
88Modelling with UML, with semantics

Associations

• Associations describe sets of tuples whose values refer to typed instances.
• In particular, structural relationship between classes
• Instances of associations are called links.

• Association ends are properties.
• correspond to properties of the opposite class (default

multiplicity is 0..1)
• Association ends may be navigable.

• in contrast to general properties

navigable not navigable
association end

association namereading
direction

ternary associationqualified end (fh per date)

Vorführender
Präsentationsnotizen
On a binary association drawn as a solid line, a solid triangular arrowhead next to or in place of the name of the
association and pointing along the line in the direction of one end indicates that end to be the last in the order of the ends
of the association. The arrow indicates that the association is to be read as associating the end away from the direction of
the arrow with the end to which the arrow is pointing. (formal/05-07-04, p. 38)

Navigability is expressed by ownedNavigableEnds of Association.

Questions:
- Are association ends part of the UML metamodel?

89Modelling with UML, with semantics

Association classes

• Association classes combine classes with associations.
• not only connect a set of classifiers but also define a set of features that belong to the

relationship itself and not to any of the classifiers

equals association name

• each instance of Booking has one passenger and one flight
• each link of Booking is one instance of Booking

90Modelling with UML, with semantics

Inheritance (1)

• Generalizations relate specific classes to more general classes.
• instances of specific class also instances of the general class
• features of general class also implicitly specified for specific class

• implies substitutability (in the sense of Liskov & Wing)
• must be specified on specific class separately by { substitutable }

• Generalizations also apply to
associations.
• as both are Classifiers

{ abstract } class
(no direct instances,
only specializations

may have instances)

if decorated with { root }: no superclass

if decorated with { leaf }: no subclass

Vorführender
Präsentationsnotizen
isSubstitutable: Boolean [0..1]
Indicates whether the specific classifier can be used wherever the general classifier
can be used. If true, the execution traces of the specific classifier will be a superset of
the execution traces of the general classifier. (formal/05-07-04, p. 67)

What is the semantics of a generalization between associations?

91Modelling with UML, with semantics

• Generalization sets detail the relation between a general and more specific classifiers.
• { complete } (opposite: { incomplete })

• all instances of general classifier are instances of one of the specific classifiers in the generalization set
• { disjoint } (opposite: { overlapping })

• no instance of general classifier belongs to more than one specific classifier in the generalization set
• default: { disjoint, incomplete }

• several generalization sets may be applied to a classifier
• useful for taxonomies

Inheritance (2)

name of generalization set

Vorführender
Präsentationsnotizen
Each GeneralizationSet defines a particular set of Generalization relationships that describe the way
in which a general Classifier (or superclass) may be divided using specific subtypes. (formal/05-07-04, p. 71)

No example for a name of a generalization set found in the specification (formal/05-07-04), but seems to be useful, if the “dashed line” notation can’t be used. If, in the example, cards is replaced by a “: CardType” and we have an association between Card and CardType, we would introduce a powertype, where AccessCard, CreditCard, and MilesCard are all instances of CardType and also classes of their own.

92Modelling with UML, with semantics

Data types and enumerations

• Data types are types whose instances are identified by their value.
• Instances of classes have an identity.
• may show structural and behavioural features

• Enumerations are special data types.
• instances defined by enumeration literals

• denoted by Enumeration::EnumerationLiteral or #EnumerationLiteral
• may show structural and behavioural features

compartments for attributes
and operations suppressed

enumeration literals

93Modelling with UML, with semantics

Constraints

• Constraints restrict the semantics of model elements.
• constraints may apply to one or more elements
• no prescribed language

• OCL is used in the UML 2 specification
• also natural language may be used

user defined constraint

UML predefined constraint
(owner is either a person or a company)

94Modelling with UML, with semantics

• Packages group elements.
• Packages provide a namespace for its grouped elements.
• Elements in a package may be

• public (+, visible from outside; default)
• private (-, not visible from outside)

• Access to public elements by qualified names
• e.g., Flights::MilesAccount

Packages (1)

Notational variants

Vorführender
Präsentationsnotizen
PackageableElements must have a visibility (formal/05-07-04, p. 105), but the operations on Package allow elements to
have no visibility defined (formal/05-07-04, p. 103, Constr. [1]).

95Modelling with UML, with semantics

• Package imports simplify qualified names.

Packages (2)

private ElementImport public ElementImport

public PackageImport renaming private ElementImport

Package Element Visibility

A X private separate private element import
(otherwise public overrides private)

A Q public all remaining visible elements of B

B X public public import

B Q public default visibility

B R private private import, renaming

Vorführender
Präsentationsnotizen
An element imported by an ElementImport must have visibility public (formal/05-07-04, p. 61).
This is not stated for PackageImport (formal/05-07-04, p. 106f.), but a PackageImport is conceptually
equivalent to ElementImports for all members of the imported namespace, unless there is already
a separately-defined ElementImport (ptc/05-07-04, p. 106).

Questions:
- Can a private elemis of u package be imported into another package?

96Modelling with UML, with semantics

• Package mergings combine concepts incrementally.
• … but use with care

Packages (3)

• The receiving package
defines the increment.

• The receiving package is
simultaneously the
resulting package.

• Merging is achieved by
(lengthy) transformation
rules (not defined for
behaviour).

• Package merging is used
extensively in the UML 2
specification.

97Modelling with UML, with semantics

Metamodel

Vorführender
Präsentationsnotizen
For ownedAttribute it’s in fact: subsets attribute which subsets feature on an association between classifier and property.

98Modelling with UML, with semantics

• … are redefinable (unless decorated by { leaf })
• in classes that specialize the context class

Features

visible to elements …

+ public that can access owning namespace
(by membership, import, or access)

protected with generalization to owning namespace

~ package in the same package as the owning namespace

- private in owning namespace only

Visibility kinds (no default)

• … belong to a namespace (e.g., class or package)

• … can be defined on instance or class level

isStatic
default value

Vorführender
Präsentationsnotizen
Questions:
- Whet's the difference between feature visibility and element visibility?

99Modelling with UML, with semantics

Properties

{ ordered } { unique } Collection type

√ √ OrderedSet

√ × Sequence

× √ Set (default)

× × Bag

/ ({ derived }) can be computed from other information (default: false)
{ readOnly } can only be read, not written (default: false = unrestricted)
{ union } union of subset properties (implies derived)
{ subsets … } which property this property is a subset of

none reference

shared undefined (!)

composite value

Aggregation kinds (default: none)

Vorführender
Präsentationsnotizen
Aggregation kinds, isOrdered, isUnique, isDerivedUnion, &c. are properties of Property.

Questions:
- What are the dependencies between the properties derived, union and subsets?

100Modelling with UML, with semantics

Behavioral features

• … are realized by behaviors (e.g., code, state machine).
• { abstract } (virtual) behavioral features declare no behavior

• behavior must be provided by specializations
• Exceptions that may be thrown can be declared
• Limited concurrency control

• { active } classes define their own concurrency control

• in passive classes:

{ sequential } no concurrency management

{ guarded } only one execution, other invocations are blocked

{ concurrent } all invocations may proceed concurrently

Call concurrency kinds (no default)

active class (with own behavior which
starts on instance creation)

101Modelling with UML, with semantics

Operations (1)

• An operation specifies the name, return type, formal parameters, and constraints for
invoking an associated behaviour.
• «pre» / «post»

• precondition constrains system state on operation invocation
• postcondition constrains system state after operation is completed

• { query }: invocation has no side effects
• «body»: body condition describes return values

• { ordered, unique } as for properties, but for return values
• exceptions that may be thrown can be declared

in one way from caller

out one way from callee

inout both ways

return return from callee (at most 1)

Parameter direction kinds (default: in)

parameter name
parameter type
parameter multiplicity

Vorführender
Präsentationsnotizen
Is there any specific notation for declaring exceptions?

102Modelling with UML, with semantics

Operations (2)

• Several semantic variation points for operations
• What happens, if a precondition is not satisfied on invocation?
• When inherited or redefined

• invariant, covariant, or contravariant specialization?
• How are preconditions combined?

• No predefined resolution principle for inherited or redefined operations
• “The mechanism by which the behavior to be invoked is determined from an operation and the

transmitted argument data is a semantic variation point.”
• a single-dispatch, object-oriented resolution principle is mentioned explicitly in the UML 2

specification

• Operation invocations may be synchronous or asynchronous.

Vorführender
Präsentationsnotizen
Semantic variation points: see formal/05-07-04, p. 101.
Resolution: see formal/05-07-04, p. 433.

103Modelling with UML, with semantics

Signals and receptions

• A signal is a specification of type of send request instances communicated between
objects.
• Signals are classifiers, and thus may carry arbitrary data.
• A signal triggers a reaction in the receiver in an asynchronous way and without a reply (no

blocking on sender).

• A reception is a declaration stating that a classifier is prepared to react to the receipt of
a signal.
• Receptions are behavioral features and thus are realized by behavior (e.g., a state machine).

Reception

Vorführender
Präsentationsnotizen
Questions:
- What's the difference between operations and receptions?

104Modelling with UML, with semantics

Interfaces

• Interfaces declare a set of coherent public features and obligations.
• i.e., specify a contract for implementers (realizers)

client

provider

features to be offered

Several notations for client/provider relationship

lollipop
joint

Vorführender
Präsentationsnotizen
Note that «use» (the Usage dependency) is not used for interface usage. The «realize» stereotype is obsolete (formal/05-07-04, p. 673).

The “ball-and-socket” notation for assembly connectors (here called “joint”) may also be used for dependencies between interfaces (see formal/05-07-04, p. 155).

