
4. Equational Partial Algebras

A heterogeneous partial algebra consists of several carrier sets and several operations
between these sets: A = ((As: s ∈ S), (ωA: ω ∈ Ω)). Here Σ = (S, α: Ω → S* × S,
(def(ω):ω∈Ω), A) is a signature, where S is a set of sort names and Ω a set of operator
symbols. Each operator ω ∈ Ω (ω: s1 s2 ... sn → s) has an input (a sequence of sorts), an
output sort and defining conditions def(ω). Operations may be total (defined for each element
of the Cartesian Product of input carrier sets); then the defining conditions consist of an empty
set of equations. These total operations have a degree of partiality of zero. If we use only
operations of degree zero in the equation system def(ω), then the corresponding operation ω
has partiality degree 1. More general, we require that each operation has a certain natural
number as degree of partiality. The degree of partiality of ω is n, if in def(ω) contains
only operations of degree smaller than n, but at least one with degree n-1.
The last component of our signature Σ is a set of axioms A. To guarantee that for each
Signature Σ = (S, α: Ω → S* × S, (def(ω):ω∈Ω), A) an initial algebra exists we allow only
implications, where the left hand side and the right hand side are equations.

An algebra A = ((As: s ∈ S), (ωA: ω ∈ Ω)) is a Σ-algebra
(Σ = (S, α: Ω → S* × S, (def(ω):ω∈Ω), A)), iff we have for each sort s ∈ S a carrier set As,
for each operation symbol ω ∈ Ω (ω: s1 s2 ... sn → s) a partial function
ωA:

1s
A ×

2sA × ... ×
nsA → As , such that Aω(a1,a2,...,an) is defined if and only if (a1,a2,...,an)

is a solution of the defining condition def(ω). Further, it is required that each implication of
A holds in the algebra.
A term ω(t1, t2, ..., tn) is defined in an algebra A for (a1,a2,...am), if t1, t2,... and tn are
defined for (a1,a2,..., am), with results b1, b2, ..., bn, respectively and ωA is defined for (b1, b2,
..., bn). ωA(b1, b2, ..., bn) is the result of the application of ω(t1, t2, ..., tn) on (a1,a2,..., am).
(a1,a2,..., am) is a solution of an equation t1= t2, if t1 and t2 are defined for (a1,a2,..., am) and
the both applications of t1 and t2 on (a1,a2,..., am) result in the same value.
An implication if g then h holds in an algebra A, if each solution of g is also a solution of
h.
A homomorphism f: A → B, from Σ-algebra A to Σ-algebra B is a family of mappings
(fs: As → Bs: s∈ S), which is compatible with the operations of Σ that means for each ω∈Ω
(ω: s1 s2 ... sn → s) and each solution (a1,a2,...an) of the defining condition def(ω) in A is
((a

1s
f 1), (a

2sf 2),..., (a
nsf n)) solution of def(ω) in B and the following equation holds:

fs(ωA(a1,a2,...an)) = ωB ((aB

1s
f 1), (a

2sf 2),..., (a
nsf n)).

By the equation is expressed that the following diagram commutes:

nsssf ...21

1s

A × A
2s × ... ×

nsA
1s

B ×
2sB × ... × nsB

 Aω BBω

 fs
As BBs

A Σ-algebra I is initial, if it exists to each other Σ-algebra A exactly one homomorphism.
Inital algebras play an important role in specification languages. They have two important
properties:

 1

1) no junk (they contain only elements, which can be represented by ground terms (terms
without variables))

2) no confusion (two terms are equal only, if it is forced by the axioms)

Let us consider the simplest data type of Boolean values:
BOOL =
sorts Bool
opers true, false → Bool // 0-ary operations (constants)
 not (Bool) → Bool // unary operation
 or, and (Bool, Bool) → Bool // binary operations
axioms b: Bool
 not(true) = false, not(false) = true
 or(b, true) = or(true, b) = true, or(false, false) = false
 and(b, false) = and(false, b) = false, and(true, true) = true
end
The algebra I with the two truth values IBool = {T, F} and the well known truth-operation is
the initial algebra for this signature BOOL, because for every other BOOL-algebra A exactly
one homomorphism h: I → A exists.
Consider for example an algebra A with ABool ={a}. Because all operations are total the image
of each application on ABool

0, ABool,, ABool
 2 is a. Therefore

f: IBool → ABool with f(T) = f(F) = a is a homomorphism and the only homomorphism from I
to A.
Let us consider an algebra B with BBBool = {T, F, ⊥} and
BBtrue = T, Bfalse B = F,
BBnot(T) = F, Bnot(F) = T, Bnot(⊥) = ⊥
or T F ⊥ and T F ⊥
T T T T T T F ⊥
F T F ⊥ F F F F
⊥ T ⊥ ⊥ ⊥ ⊥ F ⊥

Evidently i: IBool → BBool with i(T) = T and i(F) = F is the only homomorphism from I to B.
On the other hand A is not the initial algebra, because no homomorphism exists from A to I
for example. To guarantee compatibility with true a has to be mapped to T and to guarantee
compatibility with false a has to be mapped to F.
Further, B is not the initial algebra because there exists no homomorphism from B to I .
Assume g is such a homomorphism g: B → I
Let g(⊥) = T ∈ {T, F}
Because of compatibility with not holds:
g(notB(⊥)) = notB I(g(⊥)), but the left hand side is equal to T and the right hand side to F. The
same inequality results, if we choose g(⊥) = F.
In general, it is known that from the term algebra the initial algebra can be constructed. We
have to say only in which cases we consider two terms to represent the same element. This is
the case, if the equality of the two terms is forced by the given axioms. In the above
specification the quotient algebra consists of two classes only:
T = {true, and(true, true), or(true, true), not(false), and(true, not(false)),...}
F = {false, and(false, false), or(false, false), not(true), and(true, false),.....}.
We see we can represent both equivalence classes by the ground terms true and false.
In the same way by n constants an arbitrary finite carrier set can be specified.
The next interesting data type are the natural numbers.

 2

sorts Nat
opers zero: → Nat
 succ: Nat → Nat
 end
Because we have no axioms no ground terms are equalized, such that
{zero, succ(zero), succ(succ(zero)), succ(succ(succ(zero))),...}
is the carrier set of the initial algebra.
If we want to specify the integers, then we need the predecessor operation as an additional
generating operation:
INT = BOOL +
sorts Int
opers 0 → Int
 succ, pred (Int) → Int
 +, -, * (Int, Int) → Int
 pos (Int) → Bool // positive

equal-i (Int, Int) → Bool
 div (Int, y: Int iff equal-i(y, 0) = false) → Int // degree of partiality 1
axioms x, y: Int
 succ(pred(x)) = x
 pred(succ(x)) = x

 x + 0 = x
 x + (succ(y)) = succ(x + y) (*)
 x + (pred(y)) = pred(x + y)

 x – 0 = x
 x – succ(y) = pred(x – y)
 x – pred(y) = succ(x – y)

 x * 0 = 0
 x * (succ(y)) = (x*y) + x
 x * pred(y) = x*y -x

 pos(0) = false
 pos(succ(0)) = true
 if pos(x) = true then pos(succ(x)) = true
 if pos(x) = false then pos(pred(x)) = false

equal-i(x, x) = true
 if pos(x) then equal-i(0, x) = false & equal-i(x, 0) = false
 if equal-i(x, y) = false then equal-i(succ(x), succ(y)) = false
 if equal-i(x, y) = false then equal-i(pred(x), pred(y)) = false

 if pos(x) = pos(y) = pos(y - x) = true then div(x, y) = 0
 if equal-i(x, 0) = false then div(x, x) = succ(0)
 if pos(x – y) = pos(y) = true then div(x, y) = succ(div(x – y, y))
 if pos(0 – x) = pos(0 - y) = true then div(x, y) = div(0 – x, 0 - y)
 if pos(x) = pos(0 – y) = true then div(x, y) = 0 – div(x, 0 - y)
 if pos(0 – x) = pos(y) = true then div(x, y) = 0 – div(0 – x, y)
end

 3

Because of the first two equations in each ground term in succ and pred each occurrence of
succ(pred(and pred(succ(can be eliminated. That means that each term in 0, succ, and
pred can be reduced to either succn(0), or predn(0) (n>0) or 0. By these terms our integers
can be represented. Now, we have to ensure that each application of one of the remaining
operations to the above terms can be reduced by finite applications of the axioms to the above
terms. Further, we have to guarantee that by the axioms no two of the above terms succn(0),
predn(0), or 0 are forced to be identified.
If we consider for example the addition, then predn(0) + succm(0) can be reduced by (*) to
succ(predn(0)+succm-1(0)). If we apply the rule once more (m-1)-times, then
succm(predn(0)+0) results. By the preceding axiom results succm(predn(0)). By the second
axiom this term can be reduced to one of the ground terms described above.
In the same way we can choose all other combinations of ground terms and operations.
Especially, we should look that pos does not create new truth values. Because of the
partiality of div, we don’t have to reduce terms of type div(t, 0). We are not forced to
introduce error-values to make div artificially total.
From methodological point of view the above specification can be improved. It is better to
introduce at first only the operations, which are necessary to generate all elements of a new
sort and add further operation step by step. For the above example this means that we have to
introduce the sort Int only with the operations 0, succ, and pred and with the first two
axioms. The remaining operations can then be introduced by so called initial extensions.
If Σ1 ⊆ Σ2 (that means each sort, each operator symbol, and each axiom of Σ1 is contained
in Σ2), then the Σ2-algebra I is called initial extension of a Σ1-algebra A, if I↓Σ1 = A
(The Σ1-Redukt I↓Σ1 consists of all carrier sets and operations of I from Σ1) and for each
Σ2-algebra B and each Σ1-homomorphism h: A → B↓Σ1 exactly one Σ2-homomorphism
f: I → B exists with f↓Σ1=h.
 id
 A I

 h f
 B

If we choose for Σ1 the empty signature then the notion of initial extension coincides with the
notion of initial algebra.
Now, we can introduce a very general notion of theory by the definition of two kinds of
theory extensions:

1. The empty signature (∅) is a theory.
2. If T is a theory based on signature Σ1, then T def Σ2 is a theory, if Σ1 ⊆ Σ2 and if each

T-model has a Σ2-initial extension. The initial extensions are the models of T def Σ2.
3. If T is a theory, based on signature Σ1, then T req Σ2 is a theory, if Σ1 ⊆ Σ2. All Σ2-

algebras A, for which A↓Σ1 is a T-model are the T req Σ2 models.
4. Theories are constructed only by rules 1, 2, 3.

By req-extensions in general parameter theories are specified. Here, is only required that the
axioms are satisfied. By def-extensions always the initial algebras are specified.
For example, the only model of ∅ def BOOL is the initial algebra but each BOOL-algebra
is a model of ∅ req BOOL.
Although we shall use in general def-extensions, it should be remarked that we can specify for
example the equality relation in a very simple way by req-extensions:
DATA =
∅ def BOOL
req

 4

sorts Data
opers equal-d (Data, Data) →Bool
axioms x, y: Data

equal-d(x, x) = true
 if equal-d(x, y) = true then x = y
end
Although we specified the operation equal-d unique up to isomorphism the specification does
not contain an algorithm, how to compute the corresponding truth value. If a def-extension is
correct, then the specified operations are computable with respect to the given theory. It is
proved that the function, which can be specified by def_extensions of natural numbers are
exactly the partial recursive functions.

Specification of a stack

1. Stack with partial Operations
STACK1 =
def
sorts Data, Bool, Stack
opers d1, d2, …,dn Data
 true, false Bool
 empty Stack
 push (Data Stack) Stack
def
opers is_empty Stack Bool
 pop (s: Stack iff is_empty(s) = false) Stack
 top (s: Stack iff is_empty(s) = false) Data
axioms d: Data, s: Stack
 is_empty(empty) = true
 is_empty(push(d, s)) = false
 pop(push(d, s)) = s
 top(push(d, s)) = d
end

2. Stack with total Operations, but an Data-Error-Value (Error Recovery)

STACK2
def
sorts Data, Stack
opers d1, d2,…, dn, error: Data
 empty Stack
 push (Data, Stack) Stack
 top (Stack) Data
 pop (Stack) Stack
axioms d: Data, s: Stack
 pop(push(d,s)) = s
 top(push(d,s)) = d
 top(empty) = error
 pop(empty) = empty
end

STACK2-Model:
AData = {d1, d2,…, dn, e}

 5

AStack = AData
*

pushA(x, w) = xw
popA(w) = if w= xw’ then w’ else λ
topA(w) = if w = xw’ then x else e

 6

	4. Equational Partial Algebras
	3. If T is a theory, based on signature (1, then T req (2 is a theory, if (1 ((2. All (2-algebras A, for which A((1 is a T-model are the T req (2 models.
	4. Theories are constructed only by rules 1, 2, 3.
	Specification of a stack
	STACK2

