
24Modelling with UML, with semantics

MDSD: Process

• Changed development process
• Two stages of development – infrastructure and application

• Setting up/developing infrastructure: modelling languages, platform (e.g., frameworks), model
transformations, …

• Application development: modelling, efficient reuse of infrastructure, less coding
• Simplified application development

• Automated code generation makes implementation tasks obsolete.
• Tasks on code level (implementation, test, maintenance, etc.) are drastically reduced.

• New development tools
• Tools for language definition, especially meta-modelling
• Editors and transformations engines
• Customizable tools and suites: Model editors, repositories, tools for simulation, verification, and

test, etc.

25Modelling with UML, with semantics

Set-up of MDSD project and tooling

26Modelling with UML, with semantics

MDSD approaches: A short overview

• Approaches
• Computer-Aided Software Engineering (CASE)
• Executable UML
• Model-Driven Architecture (MDA)
• Architecture-Centric Model Driven Software Development (AC-MDSD)
• MetaCASE
• Software Factories

27Modelling with UML, with semantics

Computer-Aided Software Engineering (CASE)

• Historical approach (end of 20th century)
• Example: Computer Associates’ AllFusion Gen

• Support Information Engineering Method of James Martin through different diagrams types
• Fully automatic code-generation for 3-tier architecture and some execution platforms (Mainframe, Unix, .NET, J2EE,

various databases, …)
• Advantage/disadvantage: changes to target platform not necessary/possible

• Differences to the basic architecture of MDSD
• Meta-level description not supported or accessible to modeller
• General-purpose graphical language representations with tool specific variants
• Modelling languages mapped poorly onto the underlying platforms
• No or fixed description of execution platform

• Advantages
• Productivity, development and maintenance costs, quality, documentation

• Disadvantages
• Proprietary modelling languages
• Tools not interoperable and rather complex
• Support of platforms and new features strongly depends on tool vendors
• No standardization, no (real) abstraction levels, and DSLs
• Limited to programs written by a single person or by a team that serializes its access to files

28Modelling with UML, with semantics

Executable UML

• “CASE with UML”
• Subset of UML: class diagrams, state charts, component diagrams
• UML Action Semantic Language (ASL) as programming language

• Niche products
• Some specialized tool vendors like Kennedy/Carter
• Used e.g. for developing embedded systems

• Realizes parts of the MDSD basic architecture
• There is one predefined modelling language (xUML)
• Transformation definitions can be changed and adapted (with ASL)

• Advantages compared to CASE
• Standardized modelling language based on UML

• Disadvantages compared to CASE
• Modelling language has less modelling elements

29Modelling with UML, with semantics

Model-Driven Architecture (MDA)

• MDA is a standard promoted by the OMG
• A set of specifications defined by OMG’s open, worldwide process

• MDA looks at software development from the point of view of
models

• Models are the core; design is the focus
• MDA supports technology-independent design

• MDA divides domain knowledge and platform knowledge

• Advantages
• Portability to different platforms and technologies

• Re-usability

• Open Source

• Disadvantage
• General-purpose approach, sometimes specific solutions perform

better

30Modelling with UML, with semantics

Architecture-Centric Model Driven Software Development

• Efficient reuse of architecture
• Focus on efficient reuse of infrastructure/frameworks (= architecture) for multiple applications
• Concrete methodology

• Development of reference architectures
• Analysis of code that is individual, has schematic repetitions, or is generic
• Extraction of necessary modelling concepts and definition of modelling language, transformations, and

platform
• Tool support (e.g. www.openarchitectureware.org)

• Advantages to MDA
• Supports development of individual platforms and modelling languages

• Disadvantages to MDA
• Little support for portability

http://www.openarchitectureware.org/

31Modelling with UML, with semantics

MetaCASE/MetaEdit+

• Individual configurable CASE
• Metamodeling for developing domain-specific languages (DSLs)
• Focuses on best support of application domain (intentional programming for e.g. cell phone

software)
• Methodology defined through DSL development

• Good (meta-)modelling support
• Good meta-modelling support, incl. graphical editors
• No separated support for platform development, but suggests to use components and

frameworks
• Advantage

• Domain-specific modelling
• Disadvantages

• Tool support focused on graphical modelling
• No tool interoperability, since proprietary M3-level (meta-meta-model)

32Modelling with UML, with semantics

Software Factories

• (Industrial) manufacturing of software products
• Combines ideas of different approaches (e.g. MDA, AC-MDSD, MetaCASE/DSLs) as well as

common SW-engineering technologies (patterns, components, frameworks)
• Objective is to support the development of software product lines (SPLs) through automation,

i.e. a set of applications with a common application domain and infrastructure
• “A software factory is a software product line that configures extensible tools, processes,

and content […] automates the development and maintenance of variants of an archetypical
product by adapting, assembling, and configuring framework-based components.”

• Advantages
• Focuses on domain-specific solutions

• Disadvantages
• Little tool support

33Modelling with UML, with semantics

Model-Driven Architecture (MDA): Overview

• Separates the operational specification of a system from the details
such as how the system uses the platform on which it is developed

• MDA provides the means to
• Specify a system independently of its platform

• Specify platforms

• Choose a platform for the system

• Transform the system specifications into a platform dependent system

• Three fundamental objectives
• Portability

• Interoperability

• Reuse

• Productivity (derived objective)

34Modelling with UML, with semantics

MDA basic elements: Models

• Cornerstone of MDA
• Abstraction of reality, different from it, and that can be used for

(re)producing such reality

• Expressed in a well-defined language (syntax and semantics)
which is suitable for automated interpretation

• In MDA, “everything is a model”
• One model may describe only part of the complete system
• A model helps

• Focusing on essentials of a problem to better understand it
• Moving towards an effective solution

35Modelling with UML, with semantics

MDA basic elements: Models

• Types of models
• Business models or Computation Independent Models (CIM)

• Define domains identifying fundamental business entity types and the
relationships between them

• Say nothing about the software systems used within the company
• System models

• These models are a description of the software system
• Platform independent models (PIM)

• resolves functional requirements through purely problem-space terms.
• No platform-specific details are necessary.

• Platform specific models (PSM)
• It is a solution model that resolves both functional and non-functional

requirements.
• A PSM requires information on specific platform related concepts and

technologies.
• Platform independence is a relative term.

36Modelling with UML, with semantics

MDA basic elements: Meta-models (1)

• Meta-models allow the exchange of models among
modelling tools.

• Meta-models represent specific domain elements.
• Use of a common terminology
• Reduce misunderstandings
• Production of a complete documentation
• Check of consistent processes
• Traceability of process artefacts: impact analysis

• A meta-model
• is also a model and must be written in a well-defined

language;
• defines structure, semantics and constraints for a family

of models.

37Modelling with UML, with semantics

MDA basic elements: Meta-models (2)

• The three-layer architecture
• (M3) Meta-meta-model

• One unique meta-meta-model, the Meta-Object Facility (MOF).
• It is some kind of “top level ontology”.

• (M2) Meta-model
• defines structure, semantics and constraints for a family of

models.
• (M1) Model

• Each of the models is defined in the language of its unique
meta-model.

• UML profiles are adapted modelling languages.

38Modelling with UML, with semantics

MDA basic elements: Transformations (1)

• A transformation is the automatic generation of a target model from a source model,
according to a transformation definition.

• A transformation definition is a set of transformation rules that together describe how a
model in the source language can be transformed into a model in the target language.

• A transformation rule is a description of how one or more constructs in the source
language can be transformed into one or more constructs in the target language.

39Modelling with UML, with semantics

MDA basic elements: Transformations (2)

40Modelling with UML, with semantics

MDA basic elements: Transformations (3)

• Composition
• Special case of transformation
• allows bringing new details or “aspects” into a model.
• allows splitting functionality across several platforms.

41Modelling with UML, with semantics

MDA technologies and standards

• MOF: Meta-modelling language, repository interface (JMI), interchange (XMI)
• UML: Standard modelling language; instance of the MOF model; for developers and

“meta-developers”
• CWM: modelling languages for data warehousing applications (e.g. Relational DBs)
• OCL: expression language, extends the expressive power of UML and MOF
• QVT: Transformations definition language; also for Queries and Views of models.
• SPEM: metamodel and a UML profile used to describe a concrete software development

process.

42Modelling with UML, with semantics

Conforms

SLA
Combine

Trust & SecCombine

MarkingNote

Conforms

QoS

Trust & Sec

Help

Combine

Combine

Generates

Marking

Note

New
generated
information

New
modelled
Information

Conforms New
generated
information

New
modelled
information

Help Generates

Marking Note

QoS

Trust & Sec

Combine

Combine

-Software
-Systems (sizing, HA,…)
-Networks

MDA development process

43Modelling with UML, with semantics

Acronyms / Definitions

• MDE: Model-Driven Engineering
• ME: Model Engineering
• MBDE: Model-Based Data

Engineering
• MDA: Model-Driven Architecture
• MDD: Model-Driven Development
• MDSD: Model-Driven Software

Development
• MDSE: Model-Driven Software

Engineering
• MM: Model Management
• ADM: Architecture-Driven

Modernization
• DSL: Domain-Specific Language
• DSM: Domain-Specific Modelling
• etc.

• MDE is a generic term.
• ME and MDSE more or less synonyms of

MDE
• MDA™ and MDD™ are OMG trademarks;

MDD is a protection trademark (no use as of
today/just reserved by OMG for future use).

• MDSD like MDE is sometimes used instead
of MDD when one does not wish to be
associated to OMG-only technology,
vocabulary and vision.

• ADM is another standard intended to be the
reverse of MDA: MDA covers forward
engineering while ADM covers backward
engineering.

• MM mainly used in data engineering like
MBDE

• DSM is more Microsoft marked but of
increasing use by the academic and
research community.

44Modelling with UML, with semantics

transform

compile

interpret

textual

graphical

precise/
executable

Domain

Ontology

bounded area of
knowledge/interest

Metamodel

Specific
Language

Domain

semanticsModel

multiple

partial

viewpoint

subdomains

composable

Metametamodel

several target
software

architecture
software

architecture

Application

multi-step

single-step

no
roundtrip

design
expertise

Software
System
Family

Application
Specification

Family
Architecture

Product

Map of MDSD concepts

Metamodeling

Transformations

Constraints

Editors

SPL & Variants

45Modelling with UML, with semantics

References

• Grady Booch, Alan Brown, Sridhar Iyengar, James Rumbaugh, Bran Selic. “An MDA Manifesto”.
MDA Journal, May 2004.
http://www.ibm.com/software/rational/mda/papers.html

• Marco Brambilla, Jordi Cabot, Manuel Wimmer. Model-Driven Software Engineering in Practice.
Morgan & Claypool, 2012.

• Jack Greenfield, Keith Short, Steve Cook, Stuart Kent. Software Factories. John Wiley & Sons,
2004.

• Chris Raistrick, Paul Francis, John Wright, Colin Carter, Ian Wilkie. Model-Driven Architecture with
Executable UML. Cambridge University Press, 2004.

• Thomas Stahl, Markus Völter, Sven Efftinge, Arno Haase. Modellgetriebene Softwareentwicklung.
dpunkt.verlag, 22007.

• Peter Swithinbank, Mandy Chessell, Tracy Gardner, Catherine Griffin, Jessica Man, Helen Wylie,
Larry Yussuf. Patterns: Model-Driven Development Using IBM Rational Software Architect. IBM
Redbooks, 2005.
http://www.redbooks.ibm.com/redbooks/sdbooks/pdfs/sg247105.pdf

• Stephan Roser. Vorlesung „Modellgetriebene Softwareentwicklung“. Universität Augsburg,
Sommersemester 2008.

http://www.ibm.com/software/rational/mda/papers.html
http://www.redbooks.ibm.com/redbooks/sdbooks/pdfs/sg247105.pdf

46Modelling with UML, with semantics

Meta-Modelling

47Modelling with UML, with semantics

Model vs. System

René Magritte. La trahison des images. 1928–29.

48Modelling with UML, with semantics

Model of a model ― The correspondence continuum

• Example
• A photo of a landscape is a model of the landscape.
• A photocopy of the photo is model of a model of the landscape.
• A digitalization of the photocopy is a model of the model of the model of the

landscape.
• etc.

Meaning is rarely a simple mapping from a symbol to an object; instead it often
involves a continuum of (semantic) correspondences from symbol to (symbol
to)* object. [Barry Smith. The correspondence continuum. 1987]

49Modelling with UML, with semantics

Basic entities of MDE and MDSD

System ModelrepOf

System: a group of interacting, interrelated,
or interdependent elements forming a

complex whole.

Model: an abstract representation of a
system created for a specific purpose.

Vorführender
Präsentationsnotizen
 Systems Models3) There is a very large variety of models. We can regroup them in Technical Spaces.

50Modelling with UML, with semantics

A very popular model: Geographical maps

The System

Models

France in 1453
The French cheese

map

Railroad map
in western France

ModelrepOfSystem

Percentage
of termite infestation

in France.

Presidential
elections in

France

http://geography.about.com/library/blank/france.jpg

51Modelling with UML, with semantics

Limited substitutability principle

• The purpose of a model is always to be able to answer some specific sets of questions
in place of the system, exactly in the same way the system itself would have answered
similar questions.

• A model represents certain specific aspects of a system and only these aspects, for a
specific purpose.

System

+ ask()
repOf

Model

+ ask()

52Modelling with UML, with semantics

Lewis Carroll and the 1:1 map

“That’s another thing we’ve learned from your Nation” said Mein Herr, “map-making. But
we’ve carried it much further than you. What do you consider the largest map that would be
really useful?”

“About six inches to the mile.”

“Only six inches!” exclaimed Mein Herr. “We very soon got to six yards to the mile. Then we
tried a hundred yards to the mile. And then came the grandest idea of all! We actually made
a map of the country, on the scale of a mile to the mile!”

”Have you used it much?” I enquired.

“It has never been spread out, yet” said Mein Herr: “the farmers objected: they said it
would cover the whole country, and shut out the sunlight! So we now use the country itself,
as its own map, and I assure you it does nearly as well.“

Lewis Carroll. Sylvie and Bruno concluded.

53Modelling with UML, with semantics

Lewis Carroll and the blank map

He had bought a large map representing the sea,
Without the least vestige of land:
And the crew were much pleased when they found it to be
A map they could all understand.
“What's the good of Mercator's North Poles and Equators,
Tropics, Zones, and Meridian Lines?”
So the Bellman would cry: and the crew would reply
“They are merely conventional signs!
Other maps are such shapes, with their islands and capes!
But we've got our brave Captain to thank:”
(So the crew would protest) “that he's bought us the best—
A perfect and absolute blank!”

Lewis Carroll. The Hunting Of The Snark ― An Agony in Eight Fits.

54Modelling with UML, with semantics

Every map has a legend (implicit or explicit)

The legend

Same visual notation,
different context,
different meaning

is the metamodel

55Modelling with UML, with semantics

Maps without legends are meaningless

Percentage of places infested
by termites in France

First round of political
election in France in 2002

56Modelling with UML, with semantics

The legend is a meta-model

System

+ ask()
repOf

Model

+ ask()

Meta-model
+ terminology
+ assertions conformsTo

57Modelling with UML, with semantics

The model of a model is not a meta-model

Area of
Seattle

repOf Tourist map:
1/50 000

of the area Seattle

Tourist map:
1/100 000

of the area Seattle

/repOf
repOf

Vorführender
Präsentationsnotizen
A map may represent a given territory with a certain perspective. It has a certain scale, for example the map A of the Seattle area at 1/50 000. If we take a map of the same area at a different scale, this maybe considered eitheras a map B of the same Seattle territory or alternatively as a model of map A. As illustrated, a model of a model may be thus apparently be a model.

58Modelling with UML, with semantics

Meta-models act as filters

The metamodel

A modelA system

Mary
Table 237
Chair 34
Paul
Victor
Emily

Furniture

Table Chair

Person

Attendant Presenter

sitsOn

59Modelling with UML, with semantics

Meta-models as simple ontologies

• Meta-models are precise abstraction filters.
• Each meta-model defines a domain-specific language.
• Each meta-model is used to specify which particular “aspect” of a system should be

considered to constitute the model.

• The correspondence between a system and a model is precisely and computationally
defined by a meta-model.

A metamodel defines a
consensual agreement on
how elements of a system
should be selected to
produce a given model.

An ontology is an explicit
specification of a shared
conceptualization.

conformsTo

60Modelling with UML, with semantics

Multiple views and coordinated DSLs

• 1:1 map vs. blank map
• Limited substitutability principle
• A model has no meaning when separated from its meta-model.

Carpenter’s
view

Mason’s
view

Plumber’s
view

Architect’s
view

Landlord’s
view

Renter’s
view

Interior
Designer’s

view

Tax
Collector’s

view
Electrician’s

view

ModelrepOfSystem

61Modelling with UML, with semantics

Multiple views and aspects of a software system

System functions
from the user view

Physical components
of an application

Representation
of behavior
in term of states

Class static structure
and relations between these classes

Schemas of component
installation
on hardware devices Representation

of operation behavior
in terms of actions

Representation of
objects and their
temporal interactions

Representation of objects,
of their mutual links and
potential interactions

Objects and basic relations between
these objects

62Modelling with UML, with semantics

Meta-models

• A meta-model is just another model.
• Model of a set of models

• Meta-models are specifications.
• Models are valid if no false statements according to meta-model (e.g. well-formed)
• Meta-models typically represent domain-specific models (real-time systems, safety critical

systems, e-business)
• The domain of meta-modelling is language definition.

• A meta-model is a model of some part of a language
• Which part depends on how the meta-model is to be used
• Parts: syntax, semantics, views/diagrams, ...

• Meta-meta-model
• Model of meta-models
• Reflexive meta-models expressed using itself

Vorführender
Präsentationsnotizen
Metamodeling is a controversial topic which is currently critical within the UML/OMG/MDA community.A metamodel is just another model (e.g. written in UML) and is thus a model of a set of models. Metamodels are specifications. Models are valid if no false statements according to metamodel (e.g. well-formed) Metamodels typically represents domain-specific models (real-time systems, safety critical systems, e-business) The domain of metamodeling is language definition. A metamodel is a model of some part of a language. Which part depends on how the metamodel is to be used. Examples of parts are syntax, semantics, views and diagrams. Then we also have what is known as a meta-metamodel. This can said to be a model of metamodels. Reflexive metamodel are expressed using itself. A minimal reflexive metamodel contains all of the parts used to describe the set of models that are of interest.

63Modelling with UML, with semantics

A “lattice” of meta-models

A modelThe system

A collection of several hundreds
of small meta-models (DSLs)
with high abstraction power.

64Modelling with UML, with semantics

The basic assumptions of MDE and MDSD

• Models as first class entities
• Conformance and Representation as kernel relations central to MDE

• MDSD as a special case of MDE

Model

isRepresentedBy

MetaModel

System

conformsTo

Vorführender
Präsentationsnotizen
Similar approaches, differently in details.MDA standardization initiative of the OMG about MDSDfocusing on UML based modeling languages a goal: interoperability between tools and in the long run the standardization of models for popular ranges of application.MDSD no restrictions concerning modeling languages a goal: Supply of practically applicable components for software development processes, which are generally applicable in connection with model-driven approaches. (independently of tools or OMG MDA standards)

65Modelling with UML, with semantics

Meta-modelling hierarchy or the meta-modelling stack

The MOF (some kind of "representation ontology")

The UML metamodel and other MMs

Some UML Models and other Ms

Various usages of these models

66Modelling with UML, with semantics

Abstract Syntax Systems Compared

MOF

The UML
meta-Model

A Specific
UML Model

EBNF

Pascal Language
Grammar

A specific
Pascal Program

A XML
document

A XML DTD
or Schema

A XML
document

A XML DTD
or Schema

Technology #2
(MOF + OCL)

Technology #3
(XML Meta-Language)

KIF
Theories

Representation
Ontologies

Technology #4
(Ontology engineering)

Technology #1
(formal grammars

attribute grammars, etc.)

+Description
Logics

+Conceptual
Graphs
+etc.+Xpath, XSLT

+RDF, OIL, DAML
+etc.

M3

M2

M1

Vorführender
Präsentationsnotizen
OWL: Web Ontology LanguageRDF: Resource Description FrameworkDAML: Darpa Agent Markup LanguageOIL: Ontology Inference LayerKIF: Knowledge Interchange Format

67Modelling with UML, with semantics

Three-level hierarchy: Example ― Petri-nets

Metametamodel

Metamodel

Model

Node
Place

Place
P1

Place
P2

Node
Trans

Node
Node

Node
Link

Link
arcPT

Link
arcTP

Trans
T1

arcPT arcTP

Link
inCom

Link
outGo

outGo

outGo

inCom

inCom

Link
meta

outGo

inCom

inCom outGo

outGo inCom

conformsTo

conformsTo

conformsTo

meta

repOf

System

P2

P1

T1

Classical
representation

M1

M2

M3

Vorführender
Präsentationsnotizen
Let us represent the system on the right with the Model Engineering Technical Space. This system is a Petri Net. Note that it is also a model of another Technical Space. We have three nodes: P1, P2, T1 and two edges: arcPT and arcTP.We have two node types: Place and Trans(ition). We have two edge types: arcPT from Place to Trans and arcTP from Trans to Place.There are meta links between the model and the metamodel elements.Therefore, there is a conformsTo relation between the model and the metamodel.The metametamodel is composed of…There are meta links between the metamodel and the metametamodel elements.Therefore, there is a conformsTo relation between the metamodel and the metametamodel.There are meta links from the metametamodel elements to other metametamodel elements.Therefore, there is a conformsTo relation from the metametamodel to the metametamodel.

68Modelling with UML, with semantics

<petrinet>
<place name=“P1”/>
<place name=“P2”/>
<transition name=“T1”/>
<arcPT source=“P1” target=“T1”/>
<arcTP source=“T1” target=“P2/>

</petrinet>

Metametamodel:
XML Schema for
XML Schema

Metamodel:
a Petri Net
XML Schema

Model: an XML
document

conformsTo

conformsTo

meta

repOf

System

…
<xs:element name=“place">

<xs:complexType>
<xs:attribute name=“name“

type=“xs:string"/>
</xs:complexType>

</xs:element>
…

…
<xs:element name=“element">

<xs:complexType>
<xs:attribute name=“name“

type=“xs:string"/>
…

</xs:complexType>
</xs:element>

…
conformsTo

P2

P1

T1

Classical
representation

M1

M2

M3

69Modelling with UML, with semantics

petrinet {
place P1;
place P2;
transition T1;
arcPT P1 -> T1;
arcTP T1 -> P2;

}

Metametamodel:
EBNF grammar
of EBNF

Metamodel:
a Petri Net
Grammar

Model: a
string

conformsTo

conformsTo

meta

repOf

System

petrinet := “petrinet” “{”
place* transition*
arcPT* arcTP* “}”;

place := “place” IDENT “;”;
transition := “transition” IDENT “;”;
arcPT := “arcPT” IDENT “->” IDENT;
arcTP := “arcTP” IDENT “->” IDENT;

productionRule := IDENT “:=” seq “;”;
seq := alternative seq?;
alternative := rep (“|”alternative)?;
rep := atom (“?” | “*”)?;
atom := terminal | “(” seq “)”;
terminal := STRING | IDENT;

conformsTo

P2

P1

T1

Classical
representation

M1

M2

M3

70Modelling with UML, with semantics

Technological Space

Basic entities of MDE and MDSD

System ModelrepOf

System: a group of interacting, interrelated,
or interdependent elements forming a

complex whole.

Model: an abstract representation of a
system created for a specific purpose.

Technological Space: a model management
framework usually based on some algebraic structures

(trees, graphs, hypergraphs, etc.).

Meta-Model

conformsTo

Vorführender
Präsentationsnotizen
 Systems Models3) There is a very large variety of models. We can regroup them in Technical Spaces.

71Modelling with UML, with semantics

The notion of Technological Space (TS)

• A Technological Space corresponds to:
• A uniform representation system

• Syntactic trees
• XML trees
• Sowa graphs
• UML graphs
• MOF graphs

• A working context
• A set of concepts
• A set of methods
• A shared knowledge and know-how
• etc.

• It is usually related to a given community
with an established expertise, know-how and
research problems.

• It has a set of associated tools and practices,
etc.
• Protégé, Rational Rose, …

Corba
C++

WWW

XML
documentware

etc.

RDBMS

Ontologies

Java

Graph Theory

MDA
Modelware

OODBMS

Description
logic

Prolog

Semantic Web

Grammarware

72Modelling with UML, with semantics

Main Technological Spaces

TS’s may be
connected
via bridges

Program

Grammar

Data

Schema

Model

Meta-Model

Document

Schema

Ontology

Top Level O.

Syntax XML

MDA

DBMS Ontology
engineering

Unified Modeling Language 2

74Modelling with UML, with semantics

History and Predecessors

• The UML is the “lingua franca” of software
engineering.

• It subsumes, integrates and consolidates
most predecessors.

• Through the network effect, UML has a much
broader spread and much better support
(tools, books, trainings etc.) than other
notations.

• The transition from UML 1.x to UML 2.0 has
• resolved a great number of issues;
• introduced many new concepts and notations

(often feebly defined);
• overhauled and improved the internal structure

completely.
• While UML 2 still has many problems, it is

much better than what we ever had before.

current version (“the standard”) UML 2.4.1
formal/2011-08-06 of August ’11

75Modelling with UML, with semantics

Usage Scenarios

• UML has not been designed for specific, limited usages.

• There is currently no consensus on the rôle of the UML:
• Some see UML only as tool for sketching class diagrams representing Java programs.
• Some believe that UML is “the prototype of the next generation of programming languages”.

• UML is a really a system of languages (“notations”, “diagram types”) each of which may
be used in a number of different situations.

• UML is applicable for a multitude of purposes and during all phases of the software
lifecycle – to varying degrees.

Vorführender
Präsentationsnotizen
B. Selic: “The pragmatics of Model-Driven Development”, IEEE Software 20 (5) 2003

76Modelling with UML, with semantics

Usage Scenarios

77Modelling with UML, with semantics

Diagram types in UML 2

UML is a coherent system of languages rather than a single language.
Each language has its particular focus.

Vorführender
Präsentationsnotizen
Each sub-language may be used for different tasks, imposing different restrictions, where different best practices are applicable.

78Modelling with UML, with semantics

Internal Structure: Overview

• The UML is structured using a metamodeling approach with four layers.
• The M2-layer is called metamodel.

• The metamodel is again structured into rings, one of which is called superstructure, this
is the place where concepts are defined (“the metamodel” proper).

• The Superstructure is structured into a tree of packages in turn.

79Modelling with UML, with semantics

Internal Structure: Layers

80Modelling with UML, with semantics

Internal Structure: Layers

:

81Modelling with UML, with semantics

Internal Structure: Rings

82Modelling with UML, with semantics

Internal Structure: Packages

83Modelling with UML, with semantics

UML is not (only) object oriented

• A popular misconception about UML is that it is “object oriented” by heart – whatever
that means.

• It is true that
• UML defines concepts like class and generalization;
• UML is defined using (mainly) a set of class models;
• UML 2 rediscovers the idea of behaviour embodied in objects.

• However, UML 2
• also encompasses many other concepts of non- or pre-OO origin (Activities, StateMachines,

Interactions, CompositeStructure, …);
• may be used in development projects completely independent of their implementation

languages (Java, Cobol, Assembler, …);
• is not tied to any language or language paradigm, neither by accident nor purpose.

84Modelling with UML, with semantics

Unified Modeling Language 2

Classes and packages

85Modelling with UML, with semantics

History and predecessors

• Structured analysis and design
• Entity-Relationship (ER) diagrams (Chen 1976)

• Semantic nets
• Conceptual structures in AI (Sowa 1984)

• Object-oriented analysis and design
• Shlaer/Mellor (1988)
• Coad/Yourdon (1990)
• Wirfs-Brock/Wilkerson/Wiener (1990)
• OMT (Rumbaugh 1991)
• Booch (1991)
• OOSE (Jacobson 1992)

Vorführender
Präsentationsnotizen
Also influenced by (object-oriented) programming language concepts.

86Modelling with UML, with semantics

Usage scenarios

Analysis Design Implementation
Concept √ ×

Type √ √
Set of objects √ √
Code × √

• Classes and their relationships describe the vocabulary of a system.
• Analysis: Ontology, taxonomy, data dictionary, …
• Design: Static structure, patterns, …
• Implementation: Code containers, database tables, …

• Classes may be used with different meaning in different software development phases.
• meaning of generalizations varies with meaning of classes

Vorführender
Präsentationsnotizen
Question: What's the difference between a class as a concept and as a type?

87Modelling with UML, with semantics

• Structural features (are typed elements)
• properties

• commonly known as attributes
• describe the structure or state of class instances
• may have multiplicities (e.g. 1, 0..1, 0..*, *, 2..5)

• Behavioral features (have formal parameters)
• operations

• services which may be called
• need not be backed by a method, but may be implemented

otherwise

Classes

• Classes describe a set of instances with common features (and semantics).
• Classes induce types (representing a set of values).
• Classes are namespaces (containing named elements).

Vorführender
Präsentationsnotizen
A StructuralFeature and hence Property is a MultiplicityElement.Default multiplicity 0..*: for attributes, see formal/05-07-04, p. 14; but for association ends,the default is 1, see formal/05-07-04, p. 16.Questions:- Is the use of 0..* for the multiplicities of properties mandatory?- What possibilities to back a method by behavior do you know of?

