
Putting it together, semantically:
Semantics of UML state machines

Till Mossakowski1

Otto-von-Guericke Universität Magdeburg, Germany

June 28, 2016

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Overview

Class diagram

Environment signature

Environment structure

State machine

SM signature

syntactic LTS

Semantic LTS

based on based on

based on

LTS = labeled transition system

combine

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Overview — Syntax & Semantics

Class diagram

Environment signature

Environment structure

State machine

SM signature

syntactic LTS

Semantic LTS

based on based on

based on

LTS = labeled transition system

combine

Syntax

Semantics

can be read off
from the diagrams

meaning of the
diagram, expressed
in some mathematical
domain

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

A Sample State Machine

userCom.card(c) /

cardId = c

[trialsNum >= 3] /

userCom.keepCard();
bankCom.markInvalid(cardId);
trialsNum = 0

bankCom.reenterPIN /

/ bankCom.verify(cardId, pin)

bankCom.verified /

/ userCom.ejectCard(); trialsNum = 0

pin = p

userCom.PIN(p) /

[trialsNum < 3] /
trialsNum++

Idle PINEntered

Verifying

Verified

CardEntered

ATM Behaviourstm

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Overview

Class diagram

Environment signature

Environment structure

State machine

SM signature

syntactic LTS

Semantic LTS

based on based on

based on

LTS = labeled transition system

combine

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Environment Signatures

An environment signature is a triple of sets

H = (GH ,AH ,MH)

of guards, actions, and messages.

Guards: formulas in some logical language, e.g. OCL.
Actions (effects): operations of class diagram, assignments of
attributes etc.
Messages (triggers): signals and operations of class diagram

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Overview

Class diagram

Environment signature

Environment structure

State machine

SM signature

syntactic LTS

Semantic LTS

based on based on

based on

LTS = labeled transition system

combine

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Environment Structures

Given a signature H = (GH ,AH ,MH),
an environment structure Ω is given by:

Ω = (|Ω|, |=Ω⊆ |Ω| × GH , αΩ ⊆ |Ω| × AH × ℘(MH)× |Ω|) ,

where

|Ω|: set of data states,

ω |=Ω g : state ω ∈ |Ω| satisfies guard g ,

(ω, a,m, ω′) ∈ αΩ, also written ω
a,m−−→
Ω

ω′: action a leads from

state ω ∈ |Ω| to state ω′ ∈ |Ω| producing the set of messages
m ⊆ MH .

Example: take |Ω| to be the data states of a UML class diagram.
Actions a can be e.g. variable updates.

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

A Sample State Machine

userCom.card(c) /

cardId = c

[trialsNum >= 3] /

userCom.keepCard();
bankCom.markInvalid(cardId);
trialsNum = 0

bankCom.reenterPIN /

/ bankCom.verify(cardId, pin)

bankCom.verified /

/ userCom.ejectCard(); trialsNum = 0

pin = p

userCom.PIN(p) /

[trialsNum < 3] /
trialsNum++

Idle PINEntered

Verifying

Verified

CardEntered

ATM Behaviourstm

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Signature for the Sample State Machine

Environment signature:

guards true, trialsNum ≤ 3,

actions user.ejectCard(); trialsNum = 0, trialsNum++,

messages user.ejectCard(), bank.markInvalid(cardId)

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Overview

Class diagram

Environment signature

Environment structure

State machine

SM signature

syntactic LTS

Semantic LTS

based on based on

based on

LTS = labeled transition system

combine

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Labeled Transition Systems

Definition (Labeled Transition System)

A labeled transition system LTS is a tuple (S , L,→, I), where

S is a set of states,

L is a set of actions,

→⊆ S × L× S is a transition relation, and

I ⊆ S is a set of initial states.

Optionally, there can also be a set of final states (in this case, an
LTS is the same a a finite automaton).
We write s

a→ s ′ for (s, a, s ′) ∈→.

Definition (Direct successors)

Post(s, a) = {s ′ ∈ S |s a→ s ′} (for s ∈ S , a ∈ L)

Definition (Deterministic LTS)

LTS is deterministic, if |I | = 1 and |Post(s, a)| ≤ 1 ∀ s ∈ S , a ∈ L
Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Runs of Labeled Transition Systems

Definition (Finite run)

Given an LTS (S , L,→, I), a finite run ρ is a finite alternating
sequence of states and actions starting with some s0 ∈ I and
ending with a state

ρ = s0a1s1 . . . ansn such that si
ai+1−→ si+1

for all 0 ≤ i < n. n ≥ 0 is the length of the run.

Definition (Infinite run)

Given an LTS (S , L,→, I), an infinite run ρ is a infinite alternating
sequence of states starting with some s0 ∈ I

ρ = s0a1s1a2s2 . . . such that si
ai+1−→ si+1

for all 0 ≤ i .

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Overview

Class diagram

Environment signature

Environment structure

State machine

SM signature

syntactic LTS

Semantic LTS

based on based on

based on

LTS = labeled transition system

combine

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

State Machines as Labeled Transition Systems

Given: H = (GH ,AH ,MH) environment signature.

A state machine signature is given by a pair of sets: Σ = (EΣ, SΣ)
(events and states) with EΣ ∩ SΣ = ∅.
Labels: L = (EΣ ∪ SΣ)× GH × AH

triggering event (declared or completion event), guard, action

Syntactic labeled transition system of a state machine:
(SΣ, L,T ⊆ SΣ × L× SΣ, {s0})

T : transition relation, representing transitions from a state to
another state.

s0: initial state

Note: for simplicity, we omit hierarchical states.

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

A Sample State Machine

userCom.card(c) /

cardId = c

[trialsNum >= 3] /

userCom.keepCard();
bankCom.markInvalid(cardId);
trialsNum = 0

bankCom.reenterPIN /

/ bankCom.verify(cardId, pin)

bankCom.verified /

/ userCom.ejectCard(); trialsNum = 0

pin = p

userCom.PIN(p) /

[trialsNum < 3] /
trialsNum++

Idle PINEntered

Verifying

Verified

CardEntered

ATM Behaviourstm

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Syntactic LTS for Sample State Machine

Signature: (EATM, SATM) with

EATM = {card,PIN, reenterPIN,PINVerified}
SATM = {Idle,CardEntered,PINEntered,Verifying,PINVerified}

The syntactic LTS of the state machine:

({(Idle, (card, true, cardId = c),CardEntered),

(CardEntered, (PIN, true, pin = p),PINEntered),

(PINEntered, (PINEntered, true, bank.verify(cardId, pin)),Verifying),

(Verifying, (reenterPIN, trialsNum < 2, trialsNum++),

CardEntered), . . .}, {Idle})

In particular, PINEntered occurs both as a state and as a
completion event in the third transition. The junction pseudostate
for making the decision whether trialsNum < 2 or trialsNum ≥ 2
has been resolved by combining the transitions.

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Overview

Class diagram

Environment signature

Environment structure

State machine

SM signature

syntactic LTS

Semantic LTS

based on based on

based on

LTS = labeled transition system

combine

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

The Induced Semantic Labeled Transition System

Syntactic LTS Θ: control states SΣ

Semantic LTS ∆Θ: control and data states:

States: C = |Ω| × ℘(EΣ ∪ SΣ)× SΣ

environment state, an event pool, and a control state
Labels: L = ℘(MH) set of messages

The event pool may contain both events declared in the signature
(from signals and operations) and completion events (represented
by states).

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

The Induced Semantic Labeled Transition System, cont’d

Transition relation:

(ω, p :: p, s)
m\EΣ−−−→

∆Θ

(ω′, p C ((m ∩ EΣ) ∪ {s ′}), s ′) if

∃s p[g]/a−−−−→
T

s ′ . ω |= g ∧ ω a,m−−→
Ω

ω′

(ω, p :: p, s)
∅−−→

∆Θ

(ω, p, s) if

∀s p′[g]/a−−−−→
T

s ′ . p 6= p′ ∨ ω 6|= g

p] p: p is next event to be processed
p C p′: adds events p′ to pool p
m ∩ (MH \ EΣ): messages emitted
(m∩EΣ)∪{s ′}: accepted events in EΣ and completion event when

entering state s ′ are added to the event pool.
When no transition is triggered by the current event, the event is
discarded (this will happen, in particular, to all superfluously
generated completion events).

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Sample State Machine

userCom.card(c) /

cardId = c

[trialsNum >= 3] /

userCom.keepCard();
bankCom.markInvalid(cardId);
trialsNum = 0

bankCom.reenterPIN /

/ bankCom.verify(cardId, pin)

bankCom.verified /

/ userCom.ejectCard(); trialsNum = 0

pin = p

userCom.PIN(p) /

[trialsNum < 3] /
trialsNum++

Idle PINEntered

Verifying

Verified

CardEntered

ATM Behaviourstm

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

Protocol state machines

Protocol state machines: pre- and a postcondition instead of
guards and effects.
Events that do not fire a transition are an error.
The syntactic LTS is changed to:

(T ⊆ SΣ × (GH × EΣ × GH × ℘(MH))× SΣ, {s0})

where

the two occurrences of GH represent the pre- and the
post-conditions,

℘(MH) represents the messages that have to be sent out in
executing the triggering event

Till Mossakowski Putting it together, semantically: Semantics of UML state machines

