
4. Equational Partial Algebras  
 
A heterogeneous partial algebra consists of several carrier sets and several operations 
between these sets:  A = ((As: s ∈ S), (ωA: ω ∈ Ω)). Here Σ = (S, α: Ω → S* × S, 
(def(ω):ω∈Ω), A ) is a signature, where S is a set of sort names and  Ω  a set of operator 
symbols. Each operator ω ∈ Ω  (ω: s1 s2 ... sn  → s) has an input (a sequence of sorts), an 
output sort and defining conditions  def(ω). Operations may be total (defined for each element 
of the Cartesian Product of input carrier sets); then the defining conditions consist of an empty 
set of equations. These total operations have a degree of partiality of zero. If we use only 
operations of degree zero in the equation system  def(ω), then the corresponding operation  ω  
has partiality degree 1. More general, we require that each operation has a certain natural 
number as degree of partiality. The degree of partiality of  ω  is  n, if  in  def(ω)  contains 
only operations of degree smaller than  n, but at least one with degree  n-1.  
The last component of our signature Σ  is a set of axioms A. To guarantee that for each 
Signature Σ = (S, α: Ω → S* × S, (def(ω):ω∈Ω), A ) an initial algebra exists we allow only 
implications, where the left hand side and the right hand side are equations.  
  
An algebra A = ((As: s ∈ S), (ωA: ω ∈ Ω)) is a  Σ-algebra  
(Σ = (S, α: Ω → S* × S, (def(ω):ω∈Ω), A )), iff we have for each sort  s ∈ S  a carrier set As, 
for each operation symbol  ω ∈ Ω (ω: s1 s2 ... sn  → s) a partial function   
ωA: 

1s
A  × 

2sA  × ... × 
nsA  → As , such that  Aω(a1,a2,...,an) is defined if and only if  (a1,a2,...,an)  

is a solution of the defining condition  def(ω). Further, it is required that each implication of  
A  holds in the algebra. 
A term ω(t1, t2, ..., tn) is defined in an algebra  A  for (a1,a2,...am), if   t1, t2,... and tn  are 
defined for  (a1,a2,..., am),  with results b1, b2, ..., bn, respectively and  ωA is defined for (b1, b2, 
..., bn).  ωA(b1, b2, ..., bn)  is the result of the application of ω(t1, t2, ..., tn)  on (a1,a2,..., am).  
(a1,a2,..., am) is a solution of an equation t1= t2, if  t1   and  t2  are defined for (a1,a2,..., am) and 
the both applications of  t1 and  t2  on (a1,a2,..., am)  result in the same value.  
An implication  if g then h  holds in an algebra  A, if each solution  of  g  is also a solution of  
h.  
A homomorphism  f: A → B, from  Σ-algebra A to Σ-algebra B is a family of  mappings 
(fs: As → Bs: s∈ S), which is compatible with the operations of  Σ  that means for each  ω∈Ω  
(ω: s1 s2 ... sn  → s) and each solution (a1,a2,...an) of the defining condition  def(ω)  in  A  is  
( (a

1s
f 1), (a

2sf 2),..., (a
nsf n)) solution of def(ω) in B and the following equation holds: 

fs(ωA(a1,a2,...an)) = ωB (  (aB

1s
f 1), (a

2sf 2),..., (a
nsf n)).  

By the equation is expressed that the following diagram commutes: 
 
                

nsssf ...21

 
1s

A  × A
2s  × ... × 

nsA            
1s

B  × 
2sB  × ... ×  nsB

 

       Aω             BBω 

                   fs 
As                                 BBs 

 

A Σ-algebra  I  is initial, if it exists to each other Σ-algebra  A  exactly one homomorphism.  
Inital algebras play an important role in specification languages. They have two important 
properties: 
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1) no junk (they contain only elements, which can be represented by ground terms (terms 
without variables)) 

2) no confusion (two terms are equal only, if it is forced by the axioms) 
 
 
Let us consider the simplest data type of Boolean values: 
BOOL = 
sorts Bool 
opers true, false → Bool  // 0-ary operations (constants) 
 not (Bool) → Bool  // unary operation 
 or, and (Bool, Bool) → Bool // binary operations 
axioms b: Bool 
 not(true) = false, not(false) = true  
 or(b, true) = or(true, b) = true, or(false, false) = false 
 and(b, false) = and(false, b) = false, and(true, true) = true 
end 
The algebra  I  with the two truth values IBool = {T, F} and the well known truth-operation is 
the initial algebra for this signature BOOL, because for every other BOOL-algebra  A  exactly 
one homomorphism h: I → A  exists. 
Consider for example an algebra A with ABool ={a}. Because all operations are total the image 
of each application on ABool

0, ABool,, ABool
 2 is a. Therefore  

f: IBool → ABool with f(T) = f(F) = a is a homomorphism and the only homomorphism from I  
to A.  
Let us consider an algebra B with BBBool = {T, F, ⊥} and  
BBtrue = T, Bfalse B  = F,  
BBnot(T) = F, Bnot(F) = T, Bnot(⊥) = ⊥  
or T F ⊥  and T F ⊥ 
T T T T  T T F ⊥ 
F T F ⊥  F F F F 
⊥ T ⊥ ⊥  ⊥ ⊥ F ⊥ 
 
Evidently  i: IBool → BBool  with i(T) = T and i(F) = F is the only homomorphism from  I  to B.  
On the other hand  A  is not the initial algebra, because no homomorphism exists from  A  to I  
for example. To guarantee compatibility with true a has to be mapped to T and to guarantee 
compatibility with  false a has to be mapped to F. 
Further, B is not the initial algebra because there exists no homomorphism  from B to I . 
Assume g is such a homomorphism g: B → I 
Let g(⊥) = T ∈ {T, F} 
Because of compatibility with not holds: 
g(notB(⊥)) = notB I(g(⊥)), but the left hand side is equal to T and the right hand side to F. The 
same inequality results, if we choose g(⊥) = F.  
In general, it is known that from the term algebra the initial algebra can be constructed. We 
have to say only in which cases we consider two terms to represent the same element. This is 
the case, if the equality of the two terms is forced by the given axioms. In the above 
specification the quotient algebra consists of two classes only: 
T = {true, and(true, true), or(true, true), not(false), and(true, not(false)),...} 
F = {false, and(false, false), or(false, false), not(true), and(true, false),.....}. 
We see we can represent both equivalence classes by the ground terms true and false.  
In the same way by  n constants an arbitrary finite carrier set can be specified. 
The next interesting data type are the natural numbers.  
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sorts Nat 
opers zero: → Nat 
 succ: Nat → Nat 
 end 
Because we have no axioms no ground terms are equalized, such that  
{zero, succ(zero), succ(succ(zero)), succ(succ(succ(zero))),...}  
is the carrier set of the initial algebra.  
If we want to specify the integers, then we need the predecessor operation as an additional 
generating operation: 
INT = BOOL + 
sorts Int 
opers 0 → Int 
 succ, pred (Int) → Int 
 +, -, * (Int, Int) → Int 
 pos (Int) → Bool     // positive 

equal-i (Int, Int)  → Bool 
 div (Int, y: Int iff equal-i(y, 0) = false) → Int  // degree of partiality 1 
axioms x, y: Int 
 succ(pred(x)) = x 
 pred(succ(x)) = x 
 
 x + 0 = x 
 x + (succ(y)) = succ(x + y)  (*) 
 x + (pred(y)) = pred(x + y) 
  
 x – 0 = x 
 x – succ(y) = pred(x – y) 
 x – pred(y) = succ(x – y) 
 
 x * 0 = 0 
 x * (succ(y)) = (x*y) + x 
 x * pred(y) = x*y -x 
  
 pos(0) = false 
 pos(succ(0)) = true 
 if pos(x) = true then pos(succ(x)) = true 
 if pos(x) = false then pos(pred(x)) = false 
 

equal-i(x, x) = true 
 if pos(x) then equal-i(0, x) = false & equal-i(x, 0) = false 
 if equal-i(x, y) = false then equal-i(succ(x), succ(y)) = false 
 if equal-i(x, y) = false then equal-i(pred(x), pred(y)) = false 
 
 if pos(x) = pos(y) =  pos(y - x) = true then div(x, y) = 0 
 if equal-i(x, 0) = false then div(x, x) = succ(0) 
 if pos(x – y) = pos(y) = true then div(x, y) = succ(div(x – y, y)) 
 if pos(0 – x) = pos(0 - y) = true then div(x, y) = div(0 – x, 0 - y) 
 if pos(x) = pos(0 – y) = true then div(x, y) = 0 – div(x, 0 - y) 
 if pos(0 – x) = pos(y) = true then div(x, y) = 0 – div(0 – x, y)  
end 
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Because of the first two equations in each ground term in  succ  and  pred  each occurrence of  
succ(pred(  and  pred(succ(  can be eliminated. That means that each term in 0,  succ, and  
pred  can be reduced to either  succn(0),  or  predn(0) (n>0) or 0. By these terms our integers 
can be represented. Now, we have to ensure that each application of one of the remaining 
operations to the above terms can be reduced by finite applications of the axioms to the above 
terms. Further, we have to guarantee that by the axioms no two of the above terms succn(0), 
predn(0), or 0 are forced to be identified.  
If we consider for example the addition, then  predn(0) + succm(0) can be reduced by (*) to 
succ(predn(0)+succm-1(0)). If we apply the rule once more (m-1)-times, then  
succm(predn(0)+0) results. By the preceding axiom results succm(predn(0)). By the second 
axiom this term can be reduced to one of the ground terms described above.  
In the same way we can choose all other combinations of ground terms and operations. 
Especially, we should look that  pos  does not create new truth values. Because of the 
partiality of  div,  we don’t have to reduce terms of type  div(t, 0). We are not forced to 
introduce error-values to make   div  artificially  total.  
From methodological point of view the above specification can be improved. It is better to 
introduce at first only the operations, which are necessary to generate all elements of a new 
sort and add further operation step by step. For the above example this means that we have to 
introduce the sort  Int  only with the operations 0, succ, and pred and with the first two 
axioms. The remaining operations can then be introduced by so called initial extensions. 
If  Σ1 ⊆ Σ2  ( that means each sort, each operator symbol, and each axiom of  Σ1  is contained 
in  Σ2 ), then the  Σ2-algebra  I  is called initial extension of a Σ1-algebra  A,  if  I↓Σ1 = A  
(The Σ1-Redukt  I↓Σ1 consists of all carrier sets and operations of  I  from  Σ1) and for each 
Σ2-algebra  B  and each Σ1-homomorphism h: A → B↓Σ1  exactly one Σ2-homomorphism   
f: I → B exists with f↓Σ1=h. 
           id 
  A  I 
              
     h              f 
   B 
 
If we choose for Σ1 the empty signature then the notion of initial extension coincides with the 
notion of initial algebra.  
Now, we can introduce a very general notion of theory by the definition of two kinds of 
theory extensions: 

1. The empty signature (∅) is a theory. 
2. If  T  is a theory based on signature Σ1, then T def Σ2  is a theory, if Σ1 ⊆ Σ2 and if each 

T-model has a Σ2-initial extension. The initial extensions are the models of  T def Σ2. 
3. If  T  is a theory, based on signature Σ1, then T req Σ2  is a theory, if  Σ1 ⊆ Σ2. All  Σ2-

algebras  A, for which  A↓Σ1  is a T-model are the T req Σ2 models. 
4. Theories are constructed only by rules 1, 2, 3.   

By req-extensions in general parameter theories are specified. Here, is only required that the 
axioms are satisfied. By def-extensions always the initial algebras are specified.  
For example, the only model of  ∅ def  BOOL  is the initial algebra but each BOOL-algebra 
is a model of  ∅ req  BOOL.  
Although we shall use in general def-extensions, it should be remarked that we can specify for 
example the equality relation in a very simple way by req-extensions: 
DATA = 
∅ def  BOOL   
req  
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sorts Data 
opers equal-d (Data, Data) →Bool 
axioms x, y: Data 

equal-d(x, x) = true 
 if equal-d(x, y) = true then x = y 
end 
Although we specified the operation equal-d unique up to isomorphism the specification does 
not contain an algorithm, how to compute the corresponding truth value. If a def-extension is 
correct, then the specified operations are computable with respect to the given theory. It is 
proved that the function, which can be specified by def_extensions of natural numbers are 
exactly the partial recursive functions.  
 
Specification of a stack 

1. Stack with partial Operations 
STACK1 = 
def 
sorts Data, Bool, Stack 
opers d1, d2, …,dn  Data 
 true, false  Bool 
 empty  Stack 
 push (Data Stack)  Stack 
def 
opers is_empty Stack  Bool 
 pop (s: Stack iff is_empty(s) = false)  Stack 
 top (s: Stack iff is_empty(s) = false)  Data 
axioms d: Data, s: Stack 
 is_empty(empty) = true 
 is_empty(push(d, s)) = false 
 pop(push(d, s)) = s 
 top(push(d, s)) = d 
end 
 

2. Stack with total Operations, but an Data-Error-Value (Error Recovery) 
 
STACK2 
def 
sorts Data, Stack 
opers d1, d2,…, dn, error:  Data 
 empty  Stack 
 push (Data, Stack)  Stack 
 top (Stack)  Data 
 pop (Stack)  Stack 
axioms d: Data, s: Stack   
 pop(push(d,s)) = s 
 top(push(d,s)) = d 
 top(empty) = error 
 pop(empty) = empty 
end 
 
STACK2-Model: 
AData = {d1, d2,…, dn, e} 
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AStack = AData
* 

pushA(x, w) = xw 
popA(w) = if w= xw’ then w’ else  λ 
topA(w) = if w = xw’ then x else e 
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