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Run-to-Completion Step: Overview

Activities “V State

configuration
\Transition handle;Q

I / \
Event pool - O Event dispatcher

®* Choose an event from the event pool (queue)
* Choose a maximal, conflict-free, prioritized, set of transitions enabled by the event
* Execute set of transitions

* exit source states (inside-out)

* execute transition effects
* enter target states (outside-in)

thereby generating new events and activities

Modelling with UML, with semantics 127



Run-to-Completion Step: Preliminaries (1)

* Active state configuration
* the states the state machine currently is in

* forms a tree
* if a composite state is active, all its regions are active

* Least-common-ancestor (LCA) of states s; and s,
* the least region or orthogonal state (upwards) containing s; and s,

T N s

bold: active state configuration bold: LCA of states A1 and A2
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Run-to-Completion Step: Preliminaries (2)

* Compound transitions

* transitions for an event are “chained” into compound transitions
* eliminating pseudostates like junction, fork, join, entry, exit

* this is not possible for choice pseudostates where the guard of outgoing transitions are evaluated
dynamically (in contrast to junctions)

* several source and target states
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Run-to-Completion Step: Preliminaries (3)

®* Main source / target state m of compound transition t
* Lets be LCA of all source and target states of t
* If sregion: m = direct subvertex of s containing all source states of t
* |f s orthogonal state: m=s

* Similarly for main target state
* All states between main source and explicit source states are exited, all state between main
target and explicit target states are entered.

* Conflict of compound transitions t; and t,
* intersection of states exited by t; and t, not empty

* Priority of compound transition t; over t,
* s; “deepest” source state of transition t;
* s, (direct or transitive) substate of s,
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Run-to-Completion Step (1)

RTC(env, conf ) =
| event « Fetch()
step «<— choose steps(conf, event)
if step = I A event e deferred(conf )
then defer(event)
fi
for transition € step do
conf «— handleTransition(env, conf, transition)
od
if isCall (event) A event ¢ deferred(conf)
then acknowledge(event)
fi
conf |
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®)
Run-to-Completion Step (2)

steps(env, conf, event) =
| transitions <« enabled(env, conf, event)
{step | (guard, step) e steps(conf, transitions) A env &= guard } |

steps(conf, transitions) =
[ steps « {(true, @)}
for transition e transitions do
for (guard, step) € steps(conf, transitions \ {transition}) do
if inConflict(conf, transition, step)
then if higherPriority(conf, transition, step)
then guard <« guard A ~guard(transition) fi
else step « step v {transition}
guard <« guard A guard(transition) fi
steps « steps v {(guard, step)} od od
steps |
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Run-to-Completion Step (3)

handleTransition(conf, transition) =

| for state e insideOut(exited(transition)) do
uncomp lete(state)
for timer e timers(state) do stopT imer(timer) od
execute(exit(state))
conf «— conf \ {state}

od

execute(effect(transition))

for state e outsideln(entered(transition)) do
execute(entry(state))
for timer e timers(state) do startTimer(timer) od
conf «— conf U {state}
comp lete(conf, state)

od

conf |
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Semantic variation points

* Some semantic variation points have been mentioned before.
* delays in event pool
* handling of deferred events
* entering of composite states without default entry

* Which events are prioritized?
* completion events only
* allinternal events (completion, time, change)

* Which (additional) timing assumptions?
* delays in communication

* time for run-to-completion step
* zero-time assumption
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State machine refinement

®* State machines are behaviors and

may thus be refined.

[extended} p_

[ Control ]-::1—[ Control
ﬂﬂ

Eﬁl Control /

m Waiting J

cardlnserted
/ loadCard() after(1s)

[Ca rd F_Iea d y)

{ if check successful
then green light read
else red light

o Lfinal}

( CheckData

: 7
no refinement possible

Modelling with UML, with semantics

not refined (may be /omlitted)

7

Control { extended }f //'

- /
A Y B A,
(>[ Ready }---- >[ Waiting |
""" T T cardlnserted‘ T
. blocked /! IOadCard{} : aft{:_‘r“ 5}
3 |
§ R
S (Acceptedj [ Card Ready
E = [check :
= |.B successful ] ) read
E T / free(); green light :
ey I "%
\_:f CheckData 1
' {final } J
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Protocol state machines

* Protocol state machines specify which behavioral features of a classifier can be called in
which state and under which condition and what effects are expected.

* particularly useful for object life cycles and ports
* no effects on transitions, only effect descriptions

Client {protocol} / [true]
when(isAssigned(order))/
l [ calls = calls@pre+1 ]

) connect() /
( Idle J‘; >r Connected

disconnect() / N

e / _ |- —precondition
y, [calls>1]= = = = _ — |- —specified operation
/ receiveResult(order,e) / = "
/ [ calls = calls@pre-1] — — — — |- —postcondition

ProtocolTransition
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Protocol state machines

Several operation specifications are combined conjunctively:

context C::op(Q)

pre: inState(S;) and P, S5 ) [P 1op0 /[0 ] X
post: Q; and iInState(S;) C 1 ) >C 3 j

context C::op(Q)

pre: inState(S,) and P, ) [P]1op() /1O ] S
2
post: Q, and inState(S,) C J (S )

results in

context C::op()

pre: (inState(S;) and P;) or (inState(S,) and P,)

post: (inState@pre(S;) and P,@pre) implies (Q; and InState(S;))
and (inState@pre(S,) and P,@pre) implies (Q, and inState(S,))
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How things work together

* Static structure
* sets the scene for state machine behavior
* state machines refer to
* properties
* behavioral features (operations, receptions)
* signals
* |Interactions
°* may be used to exemplify the communication of state machines
* refer to event occurrences used in state machines

* OCL

° may be used to specify guards and pre-/post-conditions
* refers to actions of state machines (OclMessage)

®* Protocols and components
* state machines may specify protocol roles
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Wrap up

* State machines model behaviour
* object and use case life cycles
° control automata
* protocols

* State machines consist of
°* Regions and ...
* ... (Pseudo)States (with entry, exit, and do-activities) ...
* connected by Transitions (with triggers, guards, and effects)

* State machines communicate via event pools.

* State machines are executed by run-to-completion steps.
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