
121Modelling with UML, with semantics

Orthogonal regions

orthogonal Regions,
both active if
Client/Server active

• Simple State: containing no Region
• Composite State: containing at least one Region

• simple composite State: exactly one
• orthogonal composite State: at least two

orthogonal states are “concurrent” as a single event may trigger a transition in each orthogonal region 
“simultaneously”



122Modelling with UML, with semantics

Forks and joins

fork Pseudostate
(one incoming, at least two outgoing Transitions;
outgoing Transitions must target States in different Regions of an orthogonal State)

join Pseudostate
(restrictions dual to forks)

all Regions must be
entered simultaneously

all Regions are left
simultaneously
(if FinalStates are reached)



123Modelling with UML, with semantics

• Entry and exit points (Pseudostates)
• provide better encapsulation of composite states
• help avoid “unstructured” transitions

Entry and exit points (1)

entry
point

exit point (on border of state machine 
diagram or composite state) 



124Modelling with UML, with semantics

Entry and exit points (2)

Notational alternatives

Semantically equivalent

“unstructured” transitions

Vorführender
Präsentationsnotizen
Entry and exit points may be used on both composite states and submachine states.When used in submachine states, the referring entry/exit point is called ConnectionPointReference.



125Modelling with UML, with semantics

History states

shallow history Pseudostate
(enter last State in this Region)

deep history Pseudostate
(enter last States in this Region
and all sub-Regions)

• History states represent the last active
• substate (shallow history), or
• configuration (deep history)

of a region.


