1xn|xnh(xn−1xn−2 . . .x1) = (x1xn)mx1|xn(x1xn)m,

which implies xn = x1 and xn = h(x1), so it is a contradiction.
Therefore Qn,1,h(w) ∈Q. 2
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Theorem 23. For any n ≥ 2, any mapping h : V → V with h(a) 6= a for all a ∈ V and
any w ∈Q, Mn,n,h(w) ∈Q also holds.

Proof. Let w = x1x2 . . .xn. Let us assume that Mn,n,h(w) /∈ Q. Then there is a word
v ∈ V +and a natural number p≥ 2 such that Mn,n,h(w) = vp.

If p= 2, then v = x1x2 . . .xn = h(xnxn−1 . . .x2)x1. Hence x1 = h(xn) and xn = x1,
which is a contradiction. If p> 2 and even, thenw= v

n
2 ∈Q in contrast to our supposition.

If p is odd, i. e., p = 2m+ 1 for some m ≥ 1, then there are words v1 and v2 with
v = v1v2, |v1|= |v2| and

x1x2 . . .xn|h(xnxn−1 . . .h(x2)x1 = vmv1|v2v
m.

Let k = |v1|. Then

v1 = x1x2 . . .xk and v2 = h(xkxk−1 . . .x2)x1

by definition of Mn,n,h. Thus x2k+1 = x1 and h(x2k+1) = x1 in contrast to the required
property of h that h(a) 6= a for all a ∈ V . 2

We now define an operation where we duplicate the word, but the copy is shifted some
positions to the left. Hence, on one hand, no change is done in the copy, but on the
other hand, the position of the letters are changed essentially. An analogous operation is
performed where we shift an almost completely changed version of the word.

Definition 24. For any natural numbers n and i with 1 ≤ i ≤ n− 1 and any mapping
h : V → V with h(a) 6= a for all a ∈ V , we define the operation Sn,i : V n→ V 2n by

Sn,i(x1x2 . . .xn) = x1x2 . . .xix1x2 . . .xnxi+1xi+2 . . .xn.

Theorem 25. For any natural numbers n ≥ 2 and i with 1 ≤ i ≤ n− 1 and any word
q ∈Q of length n, Sn,i(q) ∈Q also holds.

Proof. Let q =ww′ ∈Q with w = x1x2 . . .xi−1 and w′ = xixi+1 . . .xn, where xj ∈ V for
1≤ j ≤ n. Then Sn,i(q) = www′w′.

Assumewww′w′ /∈Q, that is, there exist a number p∈N, p> 2 and a word v ∈Q such
aswww′w′= vp, that is,w2(w′)2 = vp. It is known, by Lemma 4,w=uk,w′=ul,v=um.
Since ww′ ∈Q and ww′ = uk+l, we have a contradiction.

Therefore www′w′ ∈Q. 2

We mention that an analogous statement does not hold, if one uses the mirror image
instead of a copy. The following example shows that then primitivity is not preserved.
Let w= 01 and i= 1; using the mirror image and shifting it by one position to the left we
get 0101 /∈Q.

Finally in the following theorem we present some operations which, together with
the above operations, allow the generation of all primitive words of length ≤ 11 (as can
be shown by computer calculations) and of a considerable amount of primitive words of
length up to twenty.
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Theorem 26. Let w ∈ Q be a primitive word of length n ≥ 2 and x ∈ V and y ∈ V two
different letters of V .

(i) Then wxn and wxn−1 and wxyn−2 are in Q, too.

(ii) If n is even, then w(xy)(n−2)/2x and w(xy)(n−2)/2y are primitive words, too.

Proof. We omit the easy proofs for (i).

(ii) We only prove the statement for w(xy)(n−2)/2x; the other proof can be given
analogously.

Assume that w(xy)(n−2)/2x /∈Q. Then there is a word v ∈ V + such that

w(xy)(n−2)/2x= vp

for some p ≥ 2. Since w(xy)(n−2)/2x has odd length, p and the length of v are odd
numbers. Let p= 2m+1 for some m≥ 1. Thus there are v1,v2 ∈ V + such that

v = v1v2, |v1|= |v2|+1 and w|(xy)(n−2)/2x= vmv1|v2v
m.

By w(xy)(n−2)/2x = v2m+1, we have v = (xy)kx for some k ≥ 1, and then v1 = (xy)r,
v2 = (xy)r−1x and

w|(xy)(n−2)/2x= ((xy)kx)m(xy)r|(xy)r−1x(xy)kx)m.

Since the (n+2(r−1)+2)-nd letters in both representations differ, we have a contradic-
tion. 2
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