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Abstract Object-Role Modelling (ORM) is a framework for modelling
and querying information at the conceptual level. It comes to support
the design of large-scale industrial applications allowing the users to eas-
ily model the domain. The expressiveness of the ORM constraints may
lead to implicit consequences that can go undetected by the designer in
complex diagrams during the software development life cycle. To avoid
these issues we perform reasoning on ORM diagrams in order to detect
relevant formal properties, such as inconsistencies or redundancies, that
cause a software quality degradation leading to an increment of develop-
ment times and costs.
In order to activate the reasoning process over ORM diagrams, we show
a relevant and decidable ORM fragment encoded into OWL. Further-
more, we extend the ORM formalisation by Derivation Rules, which are
additional ORM constructs that capture some relevant information of
the domain that cannot be expressed in standard ORM.
To this end, we illustrate the implementation of our formalisation in
the tool UModel, which provides also an API system in order to be in-
tegrated into any conceptual modelling software; we provide a real-case
study where the host software is NORMA.
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1 Overview

Conceptual modelling is a critical step during the development of a database sys-
tem. It is the detailed description of the universe of discourse in a language that is
understandable by users of the business domain. Object-Role modelling (ORM)
is a conceptual language for modelling, which includes a graphical and textual
language for specifying models, a textual language for formulating queries, as
well as procedures for constructing ORM models, and mapping to other kinds of
models like UML and ER. ORM is fact-oriented, i.e., it models the information
in a way that it can be verbalized using sentences that are easily understandable
by domain experts and even for those who are not familiar with IT in general.
Unlike ER and UML, fact-oriented models are attribute-free, treating all facts
(sentences) as relationships (unary, binary, ternary etc.) and this makes it more
stable and adaptable to changing business requirements. For example, instead of



using the attributes Person.isSmoker and Person.hiredate, fact-oriented models
use the fact types Person smokes and Person was hired on Date [1].
The ORM constraints expressiveness may lead to implicit consequences that can
go undetected by the designer in complex diagrams; this may also lead to various
forms of inconsistencies or redundancies in the diagram itself that give rise to the
degradation of the quality of the design and/or increased development times and
costs. The approach used to solve this issue involves the automated reasoning
in order to detect inconsistencies and redundancies. Moreover, ORM diagrams
can be equipped with Derivation Rules which are additional ORM constructs
that are able to express knowledge that is not expressible with standard ORM.
The usage of those rules brings to a further complexity; in order to perform the
reasoning task even on those ORM diagrams equipped with those rules, we need
to detect a decidable fragment.
We also introduce the state of the art starting from the first ORM formalisation
until the most recent one. Then, we introduce an overview of the ORM lan-
guage focusing on its main features like fact-oriented, the verbalisation and the
graphical notation. The section concerning the research has four subsections:

1. ORM formalisation, we present a decidable fragment up to 11 ORM con-
straints;

2. ORM Derivation Rules formalisation, an extension of the previous fragment;
3. UModel, a tool designed to activate automated reasoning on any conceptual

modelling software;
4. ORMiE, a tool which performs reasoning on ORM diagrams using UModel.

In the end, we present the list of what is still to be done in the frame of the
PhD.

2 Related Work

The ORM formalisation started with Terry Halpin’s PhD Thesis [2]. In the con-
text of design conceptual and relational schemas, Halpin formalized the NIAM
language that is the ancestor of ORM. In his thesis there is the first attempt to
formalize a modelling language in order to perform the reasoning task, so the
main objective is to provide formal basis for reasoning about conceptual schemas
and for making decision choices. After the spreading of ORM and its implementa-
tion in NORMA [3], [4], ORM became more popular so the logicians’ community
took into account the possibility to formalize this very expressive language.

In 2007, Jarrar formalizes ORM using DLRifd [5], an extension of Descrip-

tion Logics introduced in [6]. The paper shows that a formalisation in OWL
SHOIN would be less efficient than DLRifd because some ORM constraints

cannot be translated (predicate uniqueness, external uniqueness, set-comparison
constraints between single roles and between not contiguous roles, objectification
n-ary relationships). In [7], Jarrar encodes ORM into OWL SHOIN . Another
formalisation of ORM in DLRifd was done by Keet in [8].



In 2009 OWL 2 was recommended by W3C Consortium as a standard of on-
tology representation on the Web bringing some benefits: it is the recommended
ontology web language; it is used to publish and share ontologies on the Web
semantically; it is used to construct a structure to share information standards
for both human and machine consumption; automatic reasoning can be done
against ontologies represented in OWL 2 to check consistency and coherency of
these ontologies.

An ORM formalisation based on OWL2 is proposed by Franconi in [9], where
he introduces a new linear syntax and FOL semantics for a generalization of
ORM2, called ORM2plus, allowing the specification of join paths over an arbit-
rary number of relations. The paper also identifies a “core” fragment of ORM2,
called ORM2zero, that can be translated in a sound and complete way into the
ExpTime-complete Description Logic ALCQI. [10] provides a provably correct
encoding of a fragment of ORM2zero into a decidable fragment of OWL2 and
it is discussed how to extend ORM2zero in a maximal way by retaining at the
same time the nice computational properties of ORM2zero.

The most recent paper related to ORM formalisation is [11] where Artale
introduces a new extension of DLR, namely DLR+. This paper is strictly con-
nected with this work because the logic DLR+ it is meant to represent n-ary
relationships which are suitable for languages like ORM. The ORM implement-
ation we use is an ongoing work based on DLR+. In particular, the decidable
fragment we use is DLR±, obtained by imposing a simple syntactic condition
on the appearance of projections and functional dependencies in DLR+. In the
paper is also provided an OWL encoding and it is proved that DLR± captures
a significant fragment of ORM2.

Since this work is also focused on the formalisation of derivation rules, we
need to mention OCL. OCL stands for Object Constraint Language, it is the
declarative language for describing rules that apply to UML diagrams for defining
constraints in order to support the conceptual modelling, like Derivation Rules
for ORM. In [12] has been provided a formalisation of a fragment of this language
and has been also proved the equivalence between relational algebra and the
fragment with only FOL features, namely OCLFO.

3 ORM

ORM stands for Object-Role Modelling. It is a language that allows users to
model and query information at the conceptual level where the world is de-
scribed in terms of objects (things) playing roles (parts in relationships) [13].
The idea behind ORM and its approach is that an object-role model avoids the
need to write long documents in ambiguous natural language prose. It’s easy
for non-technical sponsors to validate an object-role model because ORM tools
can generate easy-to-understand sentences. After an object-role model has been
validated by non-technical domain experts, the model can be used to generate a
class model or a fully normalised database schema. ORM main features are:



– fact-oriented, all facts and rules are modelled in terms of controlled nat-
ural language (FORML) sentences easy to understand even for non-technical
users;

– attribute-free, unlike ER and UML, makes it more stable and adaptable to
changing business requirements;

– graphical, it has a graphical notation implemented by the software NORMA;
– formalised, it has a clear syntax and semantics, so reasoning on ORM dia-

grams is enabled.

Figure 1: ORM diagram example

Unlike ER or UML, ORM makes no use of attributes in its base models;
although this often leads to larger diagrams, an attribute-free approach has
advantages for conceptual analysis, including simplicity, stability, and ease of
validation. Attribute-free models with a controlled natural language facilitate
model validation by verbalisation and population. Model validation should be
a collaborative process between the modeller and the business domain expert
who best understands the business domain. All facts, fact types, constraints and
derivation rules may be verbalised naturally in unambiguous language that is
easily understood by domain experts who might not be experts in the software
systems ultimately used for the physical implementation.
The meaning of the diagram in Fig. 1 is the following: a person can be a cit-
izen or a visitor; each person is identified by one and only one document which
can only be either a visa or an id card. The entities are depicted by smooth
rectangles and the relationships by a sequence of tiny boxes according to the



cardinality relationship. The purple dot represents a mandatory constraint, the
dash on the tiny rectangle box is a uniqueness constraint, the equivalent of rela-
tional keys. The arrows among entities represents the ISA relationship. Finally,
the circle with the cross inside means disjointness; the one with another circle
inside means covering; the combination of these two is the circle we see between
Visa and IDCard. The notation (.Name) and (.Id) inside Person and Document
it is a graphical shortcut provided by NORMA for top level entities. Intuit-
ively, it means that each person has a name and each document has an id. The
corresponding FORML verbalization is the following:

Person is an entity type.

Citizen is an entity type.

Visitor is an entity type.

Document is an entity type.

VISA is an entity type.

IDCard is an entity type.

Person is identified by Document.

Each Citizen is an instance of Person.

Each Visitor is an instance of Person.

Each VISA is an instance of Document.

Each IDCard is an instance of Document.

Each Person has exactly one Document.

For each Document, at most one Person has that Document.

For each Document, exactly one of the following holds: that Document is

some VISA; that Document is some IDCard.

This feature turns out to be helpful during the modelling phase especially
when the non-IT stakeholders interact with the software engineers in order to
reach a mutual comprehension about the meaning of the diagram. For example,
if the non-IT stakeholder detects unexpected sentences which do not reflect the
software specifications, it is easy for the modeller to modify the interested part.

4 Motivation

Conceptual modelling tools are powerful systems which accelerate the develop-
ment of the software, providing a set of powerful features to model a domain.
They use conceptual modelling languages which are closer to the way we ab-
stract the world in our cognition, making them ideal to model a domain. The
limitation of the conceptual modelling tools is that they lack of semantics check
capabilities. This limitation could lead to software degradation and unexpec-
ted software behaviours, especially for large-scale environment this could be a
serious issue. The core idea of the dissertation is to provide a methodology in
order to overcome this limitation. We believe that a conceptual modelling tool
should not be limited to check the syntax of the diagrams, but the semantics
too, because it could enhance the trust of the system, or, in the worst case could
suggest the revision. The methodology involves the formalisation of conceptual



modelling languages and in the thesis the focus is on ORM. The ORM formalisa-
tion has been treated in years of research and still today it is a topic of interest.
Formalising such language allows to activate reasoning procedures, carried out
by Description Logics reasoners. The reasoning procedures are able to perform
the semantic check over ORM diagrams, in this way is possible to manage the
aforementioned limitation. The research follows two main tracks: the theoretical
aspect, related to ORM and Derivation Rules formalisation; the other track is
the implementation counterpart of the first track, since it concerns the creation
of a set of tools in order to support the modeller.

4.1 Research goals

Outlined are the main goals of the research:

– Goal 1: providing an encoding for ORM in OWL;
– Goal 2: providing a formalisation for ORM Derivation Rules, both Subtype

and FactType;
– Goal 3: implementation of a tool that adds reasoning capabilities to CASE

tools;
– Goal 4: implementation of a real case study grounded on the entire meth-

odology.

4.2 Novelty and relevance of research

Reaching the first goal, providing an OWL encoding for ORM, is the prerequisite
to achieve the other goals since it constitutes the base of the methodology.

The second goal is an extension of the first one. Although several papers
presented their own ORM formalisation, no one has taken into account the
formalization of ORM derivation rules so far. Derivation rules are recent ORM
constraints which are able to express knowledge that is beyond normal ORM
capabilities, but this feature leads to an increase of expressiveness of the dia-
grams. For this reason, the challenge is to identify a decidable fragment in order
to extend the reasoning even to those ORM diagrams equipped with those rules.

Reaching the third goal would provide to the community a tool which is able
to overcome the aforementioned limitations of CASE tools. The direct impact of
this goal involves various actors, such as the modellers, the database or software
engineers. The versatility of the software makes possible to enrich any conceptual
modelling software of reasoning capabilities, making the impact of the research
in particular relevant for the industry world.

A successful result in the last goal could demonstrate the efficiency of the
methodology applied to real cases.

5 Current State of Research

The main goal of the research aims to support the modeller during the design
step of the software by reasoning, in order to detect constraints which can lead to



unexpected software behaviours, or to infer new knowledge, or more in general to
increase the trust of the system. To apply the reasoning over an ORM diagram,
we first need to formalise ORM. Therefore, we first provide the ORM decidable
fragment that we detected so far, alongside its extension with ORM Derivation
Rules. The contribution has also an implementation counterpart carried out
by two tools: UModel(Unreal Model) and ORMiE(ORM Inference Engine). The
former is a standalone tool which uses Fact++ as a background reasoning engine;
the latter uses the UModel API system to add reasoning capabilities to NORMA
(Natural ORM Architect) which is the official Microsoft Visual Studio plugin
with full ORM implementation.

5.1 ORM encoding in OWL

ORM encoding in OWL is a process made by some steps that are summarized
in the following lines and depicted in Fig.2.

Figure 2: The formalisms involved in the process

At the first stage we take into account the syntax for every ORM constraint.
Then, for each constraint, we assign a corresponding semantics in first order logic.
At this point we rewrite the semantics using DLR± because it is specifically
designed to deal with n-ary relationships, in the limit of DLR± expressibility;
this means that some constraints are out of the fragment because they lead to
undecidability. In the end, we apply the encoding from DLR± to OWL. Once
we have built the corresponding ontology, we can start the reasoning process.
At the current time, the reasoning process supports the following inferences:

– hierarchy among predicates/objects
– equivalence among predicates/objects
– disjointness among predicates/objects
– simple mandatory constraint
– simple uniqueness constraint
– inconsistencies

Here are provided the involved formalisms and translations for the diagram
in Fig.1, starting assigning the semantics to each constraint in first-order logic.

FactType
∀x, y.isIdentifiedBy(x, y)→ Person(x) ∧Document(y)



Mandatory
∀x.Person(x)→ ∃y.isIdentifiedBy(x, y) ∧ x = y
Uniqueness
∀x, y.isIdentifiedBy(x, y)→ ∃≤1z.isIdentifiedBy(x, z)
∀x, y.isIdentifiedBy(x, y)→ ∃≤1z.isIdentifiedBy(z, y)
Subtype
∀x.Citizen(x)→ Person(x)
∀x.Visitor(x)→ Person(x)
∀x.Visa(x)→ Document(x)
∀x.IDcard(x)→ Document(x)
Exclusive
∀x.Visa(x)→ ¬IDCard(x)
Exhaustive
∀x.Document(x)→ Visa(x) ∨ IDCard(x)

The next steps involves DLR±:
FactType
isIdentifiedBy v (σ1:PersonisIdentifiedBy) u (σ2:DocumentisIdentifiedBy)
Mandatory
Person v ∃[1]isIdentifiedBy
Uniqueness
∃[1]isIdentifiedBy v ∃=1[1]isIdentifiedBy
∃[2]isIdentifiedBy v ∃=1[2]isIdentifiedBy
Subtype
Citizen v Person
Visitor v Person
Visa v Document
IDCard v Document
Exclusive
Visa v ¬IDCard
Exhaustive
Document v Visa t IDCard

Finally, it is possible to encode the ORM constraints in OWL.
FactType
PRED-isIdentifiedBy v PRED-isIdentifiedBy u ∀Q1.Person u ∀Q2.Document
Mandatory
PROJ-isIdentifiedBy-1 ≡ ∃Q−

1 .PRED-isIdentifieBy-1,2
SomeVisitor v PROJ-isIdentifiedBy2-1
Uniqueness
UNIQ-isIdentifiedBy-1 ≡ ∃=1Q−

1 .PRED-isIdentifieBy-1,2
PROJ-isIdentifiedBy-1 ≡ ∃=1Q−

1 .PRED-isIdentifieBy-1,2
PROJ-isIdentifiedBy-1 v UNIQ-isIdentifiedBy-1
UNIQ-isIdentifiedBy-2 ≡ ∃=1Q−

2 .PRED-isIdentifieBy-1,2
PROJ-isIdentifiedBy-2 ≡ ∃=1Q−

2 .PRED-isIdentifieBy-1,2
PROJ-isIdentifiedBy-2 v UNIQ-isIdentifiedBy-2



Subtype
Citizen v Person
Visitor v Person
Visa v Document
IDCard v Document
Exclusive
Visa v ¬IDCard
Exhaustive
Document v Visa t IDCard

All details regarding the formalisation are in an internal document that is
planned to be published soon. 6.1.

5.2 Derivation rules

Derivation Rules are special ORM constructs which express knowledge that
would otherwise not be expressible by standard ORM, so their expressibility
reaches farer than standard ORM. Their purpose is to derive new information
from other information, like triggers, stored procedures and views in SQL. The
goal is to enable the reasoning on those rules in order to extend the reasoning
even to those ORM diagrams equipped with Derivation Rules. There are two
kind of Derivation Rules: the Subtype Derivation Rules and the Fact Type De-
rivation Rules. A Subtype Derivation Rule defines all the instances which belongs
to a subentity by a set of constraints defined in the rule definition. The reason
because those rules are applied on subentities is because in some diagrams the
is-a relationship between entities is too weak to capture the entire desired se-
mantics of the diagram; a FactType Derivation Rule is placed on the predicates,
namely the ORM roles.
The Derivation Rules we are focusing on are Subtype Derivation Rules. We
want to formalise those rules in order to activate the reasoning on those dia-
grams with Subtype Derivation Rules. To achieve this goal it is important to
take into account that the reasoning lays on logic, so we need to find a way to
encode derivation rules into a logical language. First of all we need to understand
how a derivation rule is made from a structural point of view, in other words we
need to detect a clear syntax. Then, at the syntax is assigned a corresponding
semantics and in the end an encoding into a logical language is performed in
order to made the reasoning possible. In [14] is provided the full methodology
used to formalise those rules and their mapping into OWL.
We provide an example with the graphical notation implemented by NORMA.
For example, the diagram in Fig. 1 does not tell us which are exactly the people
in the entity Citizen and exactly the people in the entity Visitor. We only know
that a person can be a citizen or a visitor, but in the ORM standard nota-
tion there are no constraints able to capture these sets. If we want to use this
knowledge we have to use the ORM Derivation Rules like in Fig. 3.
As we can see, a derivation rule is defined by an asterisk on entities and a text
which defines the meaning of the rule. We state that all the people which are



Figure 3: ORM diagram example with derivation rules

identified by an id card are citizens; all the people which are identified by a visa
are visitors. It is important to observe that the text is not just a collections of
words, instead it is in controlled-natural language format that is to say it is well
defined by a precise syntax.

What can be the outcome of the diagram in Fig. 3? The answer is in Fig.4
We obtained a disjunction and covering between the entities Citizen and Vis-
itor. The disjunction is inferred because there is no chance to find a common
element between the entity Visa and IDCard. Since the derivation rules capture
separately the two sets, visitors and citizens, even the corresponding entities
have no element in common. What about the covering? Since Visa and IDCard
cover Document and since Person has the mandatory constraint on the relation-
ship is identified by, each person must participate to this relation; in addition
to this, the two derivation rules ensure that the sum of the instances in Citizen
and Visitor are exactly those who are in Person. So it is not possible to find
an instance which is not in Citizen of in Visitor. To prove this, now we add the
entity Illegal: people without documents, neither a visa nor id card. The out-
come of the reasoning is shown in Fig.5. Illegal is red because it is an empty set.
This means that in all consistent worlds the entity type Illegal is always empty,
because there are no instances in Illegal which satisfy the rules of the diagram.
Again, this is because Person has the mandatory constraint on the is identified
by relationship and because the set of Person is already taken by the entities
Citizen and Visitor. Therefore, there is no way an instance in Illegal could be in



Person. The counter-example is trivial: if we remove the mandatory constraint
on Person then Illegal would not be inconsistent anymore.

Figure 4: Inferred disjoint and covering constraints

Figure 5: Illegal is inconsistent



5.3 UModel

The ambitious intention behind UModel is to build a framework that is able to
add reasoning capabilities to any conceptual modelling software, supporting the
most common languages such as UML, ER and ORM. In the thesis UModel is
used for the ORM language and to enrich NORMA by reasoning capabilities.
UModel is written in standard Java 8.0, so it can be used on Linux, Mac and
Windows machines; a C# porting is also provided for .NET applications. It
can be used as a standalone application or in a more interesting way by its
API system, so in this way it can be easily integrated in other applications.
UModel has several features: it provides API for developers, reasoning services,
the import/export of ontologies and diagrams in different languages like ORM,
UML and ER.

In Fig. 6 is shown the architecture of UModel. The idea behind this ar-
chitecture is to isolate the core of the system being transparent to the user,
which has to rely only on the API layer. The same applies for the host software
that uses UModel, in our case NORMA/ORMiE. UController act as a wrapper
which provides the necessary methods that are exposed to the user to inter-
act with UModel. In order to create a diagram, the user starts calling multiple
time the function Tell, that asserts the constraints in a specific object oriented
data structure called UModel. After this step the module UReasoner is started.
At the first stage it reads the model. Then, it constructs the OWL encoding
based on the DLR± formalisation. UReasoner uses the reasoner engine Fact++
to derive the fresh constraints and store them in the data structure UDModel
(UDerivedModel). At this point, the user calls the Ask function to get the in-
ferences encoded in object-oriented data structures. In this way, it is possible to
use the information encapsulated in these objects to easily expose the inferences
to the host application by few lines of code.

5.4 ORMiE

ORMiE (ORM Inference Engine) is an extension of NORMA, which is the offi-
cial ORM-based Microsoft Visual Studio conceptual modelling tool [3]. ORMiE
uses UModel API system, so it is just one example how UModel works on a
target ORM-based software. ORMiE activates automated reasoning over ORM
diagrams providing an interface where mistakes, redundancies or more in general
new inferred knowledge are shown. A good feature of ORMiE is that is built on
top of NORMA and Visual Studio, so it takes advantage of all nice features from
Visual Studio being such a powerful tool for those who need to model a domain
following the ORM methodology. Moreover, ORMiE is also able to perform the
reasoning on ORM diagrams equipped with Derivation Rules.



Figure 6: UModel Sequence Diagram

6 Ongoing Works

This section summarizes the tasks that are still to be done in the frame of my
research.

6.1 ORM to OWL encoding

The formalisation involves a set of ORM constraints in order to apply the reas-
oning for a relevant and decidable fragment. In order to do so, the fragment
is restricted to all that constraints that are expressible in DLR± (everything
except ring constraints), moreover, the set of constraints in the ORM diagram
to be faithfully encoded in OWL by DLR± must not violate the syntactic re-
striction over the projection signature graph which makes a DLR± knowledge
base decidable [11], [15]. The restriction says that the projections must not share
common attributes. In Fig.7 is provided an example where the two uniqueness
constraints generate two projections sharing one role.
At the current stage of the work, some constraints are yet not derived because
they are hard to compute, therefore the reasoning process is slowed down. Solv-
ing this task is quite challenging because every constraints requires a specific
approach in order to build an optimized algorithm. The current version of the
OWL encoding is organised in an internal document which is still a draft. It



contains all the details concerning the formalisms involved for the encoding and
the translations. The document will be published as soon as the remaining con-
straints will be finished.

Figure 7: Two uniqueness constraints sharing one role

6.2 ORMiE release

The latest version of ORMiE has been tested on real-case ORM diagrams and
it is quite stable. Now, ORMiE is able to perform the reasoning over ORM
diagrams in the limit of the aforementioned fragment and the ORM Subtype
Derivation Rules. What still is missing is the capability to deal also with ORM
Fact Type Derivation rules, which requires from the implementation perspective
the understanding of the complex structures inside NORMA. The difficulty is
enhanced by the fact that NORMA completely lacks of documentation for the
developers, forcing to perform a reverse engineering to understand how the data
structures are made of.

6.3 UModel release

The current version of UModel is able to perform the reasoning over the ORM
fragment explored so far plus ORM Derivation Rules. A deep work about optim-
ization has already been implemented. We plan to improve UModel by adding
a user interface that requires a specific study an the user experience with re-
spect to the functionality of the reasoning services. In this way, the user can
customize and choose which inferences are needed and which services to enable,
giving more control over the whole system. The user interface is part of the API
system, thus, is possible to attach it in every software hosting UModel. We plan
to test UModel also on Menthor [16]. UModel will be downloadable soon with
its documentation for developers.



6.4 Formalisation of the complete ORM Derivation Rules fragment

Both Subtype and Factype ORM Derivation Rules cover a decidable fragment.
Until now we treated these fragments because of reasoning, but for the sake of
completeness, we plan to formalise the full language.

7 Time Plan

Here is the time plan of the research according to the aforementioned ongoing
works.

– July 2018 - September 2018: ORM to OWL encoding internal document
release

– July 2018 - September 2018: Formalisation of the complete ORM De-
rivation Rules fragment

– September 2018 - December 2018: UModel release
– September 2018 - December 2018: ORMiE release
– January 2019 - April 2019: Dissertation writing
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