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A Sample State Machine

userCom.card(c) /

cardId = c

[trialsNum >= 3] /

userCom.keepCard();
bankCom.markInvalid(cardId);
trialsNum = 0

bankCom.reenterPIN /

/ bankCom.verify(cardId, pin)

bankCom.verified /

/ userCom.ejectCard(); trialsNum = 0

pin = p

userCom.PIN(p) /

[trialsNum < 3] /
trialsNum++

Idle PINEntered

Verifying

Verified

CardEntered

ATM Behaviourstm
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Environment Signatures

An environment signature is a triple of sets

H = (GH ,AH ,MH)

of guards, actions, and messages.

Guards: formulas in some logical language, e.g. OCL.
Actions (effects): operations of class diagram, assignments of
attributes etc.
Messages (triggers): signals and operations of class diagram
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Environment Structures

Given a signature H = (GH ,AH ,MH),
an environment structure Ω is given by:

Ω = (|Ω|, |=Ω⊆ |Ω| × GH , αΩ ⊆ |Ω| × AH × ℘(MH)× |Ω|) ,

where

|Ω|: set of data states,

ω |=Ω g : state ω ∈ |Ω| satisfies guard g ,

(ω, a,m, ω′) ∈ αΩ, also written ω
a,m−−→
Ω

ω′: action a leads from

state ω ∈ |Ω| to state ω′ ∈ |Ω| producing the set of messages
m ⊆ MH .

Example: take |Ω| to be the data states of a UML class diagram.
Actions a can be e.g. variable updates.
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Signature for the Sample State Machine

Environment signature:

guards true, trialsNum ≤ 3,

actions user.ejectCard(); trialsNum = 0, trialsNum++,

messages user.ejectCard(), bank.markInvalid(cardId)
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Labeled Transition Systems

Definition (Labeled Transition System)

A labeled transition system LTS is a tuple (S , L,→, I ), where

S is a set of states,

L is a set of actions,

→⊆ S × L× S is a transition relation, and

I ⊆ S is a set of initial states.

Optionally, there can also be a set of final states (in this case, an
LTS is the same a a finite automaton).
We write s

a→ s ′ for (s, a, s ′) ∈→.

Definition (Direct successors)

Post(s, a) = {s ′ ∈ S |s a→ s ′} (for s ∈ S , a ∈ L)

Definition (Deterministic LTS)

LTS is deterministic, if |I | = 1 and |Post(s, a)| ≤ 1 ∀ s ∈ S , a ∈ L
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Runs of Labeled Transition Systems

Definition (Finite run)

Given an LTS (S , L,→, I ), a finite run ρ is a finite alternating
sequence of states and actions starting with some s0 ∈ I and
ending with a state

ρ = s0a1s1 . . . ansn such that si
ai+1−→ si+1

for all 0 ≤ i < n. n ≥ 0 is the length of the run.

Definition (Infinite run)

Given an LTS (S , L,→, I ), an infinite run ρ is a infinite alternating
sequence of states starting with some s0 ∈ I

ρ = s0a1s1a2s2 . . . such that si
ai+1−→ si+1

for all 0 ≤ i .
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State Machines as Labeled Transition Systems

Given: H = (GH ,AH ,MH) environment signature.

A state machine signature is given by a pair of sets: Σ = (EΣ, SΣ)
(events and states) with EΣ ∩ SΣ = ∅.
Labels: L = (EΣ ∪ SΣ)× GH × AH

triggering event (declared or completion event), guard, action

Syntactic labeled transition system of a state machine:
(SΣ, L,T ⊆ SΣ × L× SΣ, {s0})

T : transition relation, representing transitions from a state to
another state.

s0: initial state

Note: for simplicity, we omit hierarchical states.
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Syntactic LTS for Sample State Machine

Signature: (EATM, SATM) with

EATM = {card,PIN, reenterPIN,PINVerified}
SATM = {Idle,CardEntered,PINEntered,Verifying,PINVerified}

The syntactic LTS of the state machine:

({(Idle, (card, true, cardId = c),CardEntered),

(CardEntered, (PIN, true, pin = p),PINEntered),

(PINEntered, (PINEntered, true, bank.verify(cardId, pin)),Verifying),

(Verifying, (reenterPIN, trialsNum < 2, trialsNum++),

CardEntered), . . .}, {Idle})

In particular, PINEntered occurs both as a state and as a
completion event in the third transition. The junction pseudostate
for making the decision whether trialsNum < 2 or trialsNum ≥ 2
has been resolved by combining the transitions.
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The Induced Semantic Labeled Transition System

Syntactic LTS Θ: control states SΣ

Semantic LTS ∆Θ: control and data states:

States: C = |Ω| × ℘(EΣ ∪ SΣ)× SΣ

environment state, an event pool, and a control state
Labels: L = ℘(MH) set of messages

The event pool may contain both events declared in the signature
(from signals and operations) and completion events (represented
by states).
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The Induced Semantic Labeled Transition System, cont’d

Transition relation:

(ω, p :: p, s)
m\EΣ−−−→

∆Θ

(ω′, p C ((m ∩ EΣ) ∪ {s ′}), s ′) if

∃s p[g ]/a−−−−→
T

s ′ . ω |= g ∧ ω a,m−−→
Ω

ω′

(ω, p :: p, s)
∅−−→

∆Θ

(ω, p, s) if

∀s p′[g ]/a−−−−→
T

s ′ . p 6= p′ ∨ ω 6|= g

p ] p: p is next event to be processed
p C p′: adds events p′ to pool p
m ∩ (MH \ EΣ): messages emitted
(m∩EΣ)∪{s ′}: accepted events in EΣ and completion event when

entering state s ′ are added to the event pool.
When no transition is triggered by the current event, the event is
discarded (this will happen, in particular, to all superfluously
generated completion events).
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Protocol state machines

Protocol state machines: pre- and a postcondition instead of
guards and effects.
Events that do not fire a transition are an error.
The syntactic LTS is changed to:

(T ⊆ SΣ × (GH × EΣ × GH × ℘(MH))× SΣ, {s0})

where

the two occurrences of GH represent the pre- and the
post-conditions,

℘(MH) represents the messages that have to be sent out in
executing the triggering event
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