4. Equational Partial Algebras

A heterogeneous partial algebra consists of several carrier sets and several operations between these sets: $A=\left(\left(A_{s}: s \in S\right),\left(\omega_{A}: \omega \in \Omega\right)\right)$. Here $\Sigma=\left(S, \alpha: \Omega \rightarrow S^{*} \times S\right.$, $(\operatorname{def}(\omega): \omega \in \Omega), \mathcal{A})$ is a signature, where S is a set of sort names and Ω a set of operator symbols. Each operator $\omega \in \Omega\left(\omega: s_{1} s_{2} \ldots s_{n} \rightarrow s\right)$ has an input (a sequence of sorts), an output sort and defining conditions $\operatorname{def}(\omega)$. Operations may be total (defined for each element of the Cartesian Product of input carrier sets); then the defining conditions consist of an empty set of equations. These total operations have a degree of partiality of zero. If we use only operations of degree zero in the equation system $\operatorname{def}(\omega)$, then the corresponding operation ω has partiality degree 1 . More general, we require that each operation has a certain natural number as degree of partiality. The degree of partiality of ω is n, if in $\operatorname{def}(\omega)$ contains only operations of degree smaller than n, but at least one with degree $n-1$.
The last component of our signature Σ is a set of axioms \mathcal{A}. To guarantee that for each Signature $\Sigma=\left(S, \alpha: \Omega \rightarrow S^{*} \times S\right.$, $\left.(\operatorname{def}(\omega): \omega \in \Omega), \mathcal{A}\right)$ an initial algebra exists we allow only implications, where the left hand side and the right hand side are equations.

An algebra $A=\left(\left(A_{s}: s \in S\right),\left(\omega_{A}: \omega \in \Omega\right)\right)$ is a Σ-algebra
$\left(\Sigma=\left(S, \alpha: \Omega \rightarrow S^{*} \times S,(\operatorname{def}(\omega): \omega \in \Omega), \mathcal{A}\right)\right.$), iff we have for each sort $s \in S$ a carrier set A_{s}, for each operation symbol $\omega \in \Omega\left(\omega: s_{1} s_{2} \ldots s_{n} \rightarrow s\right)$ a partial function $\omega_{\mathrm{A}}: A_{s_{1}} \times A_{s_{2}} \times \ldots \times A_{s_{n}} \rightarrow A_{s}$, such that $A_{\omega}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is defined if and only if ($a_{1}, a_{2}, \ldots, a_{n}$) is a solution of the defining condition $\operatorname{def}(\omega)$. Further, it is required that each implication of \mathcal{A} holds in the algebra.
A term $\omega\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}\right)$ is defined in an algebra A for $\left(a_{1}, a_{2}, \ldots a_{m}\right)$, if t_{1}, t_{2}, \ldots and t_{n} are defined for ($a_{1}, a_{2}, \ldots, a_{m}$), with results $b_{1}, b_{2}, \ldots, b_{n}$, respectively and ω_{A} is defined for (b_{1}, b_{2}, $\left.\ldots, b_{n}\right) . \omega_{A}\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is the result of the application of $\omega\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ on $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is a solution of an equation $t_{1}=t_{2}$, if t_{1} and t_{2} are defined for $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ and the both applications of t_{1} and t_{2} on $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ result in the same value.
An implication if g then h holds in an algebra A, if each solution of g is also a solution of h.
A homomorphism $f: A \rightarrow B$, from Σ-algebra A to Σ-algebra B is a family of mappings ($f_{s}: A_{s} \rightarrow B_{s}: s \in S$), which is compatible with the operations of Σ that means for each $\omega \in \Omega$ ($\omega: \mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{n}} \rightarrow \mathrm{s}$) and each solution ($a_{1}, a_{2}, \ldots a_{n}$) of the defining condition $\operatorname{def}(\omega)$ in A is ($\left.f_{s_{1}}\left(a_{1}\right), f_{s_{2}}\left(a_{2}\right), \ldots, f_{s_{n}}\left(a_{n}\right)\right)$ solution of $\operatorname{def}(\omega)$ in B and the following equation holds: $f_{s}\left(\omega_{A}\left(a_{1}, a_{2}, \ldots a_{n}\right)\right)=\omega_{B}\left(f_{s_{1}}\left(a_{1}\right), f_{s_{2}}\left(a_{2}\right), \ldots, f_{s_{n}}\left(a_{n}\right)\right)$.
By the equation is expressed that the following diagram commutes:

A Σ-algebra I is initial, if it exists to each other Σ-algebra A exactly one homomorphism. Inital algebras play an important role in specification languages. They have two important properties:

1) no junk (they contain only elements, which can be represented by ground terms (terms without variables))
2) no confusion (two terms are equal only, if it is forced by the axioms)

Let us consider the simplest data type of Boolean values:
BOOL =
sorts Bool
opers true, false \rightarrow Bool $/ / 0$-ary operations (constants)
not (Bool) \rightarrow Bool $/ /$ unary operation
or, and (Bool, Bool) \rightarrow Bool // binary operations
axioms b: Bool
not(true) $=$ false, not(false) $=$ true
$\operatorname{or}(\mathrm{b}$, true $)=\operatorname{or}($ true, b$)=$ true, or(false, false $)=$ false
and(b, false) $=$ and(false, b) = false, and(true, true) = true
end
The algebra I with the two truth values $\mathrm{I}_{\text {Bool }}=\{\mathrm{T}, \mathrm{F}\}$ and the well known truth-operation is the initial algebra for this signature BOOL, because for every other BOOL-algebra A exactly one homomorphism $h: I \rightarrow A$ exists.
Consider for example an algebra A with $A_{\text {Bool }}=\{a\}$. Because all operations are total the image of each application on $A_{\text {Bool }}{ }^{0}, A_{\text {Booll }}, A_{\text {Bool }}{ }^{2}$ is a. Therefore
$f: I_{\text {Bool }} \rightarrow A_{\text {Bool }}$ with $f(T)=f(F)=a$ is a homomorphism and the only homomorphism from I to A.
Let us consider an algebra B with $B_{\text {Bool }}=\{T, F, \perp\}$ and
$B_{\text {true }}=T, B_{\text {false }}=F$,
$B_{\text {not }}(T)=F, B_{\text {not }}(F)=T, B_{\text {not }}(\perp)=\perp$

or	T	F	\perp	and	T	F	\perp
T	T	T	T	T	T	F	\perp
F	T	F	\perp	F	F	F	F
\perp	T	\perp	\perp	\perp	\perp	F	\perp

Evidently i: $I_{\text {Bool }} \rightarrow B_{\text {Bool }}$ with $i(T)=T$ and $i(F)=F$ is the only homomorphism from I to B. On the other hand A is not the initial algebra, because no homomorphism exists from A to I for example. To guarantee compatibility with true a has to be mapped to T and to guarantee compatibility with false a has to be mapped to F.
Further, B is not the initial algebra because there exists no homomorphism from B to I.
Assume g is such a homomorphism $g: B \rightarrow I$
Let $g(\perp)=T \in\{T, F\}$
Because of compatibility with not holds:
$g\left(\operatorname{not}_{B}(\perp)\right)=\operatorname{not}_{I}(g(\perp))$, but the left hand side is equal to T and the right hand side to F. The same inequality results, if we choose $g(\perp)=F$.
In general, it is known that from the term algebra the initial algebra can be constructed. We have to say only in which cases we consider two terms to represent the same element. This is the case, if the equality of the two terms is forced by the given axioms. In the above specification the quotient algebra consists of two classes only:
$T=\{$ true, and(true, true), or(true, true), not(false), and(true, not(false)),...\}
$F=$ \{false, and(false, false), or(false, false), not(true), and(true, false),.....\}.
We see we can represent both equivalence classes by the ground terms true and false.
In the same way by n constants an arbitrary finite carrier set can be specified.
The next interesting data type are the natural numbers.

Nat
opers zero: \rightarrow Nat
succ: Nat \rightarrow Nat
end
Because we have no axioms no ground terms are equalized, such that \{zero, succ(zero), succ(succ(zero)), succ(succ(succ(zero))),...\}
is the carrier set of the initial algebra.
If we want to specify the integers, then we need the predecessor operation as an additional generating operation:
INT = BOOL +
sorts Int
opers $0 \rightarrow$ Int
succ, pred (Int) \rightarrow Int

+ , -, * (Int, Int) \rightarrow Int
pos (Int) \rightarrow Bool // positive
equal-i (Int, Int) \rightarrow Bool
$\operatorname{div}($ Int, $y:$ Int $\underline{i f f}$ equal-i $(\mathrm{y}, 0)=$ false $) \rightarrow$ Int $\quad / /$ degree of partiality 1
axioms x, y : Int
$\operatorname{succ}(\operatorname{pred}(x))=x$
$\operatorname{pred}(\operatorname{succ}(x))=x$
$\mathrm{x}+0=\mathrm{x}$
$x+(\operatorname{succ}(y))=\operatorname{succ}(x+y)$
$x+(\operatorname{pred}(y))=\operatorname{pred}(x+y)$
$\mathrm{x}-0=\mathrm{x}$
$x-\operatorname{succ}(y)=\operatorname{pred}(x-y)$
$x-\operatorname{pred}(y)=\operatorname{succ}(x-y)$
$\mathrm{x} * 0=0$
$x^{*}(\operatorname{succ}(y))=\left(x^{*} y\right)+x$
$x^{*} \operatorname{pred}(\mathrm{y})=\mathrm{x}^{*} \mathrm{y}-\mathrm{x}$
$\operatorname{pos}(0)=$ false
$\operatorname{pos}(\operatorname{succ}(0))=$ true
if $\operatorname{pos}(x)=$ true then $\operatorname{pos}(\operatorname{succ}(x))=$ true
if $\operatorname{pos}(x)=$ false then $\operatorname{pos}(\operatorname{pred}(x))=$ false
equal-i($x, x)=$ true
if $\operatorname{pos}(x)$ then equal $-i(0, x)=$ false \& equal $-i(x, 0)=$ false
프 equal-i(x,y) $=$ false then equal-i $(\operatorname{succ}(x), \operatorname{succ}(y))=$ false
if equal-i(x, y) $=$ false then equal-i $(\operatorname{pred}(x), \operatorname{pred}(y))=$ false
if $\operatorname{pos}(x)=\operatorname{pos}(y)=\operatorname{pos}(y-x)=$ true then $\operatorname{div}(x, y)=0$
if equal-i $(x, 0)=$ false then $\operatorname{div}(x, x)=\operatorname{succ}(0)$
If $\operatorname{pos}(x-y)=\operatorname{pos}(y)=$ true then $\operatorname{div}(x, y)=\operatorname{succ}(\operatorname{div}(x-y, y))$
if $\operatorname{pos}(0-x)=\operatorname{pos}(0-y)=$ true then $\operatorname{div}(x, y)=\operatorname{div}(0-x, 0-y)$
if $\operatorname{pos}(x)=\operatorname{pos}(0-y)=$ true then $\operatorname{div}(x, y)=0-\operatorname{div}(x, 0-y)$
if $\operatorname{pos}(0-x)=\operatorname{pos}(y)=$ true then $\operatorname{div}(x, y)=0-\operatorname{div}(0-x, y)$
end

Because of the first two equations in each ground term in succ and pred each occurrence of succ(pred(and pred(succ(can be eliminated. That means that each term in 0 , succ, and pred can be reduced to either $\operatorname{succ}^{n}(0)$, or $\operatorname{pred}^{n}(0)(n>0)$ or 0 . By these terms our integers can be represented. Now, we have to ensure that each application of one of the remaining operations to the above terms can be reduced by finite applications of the axioms to the above terms. Further, we have to guarantee that by the axioms no two of the above terms $\operatorname{succ}^{n}(0)$, $\operatorname{pred}^{n}(0)$, or 0 are forced to be identified.
If we consider for example the addition, then $\operatorname{pred}^{n}(0)+\operatorname{succ}^{m}(0)$ can be reduced by $\left(^{*}\right)$ to $\operatorname{succ}\left(\operatorname{pred}^{n}(0)+\operatorname{succ}^{m-1}(0)\right)$. If we apply the rule once more ($\mathrm{m}-1$)-times, then $\operatorname{succ}^{m}\left(\operatorname{pred}^{n}(0)+0\right)$ results. By the preceding axiom results $\operatorname{succ}^{m}\left(\operatorname{pred}^{n}(0)\right)$. By the second axiom this term can be reduced to one of the ground terms described above.
In the same way we can choose all other combinations of ground terms and operations. Especially, we should look that pos does not create new truth values. Because of the partiality of div, we don't have to reduce terms of type $\operatorname{div}(t, 0)$. We are not forced to introduce error-values to make div artificially total.
From methodological point of view the above specification can be improved. It is better to introduce at first only the operations, which are necessary to generate all elements of a new sort and add further operation step by step. For the above example this means that we have to introduce the sort Int only with the operations 0 , succ, and pred and with the first two axioms. The remaining operations can then be introduced by so called initial extensions. If $\Sigma_{1} \subseteq \Sigma_{2}$ (that means each sort, each operator symbol, and each axiom of Σ_{1} is contained in Σ_{2}), then the Σ_{2}-algebra I is called initial extension of a Σ_{1}-algebra A, if $I \downarrow \Sigma_{1}=A$ (The Σ_{1}-Redukt $I \downarrow \Sigma_{1}$ consists of all carrier sets and operations of I from Σ_{1}) and for each Σ_{2}-algebra B and each Σ_{1}-homomorphism h : $A \rightarrow B \downarrow \Sigma_{1}$ exactly one Σ_{2}-homomorphism $f: I \rightarrow B$ exists with $f \downarrow \Sigma_{1}=h$.

If we choose for Σ_{1} the empty signature then the notion of initial extension coincides with the notion of initial algebra.
Now, we can introduce a very general notion of theory by the definition of two kinds of theory extensions:

1. The empty signature (\varnothing) is a theory.
2. If T is a theory based on signature Σ_{1}, then $\boldsymbol{T} \underline{\operatorname{def}} \Sigma_{2}$ is a theory, if $\Sigma_{1} \subseteq \Sigma_{2}$ and if each T-model has a Σ_{2}-initial extension. The initial extensions are the models of T def Σ_{2}.
3. If T is a theory, based on signature Σ_{1}, then \boldsymbol{T} req Σ_{2} is a theory, if $\Sigma_{1} \subseteq \Sigma_{2}$. All Σ_{2-} algebras A, for which $A \downarrow \Sigma_{1}$ is a T-model are the T req Σ_{2} models.
4. Theories are constructed only by rules $1,2,3$.

By req-extensions in general parameter theories are specified. Here, is only required that the axioms are satisfied. By def-extensions always the initial algebras are specified.
For example, the only model of \varnothing def BOOL is the initial algebra but each BOOL-algebra is a model of \varnothing req BOOL.
Although we shall use in general def-extensions, it should be remarked that we can specify for example the equality relation in a very simple way by req-extensions:
DATA $=$
\varnothing def BOOL
req
sorts Data
opers equal-d (Data, Data) \rightarrow Bool
axioms x, y : Data
equal $-d(x, x)=$ true
if equal- $d(x, y)=$ true then $x=y$

end

Although we specified the operation equal-d unique up to isomorphism the specification does not contain an algorithm, how to compute the corresponding truth value. If a def-extension is correct, then the specified operations are computable with respect to the given theory. It is proved that the function, which can be specified by def_extensions of natural numbers are exactly the partial recursive functions.

Specification of a stack

1. Stack with partial Operations
$\underline{\text { STACK1 }=}$
def
sorts Data, Bool, Stack
opers d1, d2, ...,dn \rightarrow Data
true, false \rightarrow Bool
empty \rightarrow Stack
push (Data Stack) \rightarrow Stack
def
opers is_empty Stack \rightarrow Bool
pop (s: Stack iff is_empty(s) = false) \rightarrow Stack
top ($\mathrm{s}:$ Stack iff is_empty $(\mathrm{s})=$ false) \rightarrow Data
axioms d: Data, s: Stack
is_empty(empty) = true
is_empty(push(d, s)) = false
pop(push(d, s)) $=$ s
$\operatorname{top}(\operatorname{push}(\mathrm{d}, \mathrm{s}))=\mathrm{d}$
end
2. Stack with total Operations, but an Data-Error-Value (Error Recovery)

STACK2

def

sorts Data, Stack
opers d1, d2,..., dn, error: \rightarrow Data
empty \rightarrow Stack
push (Data, Stack) \rightarrow Stack
top (Stack) \rightarrow Data
pop (Stack) \rightarrow Stack
axioms d: Data, s: Stack
$\operatorname{pop}(p u s h(d, s))=s$
$\operatorname{top}(\operatorname{push}(\mathrm{d}, \mathrm{s}))=\mathrm{d}$
top $($ empty $)=$ error
pop(empty) $=$ empty
end

STACK2-Model:
$A_{\text {Data }}=\{d 1, d 2, \ldots, d n, e\}$
$\mathrm{A}_{\text {Stack }}=\mathrm{A}_{\text {Data }}{ }^{*}$
$\operatorname{push}_{\mathrm{A}}(\mathrm{x}, \mathrm{w})=\mathrm{xw}$
$\operatorname{pop}_{A}(w)=$ if $w=x w^{\prime}$ then w^{\prime} else λ
$\operatorname{top}_{A}(w)=$ if $w=x w$ ' then x else e

