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Abstract: We investigate context-free languages with respect to the measure Var
of descriptional complexity, which gives the minimal number of nonterminals which
is necessary to generate the language. Especially, we consider the behaviour of this
measure with respect to operations. For given numbers c1, c2, . . . , cn and an n-
ary operation τ on languages we discuss the range of Var(τ(L1, L2, . . . , Ln)) where,
for 1 ≤ i ≤ n, Li is a context-free language with Var(Li) = ci. The operation
under discussion are the six AFL-operations union, concatenation, Kleene-closure,
homomorphisms, inverse homomorphisms and intersections by regular sets.

1 Introduction

With respect to finite automata the number of states is the most natural and most in-
vestigated measure of descriptional complexity. For a given regular language L, its state
complexity c(L) can be defined as the number of states of a minimal automaton A which
accepts L. Early papers concerning c(L) are e.g. [9, 7]. A very natural question is the
following one: Given n numbers c1, c2, . . . , cn and an n-ary operation τ on languages,
which values are possible for c(τ(L1, L2, . . . , Ln)) where, for 1 ≤ i ≤ n, Li is a regular
language with c(Li) = ci. In the last years there appeared a lot of papers which have
discussed the following special version: For c1, c2, . . . , cn and τ , let f ′τ (c1, c2, . . . , cn) be the
maximum of c(τ(L1, L2, . . . , Ln)) where the maximum is taken over all regular languages
Li with c(Li) = ci, 1 ≤ i ≤ n. This problem has been solved for some operations, e.g.,
f ′∪(m, n) = mn and f ′· (m,n) = (2m − 1)2n−1. We refer to [1, 12, 6, 5] and the summa-
rizing articles [10, 11]. In [4] this question is considered with respect to nondeterministic
automata.

However, the question can be asked a little bit more general: For c1, c2, . . . , cn and τ ,
let r′τ (c1, c2, . . . , cn) be the set of all numbers c(τ(L1, L2, . . . , Ln)) where Li is a regular
with c(Li) = ci, 1 ≤ i ≤ n. In [5] r′C(n), where C denotes the complementation, is
partially determined.

Surprisingly, there are almost no results in this direction with respect to the descrip-
tional complexity of context-free languages. The measure which corresponds to the state
complexity is the number of nonterminals (if one restricts to regular grammars with rules
of the form A → aB or A → λ, where A and B are nonterminals and a is a terminal, then
the number of nonterminals equals the state complexity with respect to nondeterministic
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finite automata). Formally, for a context-free grammar G = (N, T, P, S) (with the sets
N , T and P of nonterminals, terminals and productions, respectively, and the axiom S)
we define Var(G) as the cardinality of N . For a context-free language L, we set

Var(L) = min{Var(G) | G is a context-free grammar and L(G) = L}.
This complexity measure was originally studied by J. Gruska (see [3]). As above now
we can define the set rτ (c1, c2, . . . , cn) of all numbers Var(τ(L1, L2, . . . , Ln)) where, for
1 ≤ i ≤ n, Li is a context-free language with Var(Li) = ci. In [8] Gh. Păun has partially
determined r∪(m, n) and r∗(n), more precisely, he has shown that

{1, 3, 4, 5, . . . , n} ⊆ r∪(n, n) and {1, 2, . . . , n} ⊆ r∗(n).

Moreover, he also discussed r∩(n, n); however, this is not of such general interest since
the class of context-free languages is not closed under intersection in general.

In this paper we discuss the general case for the operations defining an abstract fam-
ily of languages (under which the family of context-free languages is closed). Thus we
study rτ (n,m) for τ being union and concatenation, and rτ (n) for τ being Kleene-closure,
homomorphisms, inverse homomorphisms and intersection with regular sets. For union,
Kleene-closure, homomorphisms, inverse homomorphisms, and intersections with regular
sets we determine the sets completely; for concatenation we only present a partial solu-
tion. For union, concatenation, Kleene-closure, and homomorphisms, we get especially
the maximal value of rτ (n,m) and rτ (n), respectively, and we prove that such a maximal
value does not exist for inverse homomorphisms and intersections with regular sets.

Throughout the paper we assume that the reader is familiar with basic concepts of
the theory of (context-free) languages.

2 Nonterminal Complexity of Some Context-Free Languages

We start with the determination of the complexity of some languages which are needed
later.

Lemma 2.1 Let i1, i2, . . . , i2n be 2n pairwise different positive integers and

L = {abi1}∗{abi2}∗ . . . {abi2n}∗.
Then Var(L) = n.

Proof. Let m = max{i1, i2, . . . , i2n}. Let G = (N, T, P, S) be a context-free grammar
such that L(G) = L and Var(G) = Var(L). First we show that, for any nonterminal A
different from S, there is a rule A → xAy with xy 6= λ. Let us assume the contrary.
If there is no rule A → w in P where A occurs in w, we can construct a grammar G′

by replacing any occurrence of A on a right hand side of a production by all right hand
sides of productions with left hand side A and omitting all rules with left hand side A.
Obviously, L(G′) = L and Var(L) ≤ Var(G′) = Var(G)− 1 < Var(G) = Var(L) which is
a contradiction. Thus there is a rule A → xAy. If xy = λ, we can omit this rule without
changing the language. Thus xy 6= λ.
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We only discuss the case x 6= λ; the case y 6= λ can be handled analogously. Obviously,
G has to be reduced, i.e., there is a derivation

S =⇒∗ uAv =⇒∗ uwv ∈ L(G).

Moreover, let x =⇒ x′ ∈ T ∗ and y =⇒∗ y′ ∈ T ∗ two terminating derivations. Then, for
any n ≥ 0, we have a derivation

S =⇒∗ uAv =⇒∗ u(x′)nA(y′)nv =⇒∗ u(x′)nw(y′)nv ∈ L(G) = L

If n ≥ 2m + 1, then xn contains a subword abija for some j. Assume that there are
ik, k 6= j, and a derivation A =⇒∗ x′′Ay′′ where x′′ contains the subword abika. Then we
have the derivation

S =⇒∗ uAv =⇒∗ ux′′Ay′′v =⇒∗ ux′′(x′)nA(y′)ny′′v =⇒∗ ux′′(x′)nx′′Ay′′(y′)ny′′v

=⇒∗ ux′′(x′)nx′′wy′′(y′)ny′′v = p ∈ L(G)

which generates a word containing a subword abikazabijaz′abija which is not in L. Thus
a letter A can only contribute to one abij to the left. Analogously, A can only contribute
to one abij′ to the right.

If there is a derivation S =⇒∗ xSy with xy 6= λ, the same argumentation holds for S.
Since we have 2n numbers i1, i2, . . . , in, we need at least n nonterminals for the generation
of L, i.e., Var(G) ≥ n. If there is no derivation S =⇒∗ xSy with xy 6= λ, then we need n
additional letters to generate all sets {abij}∗, i.e., Var(G) ≥ n + 1. Hence, Var(L) ≥ n.

On the other hand, since

({A1, A2, . . . , An}, {a, b}, P, A1)

with

P = {An → abinAn, An → Anabin+1 , An → λ}

∪
n−1⋃

j=1

{Aj → abijAj, Aj → Ajabi2n−j+1 , Aj → Aj+1}

generates L, we have Var(L) ≤ n.
Thus Var(L) = n. 2

Lemma 2.2 Let i1, i2, . . . , i2n be 2n pairwise different positive integers and

L = {(abi1)k1(abi2)k2 . . . (abin)kn(abin+1)kn(abin+2)kn−1 . . . (abi2n)k1

| k1, k2, . . . , kn ≥ 0}.

Then Var(L) = n.

Proof. The proof can be given analogously to Lemma 2.1. 2

The following lemma is essentially shown in [3].

3



Lemma 2.3 Let i1, i2, . . . , in be n ≥ 2 pairwise different positive integers and

L =
n⋃

j=1

{abij}∗.

Then Var(L) = n + 1.

Lemma 2.4 Let i1, i2, . . . , in and j1, j2, . . . , jm be n ≥ 1 and m ≥ 1 pairwise different
integers such that il ≥ 2 and jk ≥ 2 for 1 ≤ l ≤ n and 1 ≤ k ≤ m, respectively, and

L = {baj1 , baj2 , . . . , bajm}∗ ∪
n⋃

j=1

{abij}∗.

Then Var(L) = n + 2.

Proof. Let G = (N, T, P, S) be a context-free grammar with L(G) = L and Var(G) =
Var(L). As above, we can show that, for any nonterminal A different from S, there is
a derivation A =⇒∗ xAy such that x contains a subword abija or y contains a subword
abija for some j, 1 ≤ j ≤ n, or x contains a subword bajkb or y contains a subword
bajkb for some k, 1 ≤ k ≤ m. We say that A belongs to abij or to bajk , respectively.
It is easy to see that A cannot belong to two different words w and w′ such that both
words are in M = {abi1 , abi2 , . . . , abin} or one word is in M and the other is in M ′ =
{baj1 , baj2 , . . . , bajm}. For example, let w = abij ∈ M and w′ = bajk ∈ M . Then there
are derivations A =⇒∗ xAy and A =⇒∗ x′Ay′ where x′ contains the subword abija and y′

contains the subword bajkb (the other possibilities for the containments in x, x′, y, y′ can
be handled analogously). Then we have a derivation

S =⇒∗ uAv =⇒∗ uxAyv =⇒ uxx′Ay′yv =⇒∗ uxx′wy′yv = z ∈ L(G).

However, z contains both subwords abija and bajkb and therefore z contains the subwords
a2 and b2 which is impossible for words in L. Thus we have a contradiction to L(G) = L.
(If w and w′ belong to abij and abik , j 6= k; then z contains the subwords abija and abika
which is impossible, too.)

Thus any nonterminal different from S belongs to only one word of M or to (possibly
some) words of M ′.

If there is a derivation S =⇒∗ xSy for some x and y with xy 6= λ, then with respects to
containment of subwords we have the same situations as above. Assume that x contains
wa for some w ∈ M . Then we have a derivation S =⇒∗ xSy =⇒∗ xbaj1y ∈ L(G) but
xbaj1y contains the subwords a2 and b2 which contradicts L(G) = L. Hence there is no
derivation S =⇒∗ xSy. Therefore the generation of {w}∗ with w ∈ M or (M ′)∗ needs
a certain nonterminal A 6= S which belongs to w or to some words of M ′, respectively.
Since any nonterminal A 6= S cannot belong to two words of M or to one word in M and
one word in M ′ simultaneously, we need at least n + 1 nonterminals which are different
from the axiom and the axiom, i.e., Var(L) = Var(G) ≥ n + 2.

On the other hand, H = ({S, A1, A2, . . . , An, B}, {a, b, c}, P, S) with

P = {S → B} ∪
m⋃

k=1

{B → bajkB, B → λ} ∪
n⋃

j=1

{S → Aj, Aj → abijAj, Aj → λ}
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generates L which implies Var(L) ≤ Var(H) = n + 2.
Thus Var(L) = n + 2. 2

Lemma 2.5 Let i1, i2, . . . , in be n ≥ 1 pairwise different positive natural numbers and

L = {b}∗ ∪
n⋃

j=1

{abij}∗.

Then Var(L) = n + 2.

Proof. Again, let G = (N, T, P, S) be a context-free grammar such that L = L(G)
and Var(L) = Var(G). For 1 ≤ j ≤ n, any derivation of (abij)m for sufficiently large
m contains a subderivation Aj =⇒∗ xAjy such that x or y contains the subword abija.
Analogously, any derivation of bm for sufficiently large m contains a subderivation B =⇒
xBy such that x or y contains a subword br with r > ij for 1 ≤ j ≤ n. As in the proof
of Lemma 2.4 we can show that all the letters A1, A2, . . . , An, B have to be different and
different from the axiom. Thus Var(L) ≥ n + 2.

It is easy to prove that there is a grammar with n + 2 nonterminals which generates
L. Thus Var(L) = n + 2. 2

Lemma 2.6 For L = a{a, b}∗a{a, b}∗, Var(L) = 2.

Proof. Clearly Var(L) ≤ 2, since L is generated by

G = ({S,B}, {a, b}, {S → aBaB, B → aB, B → bB, B → λ}, S).

On the other hand, let H be some grammar with the single nonterminal S and let k be
the greatest length of a right hand side in the rules of H. If there is a terminating rule
S → w with w /∈ L, then L(H) contains w /∈ L. Otherwise, all words in L(H) contain
a subword of length ≤ k which is in L; however, abka ∈ L does not contain a subword
of length ≤ k which is in L, too. In both cases, we obtain L(H) 6= L, which means that
Var(L) ≥ 2. 2

Lemma 2.7 Let i1, i2, . . . , in be n ≥ 1 pairwise different positive natural numbers,

L = {b}{a, b}∗ ∪
n⋃

j=1

{abij}∗ and L′ = {b}{a, b}∗{b}{a, b}∗ ∪
n⋃

j=1

{abij}∗.

Then Var(L) = Var(L′) = n + 2.

Proof. The proof can be given analogously to that of Lemma 2.5. 2

Lemma 2.8 Let i1, i2, . . . , in be n ≥ 1 pairwise different positive integers, i ≥ 2 and

L = {ai} ∪
n⋃

j=1

{abij}∗.

Then Var(L) = n + 1.
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Proof. Let n ≥ 2. As in the proof of Lemma 2.4 we can show that, for any number ij,
there is at most one nonterminal Aj which belongs to abij and that we need in addition
to these n nonterminals an axiom. Thus Var(L) ≥ n + 1.

Now let n = 1. Let L be generated by a context-free grammar G = ({S}, {a, b}, P, S)
(with only one nonterminal). Since L is infinite, there is a derivation S =⇒∗ xSy with
xy ∈ {a, b}+. By iterating this derivation we get S =⇒∗ x4Sy4 where at least one of the
words x4 or y4 has length 4 and therefore it contains b. Thus we also have a derivation
S =⇒∗ x4aiy4 ∈ L(G). However, this contradicts L = L(G) since x4aiy4 contains the
subwords b and a2 (since i ≥ 2) which is impossible for words in L. Therefore we need at
least two nonterminals, i.e. Var(L) ≥ 2 = n + 1.

On the other hand

(
{S, A1, A2, . . . , An}, {a, b}, {S → ai} ∪

n⋃

j=1

{S → Aj, Aj → abijAj, Aj → λ}, S
)

generates L which proves Var(L) ≤ n + 1. 2

Lemma 2.9 For any context-free language L over a unary alphabet, Var(L) ≤ 2.

Proof. It is well-known that any context-free language over a unary alphabet consisting
of the letter a can be represented as L = U ∪ {ap}∗U ′ where U and U ′ are finite sets.
Thus L can be generated by

({S, A}, {a}, {S → w | w ∈ U} ∪ {S → A,B → apB} ∪ {B → v | v ∈ U ′}, S)

which proves the statement. 2

3 Nonterminal Complexity of Union

In this section we study the behaviour of nonterminal complexity with respect to union.

Theorem 3.1 i) For any two context-free languages L1 and L2,

Var(L1 ∪ L2) ≤ Var(L1) + Var(L2) + 1.

ii) For any three numbers n ≥ 1, m ≥ 1 and k such that k ≤ n+m+1 and any alphabet
T with at least two letters, there are context-free languages Ln ⊆ T ∗ and Km ⊆ T ∗ such
that

Var(Ln) = n, Var(Km) = m and Var(Ln ∪Km) = k.

Proof. i) The statement follows by the standard construction to prove the closure of the
family of context-free languages under union (one adds S → S1 and S → S2 where S is
the new axiom).

ii) Without loss of generality we assume that n ≥ m.
Let n ≥ 1, m ≥ 1 and k = n + m + 1. We choose

Ln = {ab}∗{ab2}∗ . . . {ab2n}∗ and Km = {ab2n+1}∗{ab2n+2}∗ . . . {ab2n+2m}∗.
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By Lemma 2.1, we have Var(Ln) = n and Var(Km) = m. We now prove that Var(Ln ∪
Km) = n + m + 1.

Let G = (N, {a, b}, P, S) be a context-free grammar with L(G) = Ln ∪Km. As in the
proof of Lemma 2.1 we can show that we need at least n + m nonterminals in order to
generate words with abi, 1 ≤ i ≤ 2n + 2m.

Let us assume that one of these symbols, say A which generates abj with 1 ≤ j ≤ 2n
(the case 2n + 1 ≤ j ≤ 2n + 2m can be handled analogously), is the axiom. Then there
is a derivation

A =⇒∗ uabjau′Av =⇒∗ uabjau′ab2n+1ab2n+2mv /∈ Ln ∪Km

or
A =⇒∗ uAvabjav′ =⇒∗ uab2n+1ab2n+2mvabjav′ /∈ Ln ∪Km.

Thus we need in addition to the n + m nonterminals a further nonterminal as the axiom.
Hence Var(Ln ∪Km) ≥ n + m + 1. By the part i), we get Var(Ln ∪Km) = n + m + 1.

Let n ≥ 2, m ≥ 1 and k = n + m. Then we consider

Ln = {ab1}∗{ab2}∗ . . . {ab2n}∗

and

Km = {ab2n+1}∗{ab2n+2}∗ . . . {ab2n+m−1}∗{abn}∗
· {abn+1}∗{ab2n+m+2}∗{ab2n+m+3}∗ . . . {ab2n+2m}∗.

By Lemma 2.1, Var(Ln) = n and Var(Km) = m.
Let G = (N, T, P, S) be a context-free grammar with L(G) = Ln ∪ Km. As in the

case k = m + n + 1 we can show that we need n + m− 1 nonterminals to generate words
containing abj, 1 ≤ j ≤ 2n + 2m, j 6= 2n + m and j 6= 2n + m + 1 and in addition an
axiom. Thus Var(Ln ∪Km) ≥ n + m.

The context-free grammar

H = ({S,A1, A2, . . . , An, B1, B2, . . . , Bm−1}, {a, b}, P, S)

with

P = {S → A1, S → B1} ∪
n−1⋃

i=1

{Ai → abiAi, Ai → Aiab2n−i+1, Ai → Ai+1}

∪ {An → abnAn, An → Anabn+1, An → λ}

∪
m−2⋃

i=1

{Bi → ab2n+iBi, Bi → Biab2n+2m−i+1, Bi → Bi+1}

∪ {Bm−1 → ab2n+m−1Bm−1, Bm−1 → Bm−1ab2n+m+2, Bm−1 → An}.

It is easy to see that L(H) = Ln∪Km and Var(H) = n+m. Hence Var(Ln∪Km) = n+m.

Let k = n+m and n = 1. Then m = 1 and k = 2. It is easy to see that Var({ab2}∗) = 1
and Var({a3}) = 1. By Lemma 2.8, we have Var({a3} ∪ {ab2}∗) = 2.
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Let n ≥ m ≥ 3 and n > k ≥ 3. We consider the languages

Ln =
n−1⋃

j=2

{abj}∗ ∪ b{a, b}∗ and Km =
m−1⋃

j=2

{baj}∗ ∪ {abk−1, abk, . . . , abn−1}∗.

We obtain Ln ∪ Km =
⋃k−2

j=2{abj}∗ ∪ {abk−1, abk, . . . , abn−1}∗ ∪ b{a, b}∗. By Lemmas 2.5
and 2.7, Var(Ln) = n, Var(Km) = m. Analogously to the proof in Section 2 it can be
shown that Var(Ln ∪Km) = k.

Let n ≥ m ≥ 3 and n ≤ k < n + m. We consider the languages

Ln =
n−1⋃

j=1

{abj}∗ and Km =
k−1⋃

j=k−m

{abj}∗.

We obtain Ln ∪ Km =
⋃k−1

j=1{abj}∗. By Lemma 2.3, Var(Ln) = n, Var(Km) = m, and
Var(Ln ∪Km) = k.

Let n ≥ m ≥ 3 and k = 2. We consider the languages

Ln =
n−2⋃

j=1

{abj}∗ ∪ b{a, b}∗b{a, b}∗ and Km =
m−2⋃

j=1

{baj}∗ ∪ a{a, b}∗a{a, b}∗.

By Lemma 2.7 and symmetry Var(L1) = n and Var(L2) = m. The union of Ln and Km

is L = a{a, b}∗a{a, b}∗ ∪ b{a, b}∗b{a, b}∗. Analogous to Lemma 2.6 it can be shown that
Var(L) = 2.

Let n ≥ m ≥ 3 and k = 1. We consider the languages

Ln =
n−2⋃

j=1

{abj}∗ ∪ b{a, b}∗ and Km =
m−2⋃

j=1

{baj}∗ ∪ a{a, b}∗.

By Lemma 2.7 and symmetry Var(Ln) = n and Var(Km) = m. Finally, the union of L1

and L2 is {a, b}+ which can be generated by a grammar with one nonterminal symbol.

We omit the complete proof for the remaining cases and only give the languages such
that the requirements of the statement are satisfied.

n m k Ln Km

≥ 3 2 n + 1 {a2} ∪ ⋃n−1
i=1 {abi}∗ {abn}∗ ∪ {a2}

≥ 3 2 n ≥ k ≥ 3 {a2} ∪ ⋃n−1
i=1 {abi}∗ {abk−1, abk, . . . , abn−1}∗ ∪ {a2}

≥ 3 2 2
⋃n−1

i=1 {abi}∗ {an} ∪ {ab,ab2, . . . , abn−1}∗
≥ 3 2 1 {b}∗ ∪ ⋃n−2

i=1 {abi}∗ {a, b}∗{a}{a, b}∗
≥ 3 1 n ≥ k ≤ 3 {a2} ∪ ⋃n−1

i=1 {abi}∗ {ab, ab2, . . . , abn−1}∗
≥ 3 1 2

⋃n−1
i=1 {abi}∗ ∪ {a2} {ab, ab2, . . . , abn−1}∗

≥ 3 1 1
⋃n−1

i=1 {abi}∗ {ab, ab2, . . . , abn−1}∗
2 2 3 {a2}∗ ∪ {ab}∗ {a2}∗ ∪ {ab2}∗
2 2 2 {a2}∗ ∪ {ab}∗ {a2}∗ ∪ {ab}∗
2 2 1 {a, a3} ∪ {an | n ≥ 5} {a2} ∪ {an | n ≥ 4}
1 1 1 {a2} {a2}

2
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4 Nonterminal Complexity of Further Operations

In this section we study the behaviour of the complexity with respect to concatenation,
Kleene-closure, homomorphisms, inverse homomorphisms and intersection with regular
sets.

Theorem 4.1 i) For any two context-free languages L1 and L2,

Var(L1L2) ≤ Var(L1) + Var(L2) + 1.

ii) For any three numbers n ≥ 1, m ≥ 1 and k such that max{n,m} < k ≤ n + m + 1
and any alphabet T with at least two letters, there are context-free languages Ln ⊆ T ∗ and
Km ⊆ T ∗ such that

Var(Ln) = n, Var(Km) = m and Var(LnKm) = k.

Proof. i) The statement follows by the standard construction to prove the closure of the
family of context-free languages under concatenation (one adds S → S1S2 where S is the
new axiom).

ii) Let n ≥ m. Let k = n + 1 + t. Then 0 ≤ t ≤ m.
We consider the languages

Ln = {(ab2m+1)r1(ab2m+2)r2 . . . (abm+n+t)rn+t−m(abt+1)rn+t−m+1(abt+2)rn+t−m+2

. . . (abm)rn(abm+1)rn(abm+2)rn−1 . . . (ab2m−t)rn+t−m+1

(abm+n+t+1)rn+t−m(abm+n+t+2)rn+t−m−1 . . . (ab2n+2t)r1

| r1, r2, . . . , rn ≥ 0}.
and

Km = {(ab)k1(ab2)k2 . . . (abm)km(abm+1)km(abm+2)km−1 . . . (ab2m)k1

| k1, k2, . . . , km ≥ 0}.
(note that 2n + 2t = 2m + 2(m + n + t − 2m) and (m + n + t − 2m) + (m − t) = n).
By Lemma 2.2, Var(Km) = m and Var(Ln) = n. Moreover, the number of different
exponents of b in LnKm is 2m + 2(m + n + t− 2m) = 2(n + t).

Let G = (N, {a, b}, P, S) be a grammar with L(G) = LnKm) and Var(G) = Var(LnKm).
Assume there is a derivation S =⇒∗ xSy with xy ∈ {a, b}+. Since ab2m+1ab2n+2tabab2m ∈
LnKm, for s ≥ 2(n + t), we also have a derivation

S =⇒ xsSys =⇒∗ xsab2m+1ab2n+2tabab2mys.

By the structure of the words in LnKm we get xs ∈ {ab2m+1}∗ and ys = {ab2m}∗. More-
over, in order to ensure that the powers of ab2m+1 and ab2n+2t have to be equal and the
powers of ab and ab2m have to be equal for words in LnKm, we get xs = ys = λ. This
contradicts our assumption. Therefore there are no sentential forms different from the
axiom which contain S.

On the other hand, as in the proof of Lemma 2.1 one can show that any letter A
different from the axiom has a derivation A =⇒∗ xAy with xy ∈ {a, b}+ and can contribute
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to at most two subwords abk, 1 ≤ k ≤ 2n + 2t. Therefore we need an axiom and at least
n + t additional nonterminals. Thus Var(LnKm) ≥ n + t + 1 = k.

Furthermore, the grammar

({S,A1, A2, . . . , An+t−m, B1, B2, . . . , Bm}, {a, b}, Q, S)

with

Q = {S → A1B1, An+t−m → abm+n+tAn+t−mabm+n+t+1, An+t−m → B1,

Bm → abmBmabm+1, Bm → λ}

∪
m−1⋃

i=1

{Bi → abiBiab2m−i+1, Bi → Bi+1}

∪
n+t−m−1⋃

j=1

{Aj → ab2m+jAjab2n+2t−j+1, Aj → Aj+1}

(note 2m + (n + t−m) = n + t + m and 2m + 2(n + t−m) = 2n + 2t) generates LnKm

with 1 + (n + t−m) + m = n + t + 1 = k nonterminals. Hence Var(LnKm) ≤ k.
We conclude Var(LnKm) = k.

It is easy to give the modifications for the case m ≥ n. 2

Theorem 4.2 i) For any context-free language L, Var(L∗) ≤ Var(L) + 1.
ii) For any two natural numbers n ≥ 1 and k with 1 ≤ k ≤ n+1, there is a context-free

language Ln such that
Var(Ln) = n and Var(L∗n) = k.

Proof. i) can be shown by the standard construction (use an additional nonterminal S ′

and additional rules S ′ → SS ′ and S ′ → λ).

ii) Let k = n + 1. We choose

Ln = {(ab)k1(ab2)k2 . . . (abn)kn(abn+1)kn(abn+2)kn−1 . . . (ab2n)k1

| k1, k2, . . . , kn ≥ 0}.

By Lemma 2.2, Var(Ln) = n, and Var(L∗n) = n + 1 can be proved analogously to case
k = n + m + 1 in the proof of Theorem 4.1.

The statement for k ≤ n was shown in [8]. 2

Theorem 4.3 i) For any context-free language L and any homomorphism h, we have
Var(h(L)) ≤ Var(L).

ii) For any natural numbers n ≥ 1 and k with 1 ≤ k ≤ n and any alphabet T which
consists of at least 3 letters, there are a regular language Ln ⊆ T ∗ and a homomorphism
hn,k : T ∗ → T ∗ such that Var(Ln) = n and Var(hn,k(Ln)) = k.

Proof. i) The standard construction to prove that, for any context-free language L and
any homomorphism h, h(L) is a context-free language, too, consists in the replacement of
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each rule A → w by A → h(w), where h(B) = B for any nonterminal B. Thus we have
immediately, that Var(h(L)) ≤ Var(L).

ii) Let k ≥ 3. We choose

Ln =
n−k+1⋃

i=0

{ab3i+2}+ ∪
k−2⋃

j=1

{acj}+

and define hn,k by
hn,k(a) = hn,k(b) = a and hn,k(c) = c.

Obviously,

hn,k(Ln) = {a3}+ ∪
k−2⋃

j=1

{acj}+

It is easy to prove by methods analogous to that in Section 2 that

Var(Ln) = 1 + (n− k + 1) + (k − 2) = n and Var(hn,k(Ln)) = 2 + (k − 2) = k.

Let k = 2. Let Ln = {a2} ∪ ⋃n−2
i=0 {ab3i+2}+. We define hn,2 by hn,2(a) = hn,2(b) = a

and get hn,2(Ln) = {a2} ∪ {a3i | i ≥ 1}. By Lemma 2.5, Var(Ln) = n Moreover, it is easy
to see that Var(hn,2(Ln)) = 2.

Let k = 1 and n ≥ 2. We consider Ln = {a3} ∪ ⋃n−2
i=0 {ab3i+2}+ and hn,1 given by

hn,1(a) = hn,1(b) = a. Then hn,1(Ln) = {a3i | i ≥ 1}. By Lemma 2.8, Var(Ln) = n and
Var(hn,1(Ln)) = 1 holds obviously.

For k = n = 1, we choose L1 = {a}+ and h1,1 as the identical mapping. Then
Var(L1) = Var(h1,1(L1)) = 1. 2

For inverse homomorphisms, in general, there is no relation between Var(L) and
Var(h−1(L)) where L is a context-free language and h is a homomorphisms. More pre-
cisely, we have the following statement.

Theorem 4.4 i) For any two natural numbers n ≥ 1 and k with 1 ≤ k ≤ n and any
alphabet T with at least two letters, there are a regular language Ln ⊆ T ∗ and a homo-
morphism hn,k : T ∗ → T ∗ such that Var(Ln) = n and Var(h−1

n,k(Ln)) = k.
ii) For any three natural numbers n ≥ 1, m ≥ 3 and k such that n ≤ k ≤ (m− 1)(n−

1) + 1, there is an alphabet Tm with at least m + 1 letters, a regular language Ln ⊆ T ∗
m

and a homomorphism hn,k : T ∗
m → T ∗

m such that Var(Ln) = n and Var(h−1
n,k(Ln)) = k.

Proof. i) If k ≥ 2, we choose

Ln = {a2} ∪
k−1⋃

i=1

{ab2i}+ ∪
n−k⋃

i=1

{ab2i+1}+

and define hn,k by hn,k(a) = a and hn,k(b) = b2. By Lemma 2.8 we have Var(Ln) =
1 + (k − 1) + (n − k) = n. Moreover, h−1

n,k(Ln) = {a2} ∪ ⋃k−1
i=1 {abi}+. Again, by Lemma

2.8, we get Var(hn,k−1(Ln)) = 1 + (k − 1) = k.
If n ≥ 2 and k = 1, we choose Ln as above and give hn,k by hn,k(a) = a and hn,k(b) =

a2b. Then Var(Ln) = n and h−1
n,k(Ln) = {a2} which can obviously be generated by one

nonterminal.
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The modifications for the case n = k = 1 are left to the reader.

ii) Let T = {a1, a2, . . . , am−1, b, c}. Since (m− 1)(n− 1) + 1 = n + (m− 2)(n− 1) any
number k with n ≤ k ≤ (m−1)(n−1)+1 can be represented as k = n+n2 +n3+ . . . nm−1

for some nl with 0 ≤ nl ≤ n− 1, where 2 ≤ l ≤ m− 1. We consider the language

Ln =
n−1⋃

i=1

{b}{a1b
mi+m}∗{bm−2c} ∪

m−1⋃

l=2

nl⋃

j=1

{bj}{a1b
mi+m}∗{bm−j−1c}.

It is easy to prove by arguments analogous to those given in Section 2 that Var(Ln) ≥ n.
On the other hand,

G = ({S,A1, A2, . . . , An−1}, {a1, b, c}, P, S)

with

P = (
m−1⋃

l=1

nl⋃

j=1

{S → blAjb
l−1c}) ∪

n−1⋃

i=1

{S → bAib
m−2d,Ai → abmi+mAi, Ai → λ}

generates Ln which proves Var(Ln) ≤ n. Moreover, let hn,k be the homomorphism given
by

hn,k(al) = bla1b
m−l for 1 ≤ l ≤ m− 1, hn,k(b) = bm, and hn,k(c) = bm−1c.

It is easy to see that hn,k(alb
ic) = blabmi+mbm−l−1c for 1 ≤ l ≤ m− 1 and thus

h−1
n,k(Ln) =

n−1⋃

i=1

{a1b
i}+{c} ∪

m−1⋃

l=2

nl⋃

j=1

{alb
i}∗{c}.

Again, it is easy to prove that Var(h−1
n,k(Ln)) = n− 1 + n2 + n3 . . . + nm−1 + 1 = k. 2

For the intersection by regular sets, in general, there is also no relation between Var(L)
and Var(L ∩R).

Theorem 4.5 For any two natural numbers n ≥ 1 and k ≥ 1 and any alphabet T con-
sisting of at least two symbols, there are a context-free language Ln ⊆ T ∗ and a regular
language Rn,k ⊆ T ∗ such that Var(Ln) = n and Var(Ln ∩Rn,k) = k.

Proof. If n ≥ k ≥ 1, we choose

Ln = {ab}∗{ab2}∗ . . . {ab2n}∗

and
Rn,k = {ab}∗{ab2}∗ . . . {abk}∗{ab2n−k+1}∗{ab2n−k+2}∗ . . . {ab2n}∗.

By Lemma 2.1, Var(Ln) = n and Var(Ln ∩Rn,k) = Var(Rn,k) = k.
If k ≥ n ≥ 2, we choose

Ln = {b}{a, b}∗ ∪
n−1⋃

i=2

{abi}+ and Rn,k = {a}{a, b}∗ ∪
k−n+2⋃

i=2

{bai}+.

By Lemma 2.7, Var(Ln) = n, and it is easy to see that

Var(Ln ∩Rn,k) = Var
( n−1⋃

i=2

{abi}+ ∪
k−n+2⋃

i=2

{bai}+
)

= 1 + (n− 2) + (k − n + 1) = k.

The modification for the cases 1 = n ≤ k are left to the reader. 2
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5 Summary

The results given in the two preceding sections can be summarized in the following theo-
rem.

Theorem 5.1

i) r∪(n,m) = {1, 2, . . . , n + m + 1} for n ≥ 1,m ≥ 1,

ii) r·(n, m) ⊇ {max{n,m}, max{n,m}+ 1, . . . n + m + 1} for n ≥ 1,m ≥ 1,

iii) r∗(n) = {1, 2, . . . , n + 1} for n ≥ 1,

iv) rh(n) = {1, 2, . . . , n} for n ≥ 1,

v) rh−1(n) = {1, 2, 3, . . .} for n ≥ 1,

vi) r∩R(n) = {1, 2, 3, . . .} for n ≥ 1.

We left open the complete determination of r·(n,m).
If we are only interested in the maximal value of rτ (n,m) or rτ (n), i.e., if we consider

the function
fτ (c1, c2, . . . , cn) = max{rτ (c1, c2, . . . , cn)}

for some n-ary operation τ , we obtain the following statement.

Theorem 5.2 For n ≥ 1 and m ≥ 1,

f∪(n,m) = n + m + 1, f·(n,m) = n + m + 1, f∗(n) = n + 1, and fh(n) = n.

We note that the values fh−1(n) and f∩R(n) are undefined for any n ≥ 1 since the
corresponding sets rh−1(n) and r∩R(n) coincide with the set of all positive integers.

Except for the cases of homomorphisms and inverse homomorphisms all our results
are already valid for languages over alphabets with two letters. For homomorphisms
we need three letters whereas for inverse homomorphisms we cannot bound the size of
the alphabets. If one restricts to unary alphabets, the situation changes drastically by
Lemma 2.9.
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