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Sets

Definition (Set)

A set is a collection of objects. The basic relation is membership:

x ∈ A (x is a member of A)

The following operations and relations are defined on sets:

empty set ∅ is the set with no members

enumeration set {a1; . . . ; an} contains exactly a1; . . . ; an

subset A ⊆ B iff for all x : x ∈ A implies x ∈ B

comprehension {x ∈ A | P(x)}
(the set of all x ∈ A such that P(x) holds)

union A ∪ B = {x | x ∈ A or x ∈ B}
intersection A ∩ B = {x | x ∈ A and x ∈ B}

difference A \ B = {x | x ∈ A and not x ∈ B}
powerset P(A) = {B | B ⊆ A}

set of words (strings) over A A∗ = {ε} ∪ {a1 . . . an | ai ∈ A}
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Relations

Definition (Cartesian product)

A× B = {(a, b) | a ∈ A and b ∈ B}
A× B × C = {(a, b, c) | a ∈ A, b ∈ B and c ∈ C}
etc.

Definition (Relation)

A binary relation R on A and B is given by a set of pairs

R ⊆ A× B

(a, b) ∈ R often is written as a R b.
If A = B, then we speak of a binary relation R on A.
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Orders

Definition (Partial Order)

A partial order (A,≤) is given by a set A and a binary relation ≤
on A, such that

for all x ∈ A: x ≤ x (reflexivity)

for all x , y , z ∈ A: x ≤ y and y ≤ z imply x ≤ z (transitivity)

for all x , y ∈ A: x ≤ y and y ≤ x imply x = y (antisymmetry)

Definition (Total Order)

A partial order (A,≤) is called a total order, if additionally

for all x , y ∈ A: x ≤ y or y ≤ x or x = y (trichotomy)
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Orders

Example (Sample partial orders)

the set of natural numbers with the usual ordering ≤
the set of natural numbers with the ordering “x can be
divided by y”

the lexicographic order on strings (used for sorting)

the prefix order on strings

Which of these are total?
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Semantics of UML class diagrams

The semantics is given by a mathematical function S,
representing a snapshot of a system

A snapshot S includes all objects of a system, and their
relations

The evolution of a system can be represented by the transition
of a system from a snapshot S1 to a new snapshot S2

evolution of a system is only considered later (state machines)
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Semantics of a class hierarchy

A class hierarchy is given a by a partial order (C ,≤)
antisymmetry means that cyclic subclasses are forbidden

Each class c ∈ C is interpreted as a finite set S(c)
S(c) is the set of objects that are instances of class c

If c ≤ d , then S(c) ⊆ S(d) must hold

hence, “each c is a d”
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Semantics of a generalisation set

disjoint(c1 ≤ d , . . . , cn ≤ d) expresses the condition

S(ci ) ∩ S(cj) = ∅ for i 6= j

complete(c1 ≤ d , . . . , cn ≤ d) expresses the condition

S(c1) ∪ · · · ∪ S(cn) = S(d)

no condition for overlapping and incomplete
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Semantics of enumeration types and built-in types

An enumeration type T with literals l1, . . . , ln has as its
semantics the set of literals:

S(T ) = {l1, . . . , ln}

A built-in type has a predefined semantics, e.g.

S(integer) = Z

S(string) = A∗

where A is a suitable set of characters
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Functions

Definition (Function)

A function f from a set A to a set B, written f : A 7→ B,
associates with some of the elements a ∈ A a unique element
b ∈ B. This association is symbolically expressed as f (a) = b. The
elemen a ∈ A is called the argument and b the value of the
function application f (a). If there is no b, then f (a) is undefined.

Note: a function f : A 7→ B can be represented as a binary relation
graph(f ) ⊆ A× B as follows:

graph(f ) = {(a, f (a)) | a ∈ A}
We have right-uniqueness:

(x , y) ∈ graph(f ) and (x , z) ∈ graph(f ) imply y = z

Definition (Total function)

A function f : A 7→ B is total, if f (a) is defined for all a ∈ A. In
this case, we write f : A→ B.
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Semantics of attributes

The semantics of an attribute a : T of a class c is given by a
partial function

S(a) : S(c) 7→ S(T )

The function is needed to be partial because the value of the
attribute may not have been initialised yet.

If an attribute a : T has multiplicity other than 1, the semantics is
given by

S(a) : S(c) 7→ P(S(T ))
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Semantics of query operations

The semantics of a query operation op(x1 : T1; . . . xn : Tn) : T of
a class c is given by a partial function

S(op) : S(c)× S(T1)× · · · × S(Tn) 7→ S(T )

Non-query operations will lead to a new snapshot and are not
considered here.
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Semantics of associations

Given two classes c and d , the semantics of an association

c
a

d is given by a binary relation

S(a) ⊆ S(c)× S(d)

An association c
a

d satisfies the multiplicity

c
a

m..n d

if for all y ∈ S(d),

m ≤ | {x | (x , y) ∈ S(a)} | ≤ n

Here, | X | is the number of elements in X (also called cardinality
of X ).
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Consistency

A UML class diagram is consistent, if there is at least one
snapshot satisfying all its conditions. Otherwise, it is
inconsistent.

A UML class diagram is strongly consistent, if there is at
least one snapshot intepreting all classes as non-empty
sets satisfying all its conditions.
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Semantics of association ends

The semantics of an association end

c
ae

d

is given by a function S(e) : S(d)→ P(S(c)):

for y ∈ S(d), S(e)(y) = {x | (x , y) ∈ S(a)}

The semantics of an association end with multiplicity 0..1

c
ae

0..1
d

is given by a partial function S(e) : S(d) 7→ S(c):

for y ∈ S(d), S(e)(y) = the x with (x , y) ∈ S(a) (if existing)
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Semantics of association ends

The semantics of an association end with multiplicity 1

c
ae

1
d

is given by a total function S(e) : S(d)→ S(c):

for y ∈ S(d), S(e)(y) = the x with (x , y) ∈ S(a) (always exists)

The semantics of an association end

c
ae

ordered
d

is given by a function S(e) : S(d)→ (S(c))∗ with:

for y ∈ S(d), x ∈ S(e)(y) iff (x , y) ∈ S(a)
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Semantics of aggregations and compositions

Aggregations and compositions are associations and inherit
their semantics

Aggregations and compositions represent part-whole
relationships; hence they are irreflexive (and so are their
transitive closures)

For compositions, there is a condition on evolution of
snapshots: if an object of the composite class is deleted, so
must be all associated elements of component classes

Definition (transitive closure)

Given a binary relation R ⊆ A× A, its transitive closure is the
least relation R∗ ⊆ A× A with

R ⊆ R∗

R∗ is transitive
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Semantics of object diagrams

An object diagram specifies some objects to be part of the
snapshot S
If an object o is specified to have class c , then it must hold
that

S(o) ∈ S(c)

If there is an association a between objects o and p, then it
must hold that

(S(o),S(p)) ∈ S(a)
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Different stages of “goodness” of UML class diagrams

1 Syntactically ill-formed

2 Syntactically well-formed, but static-semantically ill-formed

3 Syntactically and static-semantically well-formed, but
inconsistent

4 Syntactically and static-semantically well-formed and
consistent, but methodologically doubtful

5 Syntactically and static-semantically well-formed, consistent
and methodologically clean
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