Orthogonal regions

- Simple State: containing no Region
- **Composite State:** containing at least one Region
 - simple composite State: exactly one
 - orthogonal composite State: at least two

orthogonal states are "concurrent" as a single event may trigger a transition in each orthogonal region "simultaneously"

Modelling with UML, with semantics

Forks and joins

Entry and exit points (1)

- Entry and exit points (Pseudostates)
 - provide better encapsulation of composite states
 - help avoid "unstructured" transitions

Entry and exit points (2)

Notational alternatives

Semantically equivalent

History states

- History states represent the last active
 - substate (shallow history), or
 - configuration (deep history)

of a region.

