
126Modelling with UML, with semantics

Metamodel

Vorführender
Präsentationsnotizen
Would be nice to show
transition kinds
pseudostate kinds
events
actions



127Modelling with UML, with semantics

Run-to-Completion Step: Overview

• Choose an event from the event pool (queue)
• Choose a maximal, conflict-free, prioritized, set of transitions enabled by the event
• Execute set of transitions

• exit source states (inside-out)
• execute transition effects
• enter target states (outside-in)

thereby generating new events and activities



128Modelling with UML, with semantics

Run-to-Completion Step: Preliminaries (1)

• Active state configuration
• the states the state machine currently is in
• forms a tree

• if a composite state is active, all its regions are active

• Least-common-ancestor (LCA) of states s1 and s2
• the least region or orthogonal state (upwards) containing s1 and s2

bold: active state configuration bold: LCA of states A1 and A2



129Modelling with UML, with semantics

Run-to-Completion Step: Preliminaries (2)

• Compound transitions
• transitions for an event are “chained” into compound transitions

• eliminating pseudostates like junction, fork, join, entry, exit
• this is not possible for choice pseudostates where the guard of outgoing transitions are evaluated 

dynamically (in contrast to junctions)
• several source and target states



130Modelling with UML, with semantics

Run-to-Completion Step: Preliminaries (3)

• Main source / target state m of compound transition t
• Let s be LCA of all source and target states of t
• If s region: m = direct subvertex of s containing all source states of t
• If s orthogonal state: m = s
• Similarly for main target state
• All states between main source and explicit source states are exited, all state between main 

target and explicit target states are entered.

• Conflict of compound transitions t1 and t2
• intersection of states exited by t1 and t2 not empty

• Priority of compound transition t1 over t2
• si “deepest” source state of transition ti
• s1 (direct or transitive) substate of s2



131Modelling with UML, with semantics

Run-to-Completion Step (1)

RTC(env, conf ) ≡
⎡event ← fetch()

step ← choose steps(conf, event)
if step = ∅ ∧ event ∈ deferred(conf )
then defer(event)
fi
for transition ∈ step do

conf ← handleTransition(env, conf, transition)
od
if isCall (event) ∧ event ∉ deferred(conf )
then acknowledge(event)
fi
conf ⎦



132Modelling with UML, with semantics

Run-to-Completion Step (2)

steps(env, conf, event) ≡
⎡transitions ← enabled(env, conf, event)
{step | (guard, step) ∈ steps(conf, transitions) ∧ env guard } ⎦

steps(conf, transitions) ≡
⎡steps ← {(true, ∅)}
for transition ∈ transitions do

for (guard, step) ∈ steps(conf, transitions \ {transition}) do
if inConflict(conf, transition, step)
then if higherPriority(conf, transition, step)

then guard ← guard ∧ ¬guard(transition) fi
else step ← step ∪ {transition}

guard ← guard ∧ guard(transition) fi
steps ← steps ∪ {(guard, step)} od od

steps⎦

Vorführender
Präsentationsnotizen
Explain foundations of “inConflict” and “higherPriority”: Configuration, least common ancestor, and main source/target state.




133Modelling with UML, with semantics

Run-to-Completion Step (3)

handleTransition(conf, transition) ≡
⎡for state ∈ insideOut(exited(transition)) do

uncomplete(state)
for timer ∈ timers(state) do stopTimer(timer) od
execute(exit(state))
conf ← conf \ {state}

od
execute(effect(transition))
for state ∈ outsideIn(entered(transition)) do

execute(entry(state))
for timer ∈ timers(state) do startTimer(timer) od
conf ← conf ∪ {state}
complete(conf, state)

od
conf ⎦



134Modelling with UML, with semantics

Semantic variation points

• Some semantic variation points have been mentioned before.
• delays in event pool
• handling of deferred events
• entering of composite states without default entry

• Which events are prioritized?
• completion events only
• all internal events (completion, time, change)

• Which (additional) timing assumptions?
• delays in communication
• time for run-to-completion step

• zero-time assumption



135Modelling with UML, with semantics

State machine refinement

no refinement possible

not refined (may be omitted)

• State machines are behaviors and 
may thus be refined.



136Modelling with UML, with semantics

Protocol state machines

precondition

postcondition
specified operation

ProtocolTransition

• Protocol state machines specify which behavioral features of a classifier can be called in 
which state and under which condition and what effects are expected.
• particularly useful for object life cycles and ports
• no effects on transitions, only effect descriptions



137Modelling with UML, with semantics

Protocol state machines

Several operation specifications are combined conjunctively:

context C::op()
pre: inState(S1) and P1
post: Q1 and inState(S3)

context C::op()
pre: inState(S2) and P2
post: Q2 and inState(S4)

results in

context C::op()
pre: (inState(S1) and P1) or (inState(S2) and P2)
post: (inState@pre(S1) and P1@pre) implies (Q1 and inState(S3))
and (inState@pre(S2) and P2@pre) implies (Q2 and inState(S4))



138Modelling with UML, with semantics

How things work together

• Static structure
• sets the scene for state machine behavior
• state machines refer to

• properties
• behavioral features (operations, receptions)
• signals

• Interactions
• may be used to exemplify the communication of state machines
• refer to event occurrences used in state machines

• OCL
• may be used to specify guards and pre-/post-conditions
• refers to actions of state machines (OclMessage)

• Protocols and components
• state machines may specify protocol roles



139Modelling with UML, with semantics

Wrap up

• State machines model behaviour
• object and use case life cycles
• control automata
• protocols

• State machines consist of
• Regions and …
• … (Pseudo)States (with entry, exit, and do-activities) …
• connected by Transitions (with triggers, guards, and effects)

• State machines communicate via event pools.

• State machines are executed by run-to-completion steps.


