
Prof. Dr. Jürgen Dassow

Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

F O R M A L L A N G U A G E S

A N D

B I O L O G I C A L P R O C E S S E S

Vorlesungsmanuskript

Magdeburg, April - July 2008

Introduction

In the end of the fifties as N. Chomsky has introduced the well-known classes of reg-
ular, context-free and context-sensitive languages the aim was to model the syntax of
natural languages. Based on the Backus-Naur form for the description of the syntax
of programming languages, in the beginning of the sixties S. Ginsburg and H.G. Rice
noticed that the grammars introduced by Chomsky can be used for programming lan-
guages, too. Since that time until at least the middle of the seventies most investigations
to formal languages followed this approach. The central feature of such grammars is a
sequential process of rewriting of subwords.

On the other hand one has to mention that already since the fifties there exist some
devices nearly related to formal languages which were motivated and/or applied to biolog-
ical phenomena. The well-known Kleene Theorem on the description of regular languages
by means of algebraic operations was discovered by S.C. Kleene as he represented the
events in nerve nets. Furthermore, it was known that cellular automata are able to a
self-replicating behaviour known from biological organisms or colonies of organisms. But
in both cases, in order to model the biological processes finite automata or collections of
finite automata have been used.

Since the seventies the situation changed completely. Motivated by biological processes
new types of grammars have been introduced and their investigation dominated in a
certain sense the development of the theory of formal languages.

In 1968 the first approach was initiated by A. Lindenmayer (see [16]. Cell divisions,
changes of states of the cells, death of cells etc. were modelled by production as one uses
in Chomsky grammars. However, the rewriting process by application of rules is a parallel
one because cell divisions, changes of cell states etc. proceed in parallel. The large interest
in these Lindenmayer systems originated from the biological motivation as well as by the
interest in a comparison between sequential and parallel processes in computer science.
The monograph [13] presents a summary of the state of the theory of developmental sys-
tems and languages in 1975 and considers intensively motivation from and application to
bilogy, whereas the monograph [27] emphasizes the mathematical theory of such systems.
Further summaries and material can be found in [26], [17], [28], [29], [15]. In [25] the
authors use Lindenmayer systems to generate graphical representations of plants.

Although DNA sequences are twisted strands (in a 3-dimensional space) it is very nat-
ural to model them by (linear) strings/words. Mutations of DNA sequences, genes, chro-
mosomes etc. caused by deletions, insertions, splicings, inversions etc. can be described
by operations on words. Iterated applications of these operations model the evolution
of molecules. Thus we have sequential process, again, however, the basic step is not a
rewriting. After the first investigations in this direction by T. Head (see [11]) in the last

1

decade a lot of papers appeared studying the behaviour of formal languages under these
operations. Moreover, one has to mention that these considerations are nearly related to
some aspects of molecular computing (see [1], [18]). The book [23] is the first monograph
on this topic, summaries are contained in [2], [12], [24], [7].

An approach – called membrane systems – to describe the behaviour of a single cell was
startet by Gh. Păun in the paper [21]. A cell is considered as an object with membranes
which define substructures of the cell, e.g. the kernel of the cell. Changes of the objects
in the different regions of the cell are described by rules associated with the regions.
However, the rules are not applied to words as in the two types of grammars mentioned
above, the rules are applied to multisets since the objects in a region form a multiset.
The books [22] and [2] summarize parts of the theory developed for these grammatical
systems.

We mention that these three new types of grammars/languages are natural by their
motivation from biology as well as by the fact that they allow nice characterizations of
well-known classes of formal languages.

In this lecture we shall emphasize Lindenmayer systems, languages and systems using
operations as splicing and membrane systems. We shall omit grammars with valuations
(see [5]), eco-grammar systems (see [4]) and other language generating devices modelling
aspects of biology.

Throughout this lecture we assume that the students/reader is familiar with the ba-
sic concepts of the theory of formal languages as usually presented in basic courses on
Theoretical Computer Science and with some facts of mathematics (especially linear al-
gebra, theory of difference equations, combinatorial formulae, etc). The notation, some
definitions and results are summarized in the first chapter.

Jürgen Dassow April - July 2008

2

Contents

Introduction 1

1 Basics of Mathematics and Formal Languages 5
1.1 Sets, Words, Multisets . 5
1.2 Linear Algebra . 7
1.3 Formal Languages . 8

2 Lindenmayer Systems 13
2.1 The Basic Model – 0L Systems . 13

2.1.1 Two Biological Examples . 13
2.1.2 Definitions and Examples . 16
2.1.3 The Basic Hierarchy . 23
2.1.4 Adult languages . 27
2.1.5 Decision problems . 32
2.1.6 Growth functions . 36

2.2 Lindenmayer systems with interaction . 41
2.2.1 Definitions and examples . 41
2.2.2 Some results on Lindenmayer systems with interaction 46

3 DNA Molecules and Formal Languages 55
3.1 Basics from biology . 55
3.2 Adleman’s experiment . 60
3.3 Splicing as an operation . 63

3.3.1 Non-iterated splicing . 63
3.3.2 Iterated splicing . 69
3.3.3 Remarks on descriptional complexity 75
3.3.4 Splicing on multisets . 79

3.4 Sticker Systems . 85

Bibliography 97

3

3.3 Splicing as an operation

3.3.1 Non-iterated splicing

In this section we formalize the operation splicing presented in Figure 3.9 such that it is
an operation applicable to words and languages.

Definition 3.1 A splicing scheme is a pair (V,R), where
– V is an alphabet and
– R is a subset of V ∗#V ∗$V ∗#V ∗.

The elements of R are called splicing rules. Any splicing rule r1#r2$r3#r4 identifies
four words r1, r2, r3 and r4. As one can see from Figure 3.9 taking into consideration the
upper strand only, the essential part to get a splicing is the existence of two subwords
r1r2 and r3r4 modelling the recognition sites such that a splitting can be done between r1

and r2 as well as between r3 and r4.
Obviously, this can be obtained by an quadruple (r1, r2, r3, r4), too. However, in the

sequel we shall consider the sets of splicing rules as languages, and thus we prefer to
present them as words over V ∪ {#, $}.

Definition 3.2 i) We say that w ∈ V ∗ and z ∈ V ∗ are obtained from u ∈ V ∗ and
v ∈ V ∗ by the splicing rule r = r1#r2$r3#r4, written as (u, v) |=r (w, z), if the following
conditions hold:

– u = u1r1r2u2 and v = v1r3r4v2,
– w = u1r1r4v2 and z = v1r3r2u2.

This definition describes the situation given in Figure 3.9, where we only consider the
upper strand, again.

We now give a slight modification of this formalization by emphasizing the getting the
new word w and omitting the word z which is obtained, too. As we shall see below, this
can be done because z will have some features, we are not interested in, such that we do
not take it into consideration.

Definition 3.3 i) For two words u ∈ V ∗ and v ∈ V ∗ and a splicing rule r = r1#r2$r3#r4,
we define the word w obtained from u, vand r by a simple splicing, written as (u, v) `r w,
by the following conditions:

– u = u1r1r2u2 and v = v1r3r4v2,
– w = u1r1r4v2

ii) For a language L over V and a splicing scheme (V, R), we set

spl(L,R) = {w | (u, v) `r w, u ∈ L, v ∈ L, r ∈ R}.

For two language families L1 and L2, we set,

spl(L1,L2) = {L′ | L′ = spl(L,R) for some L ∈ L1

and some splicing scheme (V, R) with R ∈ L2}.

63

Example 3.4 We consider the language L = {anbn | n ≥ 0} and the splicing scheme
(V, R) with V = {a, b} and R = {a#b$a#b}. First we note that the only rule r of R is
only applicable to words anbn with n ≥ 1. Let u = anbn and v = ambm be two arbitrary
words from L with m,n ≥ 1. Then we obtain

(anbn, ambm) = (an−1abbn−1, am−1abbm−1)

`r anbm .

Since n and m are arbitrary positive integers, we get

spl(L,R) = {anbm | n,m ≥ 1} .

Example 3.5 For

L = {c}{a, b}+{c′} and R = {canbn#c′$c′# | n ≥ 1}

we obtain
spl(L,R) = {c}{anbn | n ≥ 1}

since the only simple splicing is (canbnc′, cvc′) `r canbn applying the rule canbn#c′$c′#.
(We note that the other word z which is obtained by this splicing is z = cvc′c′. It

contains two times the letter c′ such that it is not of interest.)

Example 3.6 Let L and L′ be two arbitrary languages over V . Further, let (V ∪{c}), R)
be a splicing scheme with

R = {#xc$c# | x ∈ L′} .

Then we get
spl(L{c}, R) = {w | wx ∈ L for some x ∈ L′}

because splicing is only possible if u = wxc and v = w′c for some words wx, w′ ∈ L and
x ∈ L′.

(We note that the other word z obtained by splicing is z = w′cxc which we are not
interested in since it contains two times the letter c.)

Example 3.7 We want to show that

{anbn | n ≥ 1} /∈ spl(L(REG),L(RE)) ,

or more precisely, that L = {anbn | n ≥ 1} cannot be obtained from a regular set by
(arbitrary) splicings. Note that, by Example 3.5, we can get {c}L from a regular set by
splicing with a context-free set.

Assume that there are a regular language K and a splicing scheme (V, R) such that
spl(K,R) = L. Let A = (x, Z, z0, F, δ) be a finite deterministic automaton with T (A) =
K. Let m be the cardinality of Z.

By definition, there are words u = u1r1r2u2 and v = v1r3r4v2 and a splicing rule
r = r1#r2$r3#r4 ∈ R such that

(u, v) `r= u1r1r4v2 = am+1bm+1 .

64

Obviously, u1r1 = am+1z or r4v2 = z′bm+1 for certain z and z′. We now discuss the former
case; the latter one can be handled analogously. By the pumping lemma for regular
languages (see Theorem 1.12),

u′ = am+1+tzr2u2 = atu1r1r2u2 ∈ K .

Thus
(u′, v) = (atu1r1r2u2, v1r3r4v2) ` atu1r1r4v2 = at+m+1bm+1 .

Therefore at+m+1bm+1 ∈ spl(K, R) in contrast to at+m+1bm+1 /∈ L.

In the following theorem we determine the language families spl(L1,L2) or upper and
lower bounds for these families where L1 and L2 vary over all language families from the
Chomsky hierarchy.

Theorem 3.8 The table of Figure 3.11 holds, where at the intersection of the row marked
by X and the column marked by Y we give Z if L(Z) = spl(L(X),L(Y)) and Z1/Z2 if
L(Z1) ⊂ spl(L(X),L(Y)) ⊂ L(Z2).

FIN REG CF CS RE
FIN FIN FIN FIN FIN FIN
REG REG REG REG/CF REG/RE REG/RE
CF CF CF RE RE RE
CS RE RE RE RE RE
RE RE RE RE RE RE

Figure 3.11: Relations for the families spl(L1,L2)

Theorem 3.8 can be considered as a result on the power of the splicing operation. We
see an indifferent picture. On one hand side its power is large since context-free splicing
rules applied to context-free languages give already all recursively enumerable languages.
On the other side, if we start with regular languages, then we cannot obtain such easy
languages as {anbn | n ≥ 1} (see Example 3.7) and by regular splicing rules we have
almost no change of the family.

Before we give the proof of Theorem 3.8 we present some lemmas which will be used
in the proof and are of own interest since they can be applied to other language families,
too. The first lemma follows directly from the definitions.

Lemma 3.9 For any language families L1,L2,L′1,L′2 with L1 ⊆ L′1 and L2 ⊆ L′2, we
have spl(L1,L2) ⊆ spl(L′1,L′2). 2

Lemma 3.10 If L1 is closed under concatenation with symbols, then L1 ⊆ spl(L1,L2)
for all language families L2.

Proof. Let L ⊆ V ∗ be an arbitrary language in L1 and c a symbol not in V . We
set L′ = L{c} and consider the splicing system (V ∪ {c}, R) with the single element set
R = {#c$c#}. Then we obtain spl(L′, R) = L because the only possible simple splicings
are given by (uc, vc) ` u where u and v are arbitrary elements of L. 2

65

Lemma 3.11 If L is closed under concatenation, homomorphism, inverse homomor-
phisms and intersections with regular sets, then spl(L,L(REG)) ⊆ L.

Proof. Let L be an arbitrary language of L. Then we set L1 = L{$}L. Let

h1 : (V ∪ {$, #})∗ → V ∪ {$}
be the homomorphism defined by

h1(a) = a for a ∈ V, h1($) = $, h1(#) = λ .

Then h−1
1 (L1) consists of all words which can be obtained from words of L1 by putting

some occurrences of # between some letters of V ∪ {$}. Thus

L2 = h−1
1 (L1) ∩ V ∗{#}V ∗{$}V ∗{#}V ∗ = {w1#w2$w3#w4 | w1w2, w3w4 ∈ L} .

Let
V ′ = {a′ | a ∈ V }, V ′′ = {a′′ | a ∈ V }, V ′′′ = {a′′′ | a ∈ V } .

Moreover, for a word w = a1a2 . . . an with ai ∈ V for 1 ≤ i ≤ n, we set w′ = a′1a
′
2 . . . a′n.

Furthermore, we consider the homomorphism

h2 : (V ∪ V ′ ∪ {#, $})∗ → (V ∪ {#, $})∗

defined by

h2(a) = a for a ∈ V, h2($) = $, h2(#) = #, h2(a
′) = a for a′ ∈ V ′

and the regular set
K = V ∗{#}(V ′)∗{$}(V ′)∗{#}V ∗ .

Then
L3 = h−1

2 (L2) ∩K = {w1#w′
2$w

′
3#w4 | w1w2 ∈ L, w3w4 ∈ L}

is a language in L by the closure properties of L.
Now let (V, R) be a splicing scheme with a regular set of splicing rules. Using the

homomorphisms

h3 : (V ∪ V ′ ∪ V ′′ ∪ V ′′′ ∪ {#, $})∗ → (V ∪ {#, $})∗
h4 : (V ∪ V ′ ∪ V ′′ ∪ V ′′′ ∪ {#, $})∗ → (V ∪ V ′ ∪ {#, $})∗

defined by

h3(a) = a for a ∈ V, h3($) = $, h3(#) = #, h3(a
′) = λ for a ∈ V,

h3(a
′′) = a for a ∈ V, h3(a

′′′) = λ for a ∈ V,

h4(a) = a for a ∈ V, h4($) = $, h4(#) = #, h4(a
′) = a for a ∈ V,

h4(a
′′) = a′ for a ∈ V, h4(a

′′′) = a′ for a ∈ V

and the regular set

K ′ = (V ′)∗V ∗{#}(V ′′)∗(V ′′′)∗{$}(V ′′′)∗(V ′′)∗{#}V ∗(V ′)∗ .

66

we get

L4 = h4(h
−1
3 (R) ∩K ′) = {u1r1#r′2u

′
2$v

′
1r
′
3#r4v2 | u1, u2, v1, v2 ∈ V ∗, r1#r2$r3#r4 ∈ R} .

L3 is regular by the closure properties of L(REG).
Now we define the homomorphism

h5 : (V ∪ V ′ ∪ {#, $})∗ → (V ∪ {#, $})∗

defined by

h5(a) = a for a ∈ V, h5($) = λ, h5(#) = λ, h5(a
′) = λ for a ∈ V .

Then h5(L3 ∩ L4) ∈ L consists of all words of the form u1r1r4v2 and thus h5(L3 ∩ L4) =
spl(L,R) ∈ L. Thus spl(L,L(REG)) ⊆ L. 2

Lemma 3.12 If L is closed under homomorphism, inverse homomorphisms and inter-
sections with regular sets, then spl(L(REG),L) ⊆ L.

Proof. From a regular set L we construct as above the language

L′ = {w1#w′
2$w

′
3#w4 | w1w2 ∈ L,w3w4 ∈ L}

and from a set R ∈ L of splicing rules we construct the set

R′ = {u1r1#r′2u
′
2$v

′
1r
′
3#r4v2 | u1, u2, v1, v2 ∈ V ∗, r1#r2$r3#r4 ∈ R}

as in the proof of Lemma 3.11 and from these two sets spl(L,R) which then belongs to
L. 2

Proof of Theorem 3.8 We prove the statements row by row from left to right.

If L is a finite language, then we can only apply to words of L such rules r1#r2$r3#r4

of R where r1r2 and r3r4 are subwords of words in L. Hence we have only to consider a
finite set of splicing rules. By application of a finite set of splicing rules to a finite set of
words we only obtain a finite set. Thus spl(L(FIN),L(RE)) ⊆ L(FIN).

If we combine this result with that of Lemmas 3.10 and 3.9, for all families X ∈
{FIN, REG,CF, CS,RE}, we get

L(FIN) ⊆ spl(L(FIN),L(FIN)) ⊆ spl(L(FIN),L(X))

⊆ spl(L(FIN),L(RE)) ⊆ L(FIN)

and thus
spl(L(FIN),L(X)) = L(FIN) .

By Lemmas 3.10, 3.9 and 3.12, we get

L(REG) ⊆ spl(L(REG),L(FIN)) ⊆ spl(L(REG),L(REG)) ⊆ L(REG)

which proves the first two statements of the row belonging to REG.

67

By Lemma 3.9, we have L(REG) ⊆ spl(L(REG),L(X)) for X ∈ {CF,CS, RE}.
Moreover, this inclusion is strict by Example 3.5 because {c}{anbn | n ≥ 1} is not a
regular language.

By the closure properties of L(CF) and L(RE) (see Chapter 1) and Lemma 3.12,

spl(L(REG),L(CF)) ⊆ L(CF) and spl(L(REG),L(RE)) ⊆ L(RE) .

Moreover,

spl(L(REG),L(CS)) ⊆ spl(L(REG),L(RE)) ⊆ L(RE)

by Lemma 3.9. These inclusions are strict by Example 3.7.

L(CF) = spl(L(FIN),L(CF)) = spl(L(REG),L(CF)) can be shown as above for
regular languages.

By Lemma 1.6, for any recursively enumerable language L, there are context-free
languages L1 and L2 such that

L = {x | xy ∈ L1, y ∈ L2 for some x, y} .

As in Example 3.6 we can prove that L ∈ spl(L(CF),L(CF)). Therefore we obtain
L(RE) ⊆ spl(L(CF),L(CF)).

spl(L(RE),L(RE)) ⊆ L(RE) can be proved by constructing a Turing machine which
accepts spl(L,R) for given (recursively enumerable) languages L and R. (We omit a
detailed construction. Informally, the machine works as follows: The given word w is
nondeterministically divided into four subwords w = u1r1r4v2; then we choose nondeter-
ministically words r2, u2, v1, r3 and check whether r1#r2$r3#r4 ∈ R, u1r1r2u2 ∈ L and
v1r3r4v2 ∈ L.)

For X ∈ {CF, CS,RE}, combining these two inclusions with Lemma 3.9 gives

L(RE) ⊆ spl(L(CF),L(CF)) ⊆ spl(L(CF),L(X))

⊆ spl(L(CF),L(RE)) ⊆ spl(L(RE),L(RE))

⊆ L(RE)

which implies

spl(L(CF),L(X)) = L(RE) .

By Lemma 1.7, for any recursively enumerable language L, there is a context-sensitive
language L′ such that L′ ⊆ L{c1c

n
2c3 | n ≥ 0} and for any w ∈ L there is an n such

that wc1c
n
2c3 ∈ L′. It is easy to see that spl(L′, {#c1$c3#}) = L. Thus L(RE) ⊆

spl(L(CS),L(FIN)). As in the case of context-free languages we can now prove that

L(RE) = spl(L(CS),L(X)) = spl(L(RE),L(X))

for X ∈ {FIN, REG,CF, CS,RE}. 2

68

3.3.2 Iterated splicing

Simple splicing is an operation which generates one word from two words. This situation
is similar to a derivation step in a grammar or L system where we generate one word from
one word. However, in the theory of languages we consider the reflexive and transitive
closure of the derivation relation. This corresponds to an iterated performing of derivation
steps. We now present the analogous concept for the splicing operation.

Definition 3.13 A splicing system is a triple G = (V,R,A) where

– V is an alphabet,

– R is a subset of V ∗#V ∗$V ∗#V ∗ and

– A is a subset of V ∗.

Definition 3.14 The language L(G) generated by a splicing system G is defined by the
following settings:

spl0(G) = A,

spli+1(G) = spl(spli(G), R)) ∪ spli(G) for i ≥ 0,

L(G) =
⋃

i≥0

spli(G).

The essential difference to language generation by grammars and L systems is that we
start with a set of words instead of a single word. Moreover, this start language can be
infinite.

Furthermore, we mention that splicing systems have a biological meaning. Evolution is
based on changes in the DNA strands. Such changes can be originated by splicings. Thus
the application of a splicing rule can be considered as a step in the evolution. Therefore
the elements generated by a splicing system can be considered as those DNAs which
can be obtained during an evolution from elements of a given set A by evolution steps
modelled by the splicing rules in R.

Example 3.15 We consider the splicing system

G = ({a, b}, {a#b$a#b}, {anbn | n ≥ 1}) .

By Example 3.4 we have

spl0(G) = {anbn | n ≥ 1},
spl1(G) = spl({anbn | n ≥ 1}, {a#b$a#b}) ∪ {anbn | n ≥ 1}

= {arbs | r, s ≥ 1} ∪ {anbn | n ≥ 1}
= {arbs | r, s ≥ 1},

spl2(G) = spl({arbs | r, s ≥ 1}, {a#b$a#b}) ∪ {arbs | r, s ≥ 1}
= {arbs | r, s ≥ 1} ∪ {arbs | r, s ≥ 1}
= {arbs | r, s ≥ 1}.

69

Thus we get spl2(G) = spl1(G). This implies by induction

splm(G) = spl(splm−1(G), {a#b$a#b}) ∪ splm−1(G)

= spl(spl1(G), {a#b$a#b}) ∪ spl1(G)

= spl2(G)

= spl1(G).

Therefore
L(G) =

⋃

i≥0

spli(G) = {arbs | r, s ≥ 1} ,

i.e., that the iteration does not increase the power (see Example 3.4).
The situation completely changes if we consider the splicing system

G′ = ({a, b}, {a#b$a#b}, {(anbn)2 | n ≥ 1}) .

We obtain

spl1(G′) = {anbm | n,m ≥ 1} ∪ {anbnanbm | n,m ≥ 1}
∪{anbmambm | n,m ≥ 1} ∪ {anbnanbmambm | n,m ≥ 1} .

By
(anbmambm, arbrarbr) ` anbmambr

we have anbmambr ∈ spl2(G), but anbmambr /∈ spl1(G).
We shall show that

L(G′) = {{a}+{bnan | n ≥ 1}∗{b}+ .

.
We shall prove by induction that splm(G′) contains only words of this form. Above

we have seen that this statement holds for spl1(G′). The splicing of two such words

arbn1an1bn2an2 . . . bnsansbt and apbm1am1bm2am2 . . . bmkamkbq

results in
arbn1an1bn2an2 . . . bnf anf bmgamgbmg+1amg+1 . . . bmkamkbq ,

which of the same form, again. Thus, if splm(G′) only contains such words, then this also
holds for splm+1(G′).

It remains to prove that all such words can be obtained. We prove this by induction
on the number of changes from a to b. If we only have one change, then we are interested
in the words arbt with r, t ≥ 1. All these words are already in spl1(G′).

From the words arbn1an1bn2an2 . . . bnsansbt with s + 1 changes and apbmambq we get
arbn1an1bn2an2 . . . bnsansbmambq with s + 2 changes.

Example 3.16 Let

G = ({a, b, c}, {#c$c#a}, {cmanbn | n ≥ 1}

70

where m ≥ 1 is a fixed number. Then we get

splr(G) = {ctanbn | 0 ≤ t ≤ m,n ≥ 1} for r ≥ 1,

which implies
L(G) = {ctanbn | 0 ≤ t ≤ m,n ≥ 1}.

We slightly extend the definition of splicing systems by allowing an intersection with
T ∗ where T is a subset of the underlying alphabet. This is analogous to the situation
in grammars where we take in the language only words over the terminal alphabet. The
following definition formalizes this idea.

Definition 3.17 i) An extended splicing system is a quadruple G = (V, T, R, A) where
H = (V,R, A) is a splicing system and T is a subset of V .

ii) The language generated by an extended splicing system G is defined as L(G) =
L(H) ∩ T ∗.

Example 3.18 Let

G = ({a, b, c}, {a, b}, {#c$c#a}, {cmanbn | n ≥ 1}
where m ≥ 1 is a fixed number. From Example 3.16 we obtain

L(G) = {ctanbn | 0 ≤ t ≤ m,n ≥ 1} ∩ {a, b}∗
= {anbn | n ≥ 1} .

We now extend Definitions 3.14 and 3.17 to language families.

Definition 3.19 For two language families L1 and L2, we define Spl(L1,L2) (ESpl(L1,L2))
as the set of all languages L(G) generated by some splicing system G = (V, R, A) (extended
splicing system G = (V, T, R, A)) with A ∈ L1 and R ∈ L2.

We now give the position of the sets Spl(L1,L2) where L1 and L2 are families of the
Chomsky hierarchy within the Chomsky hierarchy.

Theorem 3.20 The table of Figure 3.12 holds, where at the intersection of the row
marked by X and the column marked by Y we give Z if L(Z) = Spl(L(X),L(Y)) and
Z1/Z2 if L(Z1) ⊂ Spl(L(X),L(Y)) ⊂ L(Z2).

We omit the proof of Theorem 3.20. Most of the results can easily be obtained from
the proof of the following theorem which is the statement for the families ESpl(L1,L2).

Theorem 3.21 The table of Figure 3.13 holds, where at the intersection of the row
marked by X and the column marked by Y we give Z if L(Z) = ESpl(L(X),L(Y)).

Before giving the proof of Theorem 3.21 we present some lemmas which will be used
in the proof.

The first lemma is the counterpart of Lemma 3.9 which follows from the definitions,
again.

71

FIN REG CF CS RE
FIN FIN/REG FIN/RE FIN/RE FIN/RE FIN/RE
REG REG REG/RE REG/RE REG/RE REG/RE
CF CF CF/RE CF/RE CF/RE CF/RE
CS CS/RE CS/RE CS/RE CS/RE CS/RE
RE RE RE RE RE RE

Figure 3.12: Relations for the families Spl(L1,L2)

FIN REG CF CS RE
FIN REG RE RE RE RE
REG REG RE RE RE RE
CF CF RE RE RE RE
CS RE RE RE RE RE
RE RE RE RE RE RE

Figure 3.13: Relations for the families ESpl(L1,L2)

Lemma 3.22 For any language families L1,L2,L′1,L′2 with L1 ⊆ L′1 and L2 ⊆ L′2, we
have ESpl(L1,L2) ⊆ ESpl(L′1,L′2). 2

Lemma 3.23 If a language family L is closed under concatenation with symbols, then
L ⊆ ESpl(L,L(FIN)).

Proof. Let L be an arbitrary language of L over the alphabet V , and let c be a letter
not contained in c. Then we consider the splicing system

G = (V ∪ {c}, V, {#c$c#}, L{c}) .

it is easy to see that

spl0(G) = L{c},
spln(G) = L ∪ L{c} for n ≥ 1,

L(G) = L.

Thus L ∈ ESpl(L,L(FIN) which proves the statement. 2

Lemma 3.24 L(REG) ⊆ Espl(L(FIN),L(FIN))

Proof. Let L be an arbitrary regular language over T ∗. Then there exists a regular
grammar G = (N, T, P, S) such that L = L(G) and all rules of P have the form X → aY
or X → a where X and Y are nonterminals and a is a terminal (see Chapter 1).

We construct the extended splicing system

H = (N ∪ T ∪ {Z}, T, R1 ∪R2, {S} ∪ A1 ∪ A2)

72

with

R1 = {#X$Z#aY | X → aY ∈ P, X, Y ∈ N, a ∈ T},
R2 = {#X$ZZ#a | X → a ∈ P, X ∈ N, a ∈ T},
A1 = {ZaY | X → aY ∈ P, X, Y ∈ N, a ∈ T},
A2 = {ZZa | X → a ∈ P, X ∈ N, a ∈ T}.

Note that the set of splicing rules and the set of start words are finite.
Now we apply the splicing rules in the following order:

(S, Za1A1) `R1 a1A1 where S → a1A1 ∈ P

(a1A1, Za2A2) `R1 a1a2A2 where A1 → a2A2 ∈ P ,

(a1a2A2, Za3A3) `R1 a1a2a3A3 where A2 → a3A3 ∈ P ,
.

(a1a2 . . . an−2An−2, Zan−1An−1) `R1 a1a2 . . . an−1An−1 where An−2 → an−1An−1 ∈ P ,

(a1a2 . . . an−1An−1, ZZan) `R1 a1a2 . . . an where An−1 → an ∈ P .

This can be considered as a simulation of the derivation

S =⇒ a1A1 =⇒ a1a2A2 =⇒ . . .

=⇒ a1a2 . . . an−2An−2

=⇒ a1a2 . . . an−2an−1An−1

=⇒ a1a2 . . . an−2an−1an.

This proves L = L(G) ⊆ L(H).
It is easy to see that there are no other possibilities to obtain a word of T ∗ by iterated

splicing. Therefore L(H) ⊆ L, too.
Hence any regular language L is in ESpl(L(FIN),L(FIN)). 2

Lemma 3.25 For any family L which is closed under union, concatenation, Kleene-
closure, homomorphisms, inverse homomorphisms and intersections with regular sets,
ESpl(L,L(FIN)) ⊆ L.

Proof. We omit the long and technically hard proof. A complete proof can be found in
[12]. 2

Lemma 3.26 For any recursively enumerable language L ⊆ T ∗, there is an extended
splicing system G = (V, T, R,A) with a finite set A and a regular set R of splicing rules
such that L(G) = L.

Proof. Let L be an arbitrary recursively enumerable language, and let G = (N, T, P, S)
be the phrase structure grammar such that L(G) = L. Then we construct the extended
splicing system H = (V, T,R, A) with

U = N ∪ T ∪ {B},
V = U ∪ {X,X ′, Y, Z} ∪ {Ya | a ∈ U}
A = {XBSY, ZY, XZ} ∪ {ZvY | u → v ∈ P}

{ZYa | a ∈ U} ∪ {X ′aZ | a ∈ U}
and R consists of all rules of the following forms:

73

1) Xw#aY $Z#Ya for a ∈ U,w ∈ U∗,
2) X ′a#Z$X#wYa for a ∈ U,w ∈ U∗,
3) X ′w#Ya$Z#Y for a ∈ U,w ∈ U∗,
4) X#Z$X ′#wY for w ∈ U∗,
5) Xw#uY $Z#vY for u → v ∈ P, w ∈ U∗,
6) #ZY $XB#wY for w ∈ T ∗,
7) #Y $XZ#.

The letters X, X ′, Y, Z and Ya for a ∈ U are used as endmarkers (more precisely, as
the first or last letter of the word. This leads to the situation that the rules 1) – 5) involve
the complete words.

In the first step we have to apply a splicing rule to two words of A. If we do not take
XBSY as one of these words, the only possible simple splicing are

(ZY,XZ) `7 Z and (ZvY, XZ) `7 Zv

(where the index of ` refers to the type of the rule which is used), and in both cases there
is no splicing rule which can be applied to the resulting word. Thus we have to start with
XBSY .

Assume that we have obtained XBwY . Then we get the following sequence of splicings
using the word obtained in the last step together with a word of A:

(XBw′aY, ZYa) `1 XBw′Ya,

(X ′aZ, XBw′Ya) `2 X ′aBw′Ya,

(X ′aBwYa, ZY) `3 X ′aBw′,

(XZ,X ′aBw′Y) `4 XaBw′Y.

Therefore we have performed a shift of the last letter a to the beginning of the word.
This process can be iterated such that we can get any word Xw2Bw1 where w = w1w2.
Further we see that B is used to mark the beginning of the original word w.

Without blocking the splicing the above sequence is the only possible one besides the
special situation Xw2Bw′

1uY where u is a left hand side of a production u → v ∈ P .
Then we also can apply one rule of type 5 and get

(Xw2Bw′
1uY, ZvY) `5 Xw2Bw′

1vY .

Thus we can get the following sequence of results of splicings

XBw′
1uw2Y, . . . , Xw2Bw′

1uY, Xw2Bw′
1vY, . . . , XBw′

1vw2Y .

Therefore we have simulated a derivation step of G (besides the endmarkers).
Note that during one complete shift we can apply some rules to non-overlapping words.

This is can be done in G by some derivation steps, too.
If we finish the simulation of a terminating derivation in G, then we get a word XBwY

with w ∈ T ∗ and w ∈ L. We apply a splicing rule of type 6) and 7) and yield

(ZY, XBwY) `6 wY,

(wY,XZ) `7 w.

74

Thus we have shown that L = L(G) ⊆ L(H).
Furthermore, it can be seen that other sequences of splicing rules lead to a blocking

situation and the obtained word is not a word of T ∗. Therefore L(H) ⊆ L, too. 2

Lemma 3.27 For any extended splicing system G = (V, T, R,A), L(G) is a recursively
enumerable set.

Proof. The proof can be given by constructing a corresponding phrase structure gram-
mar. We omit the detailed construction. 2

Proof of Theorem 3.21 By Lemmas 3.22, 3.24 and 3.25, we obtain

L(REG) ⊆ ESpl(L(FIN),L(FIN)) ⊆ ESpl(L(REG),L(REG)) ⊆ L(REG) .

These relations imply

L(REG) = ESpl(L(FIN),L(FIN)) = ESpl(L(REG),L(FIN)) .

By Lemmas 3.23 and 3.25, we get

L(CF) ⊆ ESpl(L(CF),L(FIN)) ⊆ L(CF)

which yields L(CF) = ESpl(L(CF),L(FIN)).

Analogously, we obtain L(RE) = ESpl(L(RE),L(FIN)).

In the proof of Theorem 3.8 we have shown that, for any recursively enumerable
language L, there is a context-sensitive language L′ and a regular set R of splicing rules
such that L = spl(L′, R). It is easy to see (or to prove analogously to Lemma 3.23) that
L = L(G) for the extended splicing system G = (T ∪ {c1, c2, c3}, T, R, L′).

Therefore we have L(RE) ⊆ ESpl(L(CS),L(FIN)). Together with Lemma 3.22 and
L(RE) = ESpl(L(RE),L(FIN)) we get L(RE) = ESpl(L(CS),L(FIN)).

Lemma 3.26 and 3.27 can be formulated as L(RE) ⊆ ESpl(L(FIN),L(REG)) and
Espl(L(RE),L(RE) ⊆ L(RE). By combination with Lemma 3.22, we obtain L(RE) =
ESpl(L(X),L(Y)) for X ∈ {FIN, REG, CF, CS, RE} and Y ∈ {REG,CF, CS, RE}.

2

3.3.3 Remarks on descriptional complexity

In the theory of descriptional complexity one studies hierarchies which can be obtained by
restricting some parameters which can be seen immediately from the (extended) splicing
system.

First we define the parameters or measures which we shall consider and the corre-
sponding language families.

Definition 3.28 i) For a splicing system G = (V, R,A) or an extended splicing system
G = (V, T, R,A) we define the complexity measures r(G), a(G) and l(G) by

r(G) = max{|u| | u = ui for some u1#u2$u3#u4 ∈ R, 1 ≤ i ≤ 4},
a(G) = #(A),

l(G) = max{|z| | z ∈ A}.

75

ii) For a language family L and n ≥ 1 and m ∈ {a, l}, we define the families Ln(r,L)
and Ln(m,L) as the set of languages L(G) where G = (V, R, A) is a splicing system with
r(G) ≤ n and A ∈ L and with m(G) ≤ n and R ∈ L, respectively.

iii) Analogously, for m ∈ {r, a, l}, we define the sets Ln(em,L) taking extended splicing
systems (instead of splicing systems).

r(G) is called the radius of G since it gives the maximal neighbourhood of the place
of splitting which is involved in the splicing. The other two measures concern the size of
the (finite) set of start words where the size is measured by the cardinality of the set or
the maximal length of words in it.

As a first result on the descriptional complexity of splicing systems we show that we
obtain an infinite hierarchy between the classes L(FIN) and Spl(L(FIN),L(FIN)) with
respect to the radius.

Theorem 3.29 For any n ≥ 1,

L(FIN) ⊂ Ln(r,L(FIN)) ⊂ Spl(L(FIN),L(FIN))

and
Ln(r,L(FIN)) ⊂ Ln+1(r,L(FIN))

Proof. All inclusions follow by definition and the construction in the proof of Lemma
3.23.

In order to prove that the inclusion L(FIN) ⊂ L1(r,L(FIN)) is proper, we consider
the splicing system

G = ({a}, {a#$#a}, {a})
for which

spli(G) = {a, a2, . . . , a2i} ,

L(G) = {a}+

holds (the statement on spli(G) can easily be proved by induction on i; the only new
words in spli+1(G) are obtained by (a2i

, ak) ` a2i+k where 1 ≤ k ≤ 2i) which generates
an infinite language and satisfies r(G) ≤ 1.

We now prove that Ln(r,L(FIN)) ⊂ Ln+1(r,L(FIN)) for n ≥ 1, which implies the
strictness of Ln(r,L(FIN)) ⊂ Spl(L(FIN),L(FIN)), too.

For n ≥ 1, let
Ln = {a2nb2namb2na2n | m ≥ 2n + 1} .

The splicing system

Gn = ({a, b}, {an+1#an$an+1#an}, {a2nb2na2n+2b2na2n})
satisfies r(Gn) = n + 1. Let

(u1r1r2u2, v1r3r4v2) ` w, u1r1r2u2 = a2nb2nasb2na2n, v1r3r4v2 = a2nb2natb2na2n

for some integers s, t ≥ 2n + 1. Since r1r2 = r3r4 = a2n+1, in both word we have to
perform the split in the inner part am with m ≥ 2n+1 which leads to w = a2nb2narb2na2n

76

with 2n + 1 ≤ r ≤ s + t− 2n− 1. Because we start with a word where the inner part has
the length 2n + 2 we can produce by iterated applications any length in the inner part.
Therefore L(Gn) = Ln. Thus Ln ∈ Ln+1(r,L(FIN)).

Now let us assume that Ln = L(G) for some splicing system G = ({a, b}, R,A) with
A ∈ L(FIN) and r(G) ≤ n. Let p = r1#r2$r3#r4 be a splicing rule of R. Then
|r1r2| ≤ 2n. We apply p to the words u = u1r1r2u2 = a2nb2narb2na2n and v = v1r3r4v2

Let r1r2 ∈ {a}+. Then we can apply p by splitting the prefix a2n of u. We get the
word w1 = u1r1r4v2. Since w1 has to be an element of L(G) and therefore of Ln and u1r1

contains only a’s, r4v2 contains the subword z2b
2nakb2na2n for some k ≥ 2n+1. If we now

apply p by splitting the suffix a2n of u, then we get

w2 = a2nb2nak′b2nz1z2b
2nakb2na2n ∈ L(G)

which does not belong to Ln in contrast to L(G) = Ln.
In the other cases, i.e., r1r2 is contained in {a}+{b}+ or {b}+ or {b}+{a}+, we also

find two different places where r can be used in u and at least one of these words does
not belong to Ln.

Hence we have shown that Ln cannot be generated by a splicing system G with
r(G) ≤ n.

This yields Ln(r,L(FIN)) ⊂ Ln+1(r,L(FIN)). 2

The situation changes completely if we switch to another family L as can be seen from
the following theorem where the hierarchies collapse at the first level.

Theorem 3.30 For L ∈ {L(REG),L(CF),L(RE)} and n ≥ 1, Ln(r,L) = L.

Proof. Let L ∈ {L(REG),L(CF),L(RE)}.
For a language L ∈ L and L ⊆ V ∗, we consider the splicing system

G = (V ∪ {c}, {#c$c#}, L) .

Then the splicing rule cannot be applied which yields spli(G) = L and therefore L(G) = L.
Therefore

L ⊆ L1(r,L). (3.1)

Furthermore, by definition and Theorem 3.20 we have

Ln(r,L) ⊆ Lm(r,L) ⊆ L(L,L(FIN)) = L (3.2)

for m ≥ n. From (3.1) and (3.2) we get the statement of the lemma. 2

We now investigate the hierarchies obtained for the measures related to the size of the
set of start words in the case of extended systems.

Theorem 3.31 For any n ≥ 1,

Ln(ea,L(REG)) = L(RE) .

77

Proof. By definition and Theorem 3.21, for any n ≥ 1,

L1(ea,L(REG)) ⊆ Ln(ea,L(REG)) ⊆ L(L(FIN),L(REG) = L(RE) .

Therefore it is sufficient to prove that any recursively enumerable language L is contained
in L1(ea,L(REG)).

Let L ∈ L(RE). Then L = L(G) for some extended splicing system G = (V, T,R,A)
with a finite set A = {w1, w2, . . . , wn}. If n = 1, then L ∈ L1(ea,L(REG)). If n ≥ 2 we
construct the extended splicing system

G′ = (V ∪ {c, c′}, T, R′, {w})
with two additional letters c and c′,

R′ = R ∪ {#c′c$c#c′, #c$c′#, #c′$c#}
and

u = c′cw1cw2cw3c . . . cwncc
′ .

Let i be an integer with 1 ≤ i ≤ n. We have the following sequence of splicings
(u, u) ` c′ using #c′c$c#c′

(u, c′) ` c′cw1cw2c . . . cwi−1cwi = ui using #c$c′#
(c′, ui) ` wi using #c′$c#

Thus we have wi ∈ spl3(G′) for 1 ≤ i ≤ n. Taking these words and the rules of R ⊂ R′

we can generate any word of L(G) and therefore L(G) ⊆ L(G′).
If we apply a rule r1#r2$r3#r4 to a word w, then w = u1r1r2u2 or w = u1r1r2u2cx2

or w = x1cu1r1r2u2cx2 or w = x1cu1r1r2u2 for some words u1, u2 ∈ V ∗ and x1, x2 ∈
(V ∪ {c, c′})∗. The same situation holds with respect to the second word w′ containing
r3r4. We discuss now the case that w is of the third type and w′ is of the second type, i.e.,
w = x1cu1r1r2u2cx2 and w′ = v1r3r4v2cy2. Then we get (w,w′) ` x1cu1r1r4v2cy2 which
corresponds to a splicing of two words over V neighboured by c. Hence any generation of
a word over V can be obtained by a first phase using only rules from R′ \R and yielding
words from A and a second phase using only rules of R and yielding words of L(G). Hence
L(G′) ⊆ L(G). 2

Theorem 3.32 For any n ≥ 2,

L1(el,L(REG)) ⊂ Ln(el,L(REG)) = L(RE) .

Proof. By definition and Theorem 3.21, for any n ≥ 2,

L2(ea,L(REG)) ⊆ Ln(ea,L(REG)) ⊆ L(L(FIN),L(REG) = L(RE) .

Therefore it is sufficient to prove that any recursively enumerable language L is contained
in L2(ea,L(REG)).

Let L ∈ L(RE). Then L = L(G) for some extended splicing system G = (V, T,R,A)
with a finite set A = {w1, w2, . . . , wn}. For any i, 1 ≤ i ≤ n, let ci and c′i be two new
symbols. We set

G′ = (V ∪
n⋃

i=1

{ci, c
′
i}, T, R′, A′)

78

with

A′ = {cia | 1 ≤ i ≤ n, a ∈ V } ∪
n⋃

i=1

{ci, c
′
i} ,

Ri = {cix#$ci#a | x, xa are prefixes of wi, a ∈ V }
∪

n⋃

i=1

{ciwi#$#c′i, #ci$ci#wic
′
i, wi#c′i$c

′
i#} ,

R′ = R ∪
n⋃

i=1

Ri .

Let wi = ai,1ai,2 . . . ai,ri
. We have the following splicings

(ciai,1, ciai,2) ` ciai,1ai,2 using ciai,1#$ci#ai,2,
(ciai,1ai,2, ciai,3) ` ciai,1ai,2ai,3 using ciai,1ai,2#$ci#ai,3,
.

(ciai,1ai,2 . . . ai,ri−1, ciai,ri
) ` ciai,1ai,2 . . . ai,ri

using ciai,1ai,2 . . . ai,ri−1#$ci#ai,ri
.

Therefore ciwi is obtained. We continue by

(ciwi, c
′
i) ` ciwic

′
i using ciwi#$#c′i,

(ci, ciwic
′
i) ` wic

′
i using #ci$ci#wic

′
i,

(wic
′
i, c

′
i) ` wi using wi#c′i$c

′
i#.

Thus we get wi for 1 ≤ i ≤ n. Using the splicing rules from R we can now generate all
words of L(G) = L. Thus L ⊆ L(G′).

Since any start word contains at least one symbol ci or c′i, we have to cancel these
symbols at a certain step. These cancellations are only possible if – besides the endmarkers
ci and c′i – a word wi ∈ A is produced. If we apply rules from R before ci and c′i have
been cancelled, then the word – besides the endmarkers – is a prefix of wi and we can
generate from it wi or it is not a prefix of wi and there is no continuation which cancels
the endmarkers. Thus the above presented steps by splicing are the only possible ones,
Hence L(G′) ⊆ L, too.

Obviously, if we generate a language L ⊂ T ∗ by a system G, where the maximal
length of the axioms is 1, then the set of axioms has to contain at least one letter a of
T . Then a ∈ L(G). However, there are (finite) recursively enumerable sets which contain
only words of length greater than 2. Thus L1(el,L(REG)) ⊂ L(RE) which proves the
statement. 2

3.3.4 Splicing on multisets

The theory developed up to now has some bad features. First, we have considered only the
operation `R which regards only one of the two words produced by the splicing. Second,
the derivation process by splicing has been studied as a sequential process, i.e., in any
step we applied one splicing rule to two words. In nature, splicings occur as a parallel
process, i.e., some rules are applied in parallel. Third, by definition the words taken for
some splicing did not vanish, they can be used later again. Thus one supposes that, for

79

any of the start words and the generated words, an (at least potentially) infinite number
of copies is present. This does not reflect reality. Therefore we now modify the concept
in order to cover all these aspects.

For two words w and v and a splicing rule p = u1#u2$u3#u4 such that w = w1u1u2w2

and v = v1u3u4v2, we write

[w, v] =⇒
p

[w′, v′]

where w′ = w1u1u4v2 and v′ = v1u3u2w2.
Let [w, v] =⇒

p
[w′, v′] and a ∈ V . From the definitions, we obtain immediately

l([w, v]) = l([w′, v′]) and #a([w, v]) = #a([w
′, v′]). (3.3)

Definition 3.33 A multiset splicing system (MSS for short) is a triple G = (V, P, M)
where
– V is an alphabet,
– P is a finite set of splicing rules over V such that, for any rule u1#u2$u3#u4 ∈ R,

ui 6= λ holds for 1 ≤ i ≤ 4, and
– M is a finite multiset over V .

Definition 3.34 For two multisets M = [w1, w2, . . . , wn] and M ′ = [v1, v2, . . . , vn] of
words over V and a set P of splicing rules over V , we define

• a sequential derivation step M =⇒s M ′ by [w1, w2] =⇒
p

[v1, v2] and wi = vi for

3 ≤ j ≤ n for some p ∈ P and some appropriate order of the elements in M and
M ′,

• a maximally parallel derivation step M =⇒mp M ′ by [w2i−1, w2i] =⇒
pi

[v2i−1, v2i] for

1 ≤ i ≤ k ≤ n
2

and wi = vi for 2k+1 ≤ j ≤ n for some pi ∈ P and some appropriate
order of the elements in M and M ′, and by the requirement that there is no multiset
[w, w′] ⊆ [w2k+1, w2k+2, . . . , wn] to which a splicing rule p ∈ P can be (successfully)
applied,

• a strongly maximally parallel derivation step M =⇒smp M ′ by M =⇒
mp

M ′ for

some k (as in the preceding item) and there is no M ′′ with M =⇒mp M ′′ for some
k′ > k.

As usually, by =⇒∗
s, =⇒∗

mp, and =⇒∗
smp, we denote the reflexive and transitive closures

of =⇒s, =⇒mp, and =⇒smp, respectively.

Definition 3.35 We define the sequential, maximally parallel and strongly maximally par-
allel multiset language mL(G, s), mL(G,mp) and mL(G, smp) generated by G as

mL(G, s) = {K | M =⇒∗
s K},

mL(G,mp) = {K | M =⇒∗
mp K},

mL(G, smp) = {K | M =⇒∗
smp K}.

80

Example 3.36 We consider the multiset splicing system

G = ({a, b, c, d}, {r1, r2, r3},M)

with

r1 = a#b$d#d ,

r2 = b#b$d#d ,

r3 = b#b$c#d ,

M = [ab, abb, cd, cdd] .

By a sequential application of r1 we obtain from M the multisets

M1 = [ad, cdb, abb, cd] and M2 = [ad, cdbb, ab, cd] ,

and by applications of r2 and r3 we get

M3 = [abd, cdb, ab, cd], M4 = [abd, cb, ab, cdd] and M5 = [abdd, cb, ab, cd],

respectively. We can apply only r3 to M1, and this is possible for two different pairs of
M1. These applications yield

M6 = [abd, cb, ad, cdb] and M7 = [abdb, bc, ad, cd].

We can only apply r3 to M2 and obtain

M8 = [cdbd, cb, ad, ab].

No rule can be applied to M3. Further, r1 can be applied to two different pairs of M4,
which gives M6 and M8,again, and no other rule can be applied to M4. No rule can be
used for M5. Since M6, M7 and M8 do not allow the application of some rule, we have

mL(G, s) = {M, M1,M2, M3,M4,M5,M6,M7,M8} .

We consider now the maximally parallel mode of derivation. If we apply r1 to abb
and cdd, then there is no rule which can be applied to ab and cd. Thus this derivation
is maximally parallel and gives M2. M2 only allows the application of r3; and since its
application is a maximally parallel derivation step, we get M8.

If we apply r1 to ab and cdd, then we can apply r3 to abb and cd, too, and obtain M6,
to which no rule can be applied.

If we apply r2 to M , then abb and cdd are involved and there is no rule which can be
applied to ab and cd. Thus this derivation is maximally parallel and gives M3, and no
further derivation is possible. If we apply r3 to M , this yields M5 and M6 in a maximally
parallel way.

All together, this implies

mL(G,mp) = {M, M2,M3,M5,M6,M8} .

Since there is a parallel derivation step which involves all four words of M , this is the
only strongly maximally parallel derivation from M . Therefore

mL(G, smp) = {M, M6}.

81

For Y ∈ {s, mp, smp}, we denote by mL(Y) the family of all languages mL(G, Y)
which can be generated by a multiset splicing system G in the derivation mode Y . If we
restrict to multiset splicing systems G = (V, P,M) with a multiset M of cardinality n, we
use the notation mLn(Y).

Lemma 3.37 For a multiset splicing system G = (V, P,M), a ∈ V , Y ∈ {s,mp, smp},
and any K ∈ mL(G, Y),

#(K) = #(M), l(K) = l(M), and #a(K) = #a(M).

Proof. The assertions immediately follow from (3.3) and from the fact that any splicing
rule p has to be applied to two words and yields two words. 2

In the following, we compare the language classes generated in the different derivation
modes, mLn(Y), Y ∈ {s,mp, smp}.

Lemma 3.38 For two integers n and m, m 6= n, and two derivation modes Y ∈ {s,mp, smp}
and Y ′ ∈ {s,mp, smp}, mLn(Y) and mLm(Y ′) are incomparable.

Proof. Let L be a set of multisets in mLn(Y). Then #(K) = n for any multiset K of L.
Analogously, #(K ′) = m for any multiset K ′ of some L′ ∈ mLm(Y ′). Thus L /∈ mLm(Y ′)
and L′ /∈ mLn(Y). 2

Lemma 3.39 i) For n ∈ {1, 2, 3}, mLn(s) = mLn(mp) = mLn(smp).
ii) For n ≥ 4, mLn(mp) and mLn(smp) are both incomparable to mLn(s).
iii) For n ≥ 5, mLn(mp) is not contained in mLn(smp).
iv) For n ≥ 6, the classes mLn(s), mLn(mp), and mLn(smp) are pairwise incompa-

rable.

Proof. i) If n = 1 then no application of splicing rules is possible, and therefore the
statement is true. If n = 2 or n = 3, then exactly two elements are taken to apply a
splicing rule in all modes of derivation. This implies the statement.

ii) We give the proof for n = 4. In order to obtain a proof for n ≥ 5 we can add some
words to the initial multiset to which the splicing rules cannot be applied.

a) First we prove that mLn(mp) and mLn(smp) is not contained in mLn(s). Let

G = ({a, b}, {a#b$b#a}, [ab, ab, ba, ba]).

Then

[ab, ab, ba, ba] =⇒mp [aa, aa, bb, bb] and [ab, ab, ba, ba] =⇒smp [aa, aa, bb, bb] .

Since there is no rule applicable to elements of [aa, aa, bb, bb], we obtain

mL(G, mp) = mL(G, smp) = {[ab, ab, ba, ba], [aa, aa, bb, bb]} .

On the other hand, since a sequential application of a splicing rule changes at most two
elements, [ab, ab, ba, ba] =⇒s [aa, aa, bb, bb] is impossible as well as [aa, aa, bb, bb] =⇒s

[ab, ab, ba, ba]. Therefore mL(H, s) 6= mL(G,mp) for any MSS H.

82

b) Now we show that neither mLn(mp), nor mLn(smp) contains mLn(s). Let

G = ({a, b, c, d, e, f, g, h}, {a#b$c#d, e#f$g#h}, [ab, cd, ef, gh]).

Then
mL(G, s) = {M0, M1,M2,M3},

where
M0 = [ab, cd, ef, gh], M1 = [ad, cb, ef, gh], M2 = [ab, cd, eh, gf],

M3 = [ad, cb, eh, gf].

Let us assume that mL(G, s) = mL(H, Y) for some H = ({a, b, c, d, e, f, g, h}, P,M), Y ∈
{mp, smp}.

Without the loss of generality, we may assume that M = M0. To obtain the word
ad without also obtaining ah or af , P needs to contain the rule a#b$c#d. Similarly, to
obtain eh, P must contain e#f$g#h. This means that

M0 =⇒Y M3

is the only possible derivation step from M0. To obtain M1 and M2 from M3 in any way,
P needs to contain the a#d$c#b and e#h$g#f , but then the only possibility is

M3 =⇒Y M0

which means that mL(G, s) can not be generated by any MSS H in the maximally parallel,
or in the strongly maximally parallel modes.

iii) We only give the proof for n = 5, the modifications for n ≥ 6 are similar to that
of point ii).

Consider the MSS

G = ({a, b, c, d, e, f, g, h, i, j}, P, [ab, cd, ef, gh, ij])

with
P = {a#b$c#d, c#d$e#f, a#b$e#f, c#d$g#h, c#d$i#j}.

This system generates the following five multisets in the maximally parallel mode:

M0 = [ab, cd, ef, gh, ij], M1 = [ad, cb, ef, gh, ij], M2 = [ab, cf, ed, gh, ij],

M3 = [af, ch, eb, gd, ij], M4 = [af, cj, eb, gh, id].

Let us assume that H = ({a, b, c, d, e, f, g, h, i, j}, R, M) with some set R of splicing rules
and some multiset M satisfies

mL(H, smp) = mL(G,mp) = {M0,M1,M2,M3, M4} .

Let us observe an important property of the language mL(G,mp). It is impossible to
choose a pair Mi,Mj of multisets from M1, M2, M3, and M4 in such a way that Mi =⇒smp

Mj or Mj =⇒smp Mi holds (in fact, this is true also for the relation =⇒mp). To see this,
consider for example M1 and M2. To obtain the word ab ∈ M2 from M1, the system

83

would need the rule a#d$c#b, but this rule would also produce cd 6∈ M2. Or to obtain
ad ∈ M1 from M2, the rule a#b$e#d is needed, but this would also produce eb 6∈ M1.

Now let us try to construct the MSS H. We distinguish three cases for the axiom M
of H.

Case 1. M = M0. To derive M1 or M2, the system needs only one rule, a#b$c#d or
c#d$e#f , respectively, while to derive M3 or M4, it needs two rules, a#b$e#f, c#d$g#h
or a#b$e#f, c#d$i#j, respectively. This means that in the strongly maximally parallel
derivation mode, the multisets of the language mL(G,mp) can not be derived from M
alone because in the strongly maximal parallel mode we can not apply only one rule when
it would be possible to apply two. As a consequence of this statement and the fact that
no two multisets of M1, M2, M3, and M4 can be used to derive one from the other, we
can conclude that M0 can not be the axiom of H.

Case 2. M = Mi, i ∈ {1, 2}. If M = M1, then the rule a#d$c#b can be used to
derive M0, and no other multisets can be derived from M1 in one step. The same holds
for M2, but we need to use the rule c#f$e#d to reach M0. From M0 it is impossible
to derive all three remaining multisets in one strongly maximally parallel derivation step
each, because, as we already have seen in Case 1 above, to reach M3 and M4 we need steps
which use two rules, while to reach M1 or M2 we need only one rule. Other combinations
are also impossible because of the property of mL(G,mp) mentioned above; that is, the
impossibility of deriving any one of M1, M2, M3, or M4 from any other. This means that
Mi, i ∈ {1, 2} can not be the axiom of H.

Case 3. M = Mi, i ∈ {3, 4}. The reasoning is similar to the reasoning of Case 2
above. Starting from M3 (or M4), only M0 can be derived using a#f$e#b, c#h$g#d (or
a#f$e#b, c#j$i#d). But it is impossible to reach all remaining multisets from M0 in
one step each as we have already seen above, and no two multisets of M1, M2, M3, and
M4 can be used to derive one from the other, so M = Mi, i ∈ {3, 4} can not be the axiom
of H.

Considering these three cases, we can conclude that it is not possible to get mL(G,mp)
by any MSS H in the strongly maximally parallel mode of derivation.

iv) Again, we only give the proof for n = 6, the modifications for n ≥ 7 are left to the
reader. By points ii) and iii), it is sufficient to show that mLn(smp) is not contained in
mLn(mp).

Consider the MSS

G = ({e, f, g, h, i, j, k, l}, {e#f$g#h, i#j$k#l, e#f$i#j, e#h$i#l}, [ef, gh, ij, kl, ef, ij])

which in the strongly maximal parallel mode generates the following three multisets:

M0 = [ef, gh, ij, kl, ef, ij], M1 = [eh, gf, il, kj, ej, if], M2 = [el, gf, ih, kj, ej, if].

(In the first derivation step we apply in parallel the first three rules which is the only
possible derivation step in the smp mode yielding M1 from the axiom M0, now the fourth
rule is the only rule applicable to M1, and this gives M2 to which no rule can be applied.)

Let us assume that H = ({e, f, g, h, i, j, k, l}, P, M) with some set P of splicing rules
and some initial multiset M satisfies

mL(H, mp) = mL(G, smp) = {M0,M1,M2} .

84

Let us try to construct H. We distinguish three cases for the axiom M of H.
Case 1. M = M0. M0 =⇒mp M2 is impossible since the generation of el requires

the combination of ef and kl which generates kf , too, and kf /∈ M2. Therefore we have
the derivation M0 =⇒mp M1 and it is easy to see that this requires the rules e#f$g#h,
i#j$k#l and e#f$i#j. Then we also have M0 =⇒mp [ej, gh, if, kl, ej, if], and thus we
can generate a multiset not in mL(G, smp) which gives a contradiction.

Case 2. M = M1. As above, we can show that M2 =⇒mp M0 is impossible, because
obtaining ef would also yield gl, therefore M1 =⇒mp M0 holds which means that P
needs to contain the rules e#h$g#f, i#l$k#j, e#j$i#f . However, then M1 =⇒mp M2 is
impossible since th rules above would also change the words ej, if . Since M0 =⇒mp M2

is also impossible (see Case 1), we can conclude that mL(G, smp) can not be generated
from M1.

Case 3. M = M2. Since M2 =⇒mp M0 is impossible, again, we need the derivation
M1 =⇒mp M0. As in Case 2 we can show that this implies that M2 =⇒mp M1 cannot
hold. Therefore mL(G, smp) can neither be generated from M2, and this concludes our
proof. 2

Besides comparisons of the generative power, one can also discuss decision problems.
However, there are trivial answers with respect to the emptiness problem and finiteness
problem, since all the considered types of languages are non-empty and finite. Therefore
one can list all elements of the generated language and can answer the membership prob-
lem and the universality problem (given a multiset splicing system G = (V, P, M), decide
whether or not all multisets M ′ with words of

⋃l
i=0(M)V i and #(M ′) = #(M) can be

generated). It remains an open problem to discuss the complexity of the membership and
universality problem.

3.4 Sticker Systems

In this section the basic operations are bondings and ligases, i.e., we glue together some
parts of double strands according to the Watson-Crick complementarity; e.g. from the
pieces

AACGTAGCGATTT and GGCCAATAGGGAAACC

CATCGCTAAACCGG TTATCCCT

we obtain the double strand

AACGTAGCGATTTGGCCAATAGGGAAACC

CATCGCTAAACCGGTTATCCCT

In order to describe the double strands with overhangs we introduce the following
notations. Let V be an alphabet, and let % ⊂ V × V be a symmetric relation (i.e.,
(a, b) ∈ % implies (b, a) ∈ %2. We say that a and b are complementary if (a, b) ∈ %.

We set [
V

V

]

%
= {

[
a

b

]
| a, b ∈ V, (a, b) ∈ %}

2If one considers the biologically interesting case of V = {A,C, G, T}, then % is the relation given by
the Watson-Crick-complementarity.

85

and consider this set as an alphabet. In the sequel the word
[

a1

b1

] [
a2

b2

]
. . .

[
an

bn

]
over

[
V
V

]

will often be written as
[

a1a2...an

b1b2...bn

]
.

The elements of
[

V
V

]∗
%

describe the double strands where the upper and lower part are

letter by letter in the relation %. In order to describe the overhangs we set

(
V ∗

λ

)
= {

(
w

λ

)
| w ∈ V ∗}

and (
λ

V ∗

)
= {

(
λ

w

)
| w ∈ V ∗} .

The elements of these sets describe single upper strands and single lower strands, respec-
tively. Now we define

L%(V) = (
(

V ∗

λ

)
∪

(
λ

V ∗

)
)
[
V

V

]∗

%
,

R%(V) =
[
V

V

]∗

%

(
V ∗

λ

)
∪

(
λ

V ∗

)
),

LR%(V) = (
(

V ∗

λ

)
∪

(
λ

V ∗

)
)
[
V

V

]+

%
(
(

V ∗

λ

)
∪

(
λ

V ∗

)
),

W%(V) = L%(V) ∪R%(V) ∪ LR%(V).

Obviously, L%(V), R%(V), and LR%(V) are constructs which describe double strands with
overhangs to the left side, to the right side, and to both sides. The three strands given in
the beginning of this section can be presented as

(
AAC

λ

) [
GTAGCGATTT

CATCGCTAAA

] (
λ

CCGG

)
,

(
GGCC

λ

) [
AATAGGA

TTATCCCT

] (
AACC

λ

)

(
AAC

λ

) [
GTAGCGATTTGGCCAATAGGA

CATCGCTAAACCGGTTATCCCT

] (
AACC

λ

)

We note that
(

w
λ

) [
w1

w2

]
cannot be written as (a pair)

(
ww1

w2

)
since we loose the infor-

mation which letters are in the relation %.
Let x ∈ LR%(V). Then x can be decomposed as x = x1x2x3 with

x2 ∈
[
V

V

]+

%
and x1, x3 ∈ (

(
V ∗

λ

)
∪

(
λ

V ∗

)
) . (3.4)

Thus

x1 =
(

w1

λ

)
or x1 =

(
λ

w1

)
and x3 =

(
w3

λ

)
or x3 =

(
λ

w3

)

for some w1 ∈ V ∗ and w3 ∈ V ∗. We define the delay of x by

d(x) = |w1|+ |w3| .

86

The delay of a word is the sum of its overhangs to the right and to the left. Obviously, a
delay can be defined for the elements of L%(V) and R%(V), too.

We define now the sticking operation µr : LR%(V) ×W%(V) → LR%(V) which allows
the prolongation of an element of LR%(V) to the right by an element of W%(V). Let
x ∈ W%(V) be decomposed as x = x1x2x3 as in (??). Let y ∈ W%(V). Then we define
µr(x, y) as

1. x1x2

[
u
v

]
y′ if x3 =

(
u
λ

)
and y =

(
λ
v

)
y′ for some u, v ∈ V ∗ and y′ ∈ R%(V),

2. x1x2

[
u
v

]
y′ if x3 =

(
λ
v

)
and y =

(
u
λ

)
y′ for some u, v ∈ V ∗ and y′ ∈ R%(V),

3. x1x2

[
u
v

] (
u′
λ

)
if x3 =

(
uu′
λ

)
and y =

(
λ
v

)
for some u, v, u′ ∈ V ∗ and y′ ∈ R%(V),

4. x1x2

[
u
v

] (
λ
v′

)
if x3 =

(
u
λ

)
and y =

(
λ

vv′

)
for some u, v, v′ ∈ V ∗ and y′ ∈ R%(V),

5. x1x2

(
uv
λ

)
if x3 =

(
u
λ

)
and y =

(
v
λ

)
for some u, v ∈ V ∗,

6. x1x2

[
v
u

] (
λ
u′

)
if x3 =

(
λ

uu′

)
and y =

(
v
λ

)
for some u, v, u′ ∈ V ∗,

7. x1x2

[
v
u

] (
v′
λ

)
if x3 =

(
λ
u

)
and y =

(
vv′
λ

)
for some u, v, v′ ∈ V ∗,

8. x1x2

(
uv
λ

)
if x3 =

(
λ
u

)
and y =

(
λ
v

)
for some u, v ∈ V ∗.

The pictures in Figure 3.14 illustrate the Cases 1, 3 and 4. The reader may verify that
the given cases record all possible cases of a continuation to the right (note that x3 =

(
λ
λ

)

is allowed).

x y x y x y

Figure 3.14: Pictorial representation of the operation µr in the Cases 1, 3 and 4.

Obviously, in an analogous way we can define the prolongation to the left by an
operation µl. We omit the details.

Definition 3.40 i) A sticker system is a quadruple G = (V, %, A, D) where
– V is an alphabet,
– % ⊂ V × V is a symmetric relation on V ,
– A is a finite subset of LR%(V), and
– D is a finite subset of W%(V)×W%(V).

ii) We say that y ∈ LR%(V) is derived by x ∈ LR%(V) in one step (written as x =⇒ y)
iff

y = µl(µr(x, y2), y1) for some (y1, y2) ∈ D .

(Note that µl(µr(x, y2), y1) = µr(µl(x, y1), y2) since the prolongation to the right and to
the left are independent from each other.) By =⇒∗ we denote the reflexive and transitive
closure of =⇒.

87

iii) The molecule language ML(G) and the word language wL(G) generated by G are
defined by

ML(G) = {z | x =⇒∗ z, x ∈ A, z ∈
[
V

V

]+

%
}

and

wL(G) = {w |
[
w

v

]
∈ ML(G) for some v ∈ V +} .

By definition the molecule language of G consists of all double strands without overhangs
which can be obtained from the elements of A by simultaneous prolongations to the left
and to the right by elements of D. If we restrict to the upper strand of the molecules
of the molecule language, then we obtain the word language of G. Obviously, the upper
strands can be obtained from the molecules by the homomorphism which maps

[
a
b

]
to

a. Thus the word language of a sticker systems is a homomorphic images of its molecule
language.

Example 3.41 We consider the sticker system

G = ({a, b, c}, {(a, a), (b, b), (c, c)}, {
[
a

a

]
}, D)

where

D = {(
(

b

λ

)
,

(
b

λ

)
), (

(
c

λ

)
,

(
λ

λ

)
), (

(
λ

b

)
,

(
λ

λ

)
), (

(
λ

c

)
,

(
λ

b

)
) .

We are only interested in molecules in

M = ML(G) ∩
[
c

c

]∗ [
b

b

]∗ [
a

a

] [
b

b

]∗
.

Any word in M has a derivation of the following form

[
a

a

]
=⇒

(
b

λ

) [
a

a

] (
b

λ

)
=⇒

(
b2

λ

) [
a

a

] (
b2

λ

)
=⇒ . . . =⇒

(
bn

λ

) [
a

a

] (
bn

λ

)

=⇒
(

bn−1

λ

) [
ba

ba

] (
bn

λ

)
=⇒

(
bn−2

λ

) [
b2a

b2a

] (
bn

λ

)
=⇒ . . . =⇒

[
bna

bna

] (
bn

λ

)

=⇒
(

c

λ

) [
bna

bna

] (
bn

λ

)
=⇒

(
c2

λ

) [
bna

bna

] (
bn

λ

)
=⇒ . . . =⇒

(
cn

λ

) [
bna

bna

] (
bn

λ

)

=⇒
(

cn−1

λ

) [
cbnab

cbnab

] (
bn−1

λ

)
=⇒

(
cn−2

λ

) [
c2bnab2

c2bnab2

] (
bn−2

λ

)
=⇒ . . .

=⇒
[
cnbnabn

cnbnabn

]
.

(first we add n times to the left as well as to the right a b in the upper strand, then we
add n times to the left a b in the lower strand, then we add m times to the left a c in
the upper strand, then we add m times simultaneously c to the left and b to the right in
the lower strand; obviously, since we want to generate a double strand without overhangs
n = m has to hold). In a certain sense this derivation is the unique one for

[
cnbnabn

cnbnabn

]
;

88

the only change which is allowed concerns the order of the generation of the letter c in
the upper strand and of the letter b in the lower part, which have not to be generated in
the sequence given above, it can also happen in a mixed form, but we have to generate
n times c and n times b; also the application of (

(
λ
c

)
,
(

λ
b

)
) can be done earlier, if c is

already present in the upper overhang to the left and all bs added to the left have already
their counterpart in the lower strand.

Therefore we get for the word language

wL(G) = {cnbnabn | n ≥ 1} .

It is easy to show (e.g. by a pumping lemma) that wL(G) is not a context-free language.

We now present four special types of sticker systems or requirements to the derivations
in the systems.

Definition 3.42 i) A sticker system G = (V, %, A, D) is called

• one-sided if, for each pair (u, v) ∈ D, u =
(

λ
λ

)
or v =

(
λ
λ

)
hold,

• regular, if, for each pair (u, v) ∈ D, u =
(

λ
λ

)
holds,

• simple, if, for each pair (u, v) ∈ D, uv ∈
(

V ∗
λ

)
or uv ∈

(
λ

V ∗

)
hold.

Obviously, the sticker system given in Example 3.41 is not one-sided and not regular
since it contains the element (

(
λ
c

)
,
(

λ
b

)
in its set D. On the other hand, G of Example

3.41 is simple since we use for the prolongations only pairs which prolong to both sides
only the upper strand or only the lower strand of the molecule.

From the definition it can be seen that regular sticker systems have an analogy to
regular grammars since the molecule and the string can only be prolonged to the right,
respectively.

Definition 3.43 i) For a a sticker system G = (V, %, A, D) and a natural number d ≥ 1,
we define the language MLd(G) as the set of all molecules which have a derivation

x = x0 =⇒ x1 =⇒ x2 =⇒ . . . =⇒ xk with xk ∈
[
V

V

]∗

%
with d(xi) ≤ d for 0 ≤ i ≤ k.

ii) We say that a molecule language L ⊂
[

V
V

]∗
%
or a word language L′ ⊂ V ∗ can be generated

with bounded delay, if there are a sticker system G = (V, %, A, D) and a natural number
d ≥ 1 such that L = ML(G) = MLd(G) and L′ = wL(G), respectively, are valid.

The words of the language MLd(G) can be generated by a derivation where the length
of the overhangs is bounded by d. If all words of ML(G) can be generated by a derivation
where the length of the overhangs is bounded, then ML(G) is said to be a language with
bounded delay.

We mention that the generation of
[

c
c

]n [
b
b

]n [
a
a

] [
b
b

]n
and cnbnabn by the sticker system

given in of Example 3.41 requires an overhang of length n to the right. This follows from

the fact that the shortening of the right overhang is only possible if the sub-molecule
[

b
b

]n

89

between the c-part and the a-part has already been produced. We shall see below that
the languages generated in Example 3.41 cannot be derived with bounded delay since the
word language is not context-free (see Theorem 3.52).

We denote the families of word languages generated by arbitrary sticker systems, one-
sided sticker systems and regular sticker systems by ASL, OSL and RSL, respectively. If
we allow only simple systems, we add the letter S before X with X ∈ A,O,R}. Moreover,
if we restrict to languages which can be generated by bounded delay, we add (b) after SL.
Furthermore, we combine these restriction. Thus ASL(b) and SRSL are the families of
languages which can be generated by arbitrary sticker systems with bounded delay and
by regular simple sticker systems, respectively.

We now investigate the generative power of sticker systems. The first two statements
follow directly from the definitions.

Lemma 3.44 For X ∈ {A,O, R, SA, SO, SR}, XSL(b) ⊆ XSL. 2

Lemma 3.45 For y ∈ {(b), λ}, the diagram given in Figure 3.15 is valid (if X and Y
are connected by a line and Y has an upper position than X, then X ⊆ Y). 2

ASLy

SASLy

rrrrrrrrrr
OSLy

ffLLLLLLLLLL

SOSLy

LLLLLLLLLL

rrrrrrrrrr
RSLy

eeKKKKKKKKKK

SRSLy

ssssssssss

LLLLLLLLLL

Figure 3.15: Hierarchy of (bounded) language families generated by sticker systems

Lemma 3.46 ASL ⊆ L(CS)

Proof. Let G = (V, %, A, D) be a sticker system. We consider the alphabet consisting of
all pairs (a, c) with a, c ∈ V ∪ {λ} and (a, c) ∈ % if a and c are both non-empty words.
It is easy to construct a phrase structure grammar which simulates the sticking of x to
the left and the sticking of y to the right where (x, y) ∈ D. Since no erasing is performed
during the simulations, the grammar is a context-sensitive one. 2

Lemma 3.47 OSL ⊆ L(REG)

Proof. Let G = (V, %, A, D) be a sticker system. Let

d = max{d(x) | x ∈ A or (x, u) ∈ D or (u, x) ∈ D for some u}.

90

Now assume that there is a derivation of some molecule z with an upper overhang at
the right end which is longer than d. This situation can only occur if in the last step
some upper single strand has been added. Then the only elements of D which result in a
prolongation to the right have to simple. If the are upper strands the delay is increased;
if it is a lower strand, then the delay is decreased. Obviously, the order in which we apply
the single strands can be arbitrarily chosen. Finally we have to reach a molecule without
overhangs. Therefore we can choose the order of the simple adding in such a way that the
overhang is always smaller than d. Thus any molecule can be generated by a derivation
where all intermediate steps have a delay ≤ d.

We now construct the context-free grammar G′ = (N, T, P, S) with

N =

{〈
u

λ

〉

l
,
〈

u

λ

〉

r
,

〈
λ

u

〉

l

,

〈
λ

u

〉

r

| u ∈ V ∗, 0 ≤ |u| ≤ d

}
∪ {S},

T =
[
V

V

]

%

(the nonterminals store the existing overhang to the left or to the right),and P consisting
of all rules of the form

S →
〈

u1

u2

〉

l

[
x1

x2

] 〈
v1

v2

〉

r

with
(

u1

u2

) [
x1

x2

] (
v1

v2

)
∈ A

(by these rules we generate all elements of A),

〈
u1

u2

〉

l

→
〈

u′1
u′2

〉

l

[
w1

w2

]
such that

[
x1y1u1

x2y2u2

]
=

[
w1

w2

]

for some

((
u′1
u′2

) [
x1

x2

] (
y1

y2

)
,

(
λ

λ

))
∈ D

(if the left end is
(

u1

u2

)
we add to the left the sticker

(
u′1
u′2

) [
y1

y2

] (
y1

y2

)
according to an element

of D to the left end and get
(

u′1
u′2

) [
x1y1u1

x2y2u2

]
),

〈
u1

u2

〉

r

→
[
w1

w2

] 〈
u′1
u′2

〉

r

such that

[
u1y1x1

u2y2x2

]
=

[
w1

w2

]

for some

((
λ

λ

)
,
(

x1

x2

) [
y1

y2

] (
u′1
u′2

))
∈ D

(we extend to the right), 〈
λ

λ

〉

l

→ λ

〈
and

λ

λ

〉

r

→ λ

(if there is no overhang, then we finish the derivation).
It is easy to see that L(G′) = ML(G) = MLd(G). In order to get the word language,

we only consider the upper strands, which can be obtained by a homomorphism from
L(G′). Hence wL(G′)

91

Moreover, any derivation starts with a rule S →
〈

u1

u2

〉
l

[
x1

x2

] 〈
v1

v2

〉
r
with

(
u1

u2

) [
x1

x2

] (
v1

v2

)
∈

A. Then we extend from
〈

u1

u2

〉
l
to the left by rules of the form A → Bz and from

〈
v1

v2

〉
r

to the right by rules of the form A → zB where w ∈ T ∗ and A,B ∈ N . Therefore L(G′)
is a finite union of languages of the form X{w}Y where X and Y are generated by rules
of the form A → zB or A → Bz and w ∈ T+. Hence X and Y are regular, which implies
that all X{w}Y and thus L(G′) are regular, too.

In order to get the word language, we only consider the upper strands, which can be
obtained by a homomorphism from L(G′). By the closure properties of L(REG), wL(G′)
is regular, too. 2

Lemma 3.48 SOSL(b) = SOSL and SRSL(b) = SRSL.

Proof. The statements follow immediately from the remarks in the beginning of the
proof of Lemma 3.47. 2

Lemma 3.49 L(REG) ⊆ RSL(b).

Proof. Let L be a regular language. Then L = L(A) for some deterministic finite
automaton A = (X, Z, z1, F, δ). Let Z = {z1, z2, . . . , zk}.

We construct a sticker system G = (X, %,A, D) with % = {(a, a) | a ∈ X} (because we
are only interested in the word language it is sufficient to consider only molecules of the
form

[
w
w

]
With any state zj we associate the words

[
w
w

] [
u
λ

]
with |wu| = k +1 and |u| = j.

If w is a word of length k + 1 and we want to remember a state zj, then we choose x and
u as the prefix and suffix of w of lengths k + 1− j and j, respectively. A word z ∈ L can
be written as w = w1w2 . . . wr where |wi| = k + 1 for 1 ≤ i ≤ r − 1 and 1 ≤ |wr| ≤ k + 1.
We consider the states si = δ(z0, w1w2 . . . wi) = δ(si−1, zi). By a partition of wi by the
above method into xi and ui to remember the state si.

We now define A and D by

A1 =
{[

x

x

]
| x ∈ L, 0 ≤ |x| ≤ k + 1

}
,

A2 =

{[
y

y

] (
u

λ

)
| |xu| = k + 1, |u| = j, δ(z0, xu) = zj

}
,

A = A1 ∪ A2

(any word x ∈ L of length at most k + 1 is in L(G) by A1 ⊆ L(G); otherwise we consider
the prefix of the word, i.e., w1 in the above notation and remember zj = s1),

D1 =

{(
λ

λ

)
,

(
λ

v

) [
x

x

] (
u

λ

))
| |v| = j, |xu| = k + 1, |u| = i, δ(zj, xu) = zi)},

D2 =

{(
λ

λ

)
,

(
λ

v

) [
x

x

])
| |v| = j, 1 ≤ |x| ≤ k + 1, δ(zj, x) ∈ F,

D = D1 ∪D2

(by the rules of D1, we extend the word by xu, which leads from the remembered state
zj to the state zi which is stored by u of length i; by the rules of D2, we read the last

92

subword of the partition we add the word without an overhang and stop the generation
if an accepting state is reached; otherwise we have no applicable rule).

It is easy to see by theses explanations that L = wL(G).
Obviously, G is a regular sticker system. Moreover, by our construction, all overhangs

are bounded by k. Therefore, ML(G) = MLk(G) which shows that wL(G) is of bounded
delay. 2

Lemma 3.50 ASL(b) = L(LIN).

Proof. We prove only ASL(b) ⊆ L(LIN) and refer to [23] for a proof of the converse
inclusion.

In a sticker system, a word is generated by adding to the left and to the right elements
of W%(V), i.e., looking only on the upper strand a derivation has the form

z =⇒ p1zq1 =⇒ p2p1zq1q2 =⇒ . . . =⇒ pnpn−1 . . . p2p1zq1q2 . . . qn−1qn. (3.5)

In a linear grammar, the situation is opposite since a derivation has the form

S =⇒ p′1A1q
′
1 =⇒ p′1p

′
2A2q

′
2q
′
1 =⇒ . . . =⇒ p′1p

′
2 . . . p′nAnq

′
nq
′
n−1 . . . q′1

=⇒ p′1p
′
2 . . . p′nAz′q′nq

′
n−1 . . . q′1.

Thus the idea of the linear is to start with the elements added in the last step of the
generation in the sticker, to move ”backwards” in the generation and to stop with a
generation of an element of the start set of the sticker system.

We now give the formalization of this idea. Let G = (V, %, A, D) be a sticker system.
Let L = MLd(G) = ML(G) for some constant d. Then the delays are bounded by d. We
construct the linear grammar G′ = (N, T, P, S) with

N = {〈
(

u1

u2

)
,
(

v1

v2

)
〉 |

(
u1

u2

)
,
(

v1

v2

)
∈

(
λ

V

)
∪

(
V

λ

)
, |u1|, |u2|, |v1|, |v2| ≤ d} ∪ {S},

T =
[
V

V

]

%
,

(by the nonterminals we store the overhangs by going from the outer part to the inner
part and P consisting of all rules of the following forms

S →
[
w1

w2

]
〈

(
u1

u2

)
,
(

v1

v2

)
〉

[
z1

z2

]
where (

[
w1

w2

] (
u1

u2

)
,
(

v1

v2

) [
z1

z2

]
) ∈ D

(we generate the outer elements pn and qn of the derivation (3.5),

〈
(

u1

u2

)
,
(

v1

v2

)
〉 →

[
w1

w2

]
〈

(
u′1
u′2

)
,

(
v′1
v′2

)
〉

[
z1

z2

]

where

((
x1

x2

) [
x′1
x′2

] (
u′1
u′2

)
,

(
v′1
v′2

) [
y1

y2

] (
y′1
y′2

))
∈ D,

[
w1

w2

]
=

[
u1x1x

′
1

u2x2x′2

]
,

[
z1

z2

]
=

[
y1y

′
1v1

y2y′2v2

]
,

93

(we proceed to the ”middle”),

〈
(

u1

u2

)
,
(

v1

v2

)
〉 →

[
w1

w2

] [
x1

x2

] [
z1

z2

]

where
[
x1

x2

]
6=

[
λ

λ

]
,

(
w′

1

w′
2

) [
x1

x2

] (
z′1
z′2

)
∈ A,

[
w1

w2

]
=

[
u1w

′
1

u2w′
2

]
,

[
z1

z2

]
=

[
z′1v1

z′2v2

]
,

(if the overhangs of the nonterminal fit to some element of A, we finish the derivation),

S →
[
w1

w2

]
where

[
w1

w2

]
∈ A

(we generate directly the elements from A which belong to the language ML(G)). By
these explanations it is easy to see that L(G′) = wL(G). 2

Lemma 3.51 There is a regular language which is not in SOSL.

Proof. We consider the language L = {b}{a}+{b}, which is regular since it is given as
a regular expression. Let us assume that L = wL(G) for some simple one-sided sticker
system G = (V, %, A, D). Because A is finite, and L is infinite, one needs upper and
lower strands which can generate in the upper part an arbitrary number of as and the
corresponding letter in the lower part, i.e., D contains at least one pair of one of the forms

((
λ

λ

)
,
(

y1

λ

))
and

((
λ

λ

)
,

(
λ

y2

))
or

((
y1

λ

)
,

(
λ

λ

))
and

((
λ

y2

)
,

(
λ

λ

))

with y1 ∈ {a}+ and y2 ∈ (V ′)+, where V ′ consists of all letters c with (a, c) ∈ %.
We only discuss the first case; the other one can be handled analogously.
Let |y1| = k1 and |y2| = k2. Then, for ba2b, we have a derivation

(
x1

x2

) [
y1

y2

] (
z1

z2

)
=⇒∗

[
ba2b

w1

]

for some
(

x1

x2

) [
y1

y2

] (
z1

z2

)
∈ A and some w2 ∈ (V ′)+. However, this molecule can be extended

to the right by adding k2 times
(

y1

λ

)
and k1 times

(
λ
y2

)
. Because we have k2|y1| = k1|y2| =

k1k2, we get the result

[
ba2b

w1

] (
y1

λ

)k−2
(

λ

y2

)k1

=

[
ba2bak1k2

w2

]

for some w2 ∈ (V ′)+ of length k1k2 + 4. Hence ba2bak1k2 ∈ wL(G), but ba2bak1k2 /∈ L in
contrast to L = wL(G). 2

If we combine the Lemmas 3.44 – 3.51 and the fact that SASL contains a non-context-
free language by Example 3.41, we obtain the following hierarchy.

Theorem 3.52 The diagram of Figure 3.16 holds (where an arrow X → Y is used for
the proper inclusion X ⊂ Y ; if X and Y are connected by a line and Y has an upper
position than X, then X ⊆ Y). 2

94

L(CS)

ASL

SASL

qqqqqqqqqqq
ASL(b) = L(LIN)

iiRRRRRRRRRRRRRR

SASL(b)

ccGGGGGGGGGGGGG

pppppppppppppppp OSL(b) = RSL(b)
= OSL = RSL
= L(REG)

iiRRRRRRRRRRRR

SOSL = SOSL(b)

NNNNNNNNNNNNNNNN

55llllllllllllll

SRSL = SRSL(b)

Figure 3.16: Hierarchy of language families generated by sticker systems

95

