
291Modelling with UML, with semantics

QVT Operational

292Modelling with UML, with semantics

MOF QVT: OMG’s model-to-model transformation standard

• QVT stands for Query/Views/Transformations
• OMG standard language for expressing queries, views, and transformations on MOF models

• OMG QVT Request for Proposals (QVT RFP, ad/02-04-10) issued in 2002
• Seven initial submissions that converged to a common proposal
• Current status (June, 2011): version 1.1, formal/11-01-01

http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/QVT/1.1/

http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/QVT/1.1/Beta2

293Modelling with UML, with semantics

MOF QVT context

• Abstract syntax of the language is defined as MOF 2.0 metamodel
• Transformations (Tab) are defined on the base of MOF 2.0 metamodels (MMa, MMb)
• Transformations are executed on instances of MOF 2.0 metamodels (Ma)

294Modelling with UML, with semantics

Requirements for MOF QVT language

Mandatory requirements
Query language Proposals shall define a language for querying models

Transformation language Proposals shall define a language for transformation definitions

Abstract syntax The abstract syntax of the QVT languages shall be described as MOF 2.0 metamodel

Paradigm The transformation definition language shall be declarative

Input and output All the mechanisms defined by proposals shall operate on models instances of MOF
2.0 metamodels

Optional requirements

Directionality Proposals may support transformation definitions that can be executed in two
directions

Traceability Proposals may support traceability between source and target model elements

Reusability Proposals may support mechanisms for reuse of transformation definitions

Model update Proposals may support execution of transformations that update an existing model

• Some requirements formulated in the QVT RFP

295Modelling with UML, with semantics

MOF QVT architecture

• Layered architecture with three transformation languages:
• Relations (declarative)
• Core (declarative, simpler than Relations)
• Operational Mappings (imperative)

• Black Box is a mechanism for calling external programs during transformation execution
• QVT is a set of three languages that collectively provide a hybrid “language”.

Relations

Operational
Mappings

Core

extends

RelationsToCore
Transformation

Black
Box

extends

extends

extends

296Modelling with UML, with semantics

Overview of Operational Mappings (OM)

• Imperative transformation language that extends relations
• OM execution overview:

• Init: code to be executed before the instantiation of the declared outputs.
• Instantiation (internal): creates all output parameters that have a null value at the end of the

initialization section
• Population: code to populate the result parameters and the
• End: code to be executed before exiting the operation. Automatic handling of traceability links

• Transformations are unidirectional
• Supported execution scenarios:

• Model transformations
• In-place update

• OM uses explicit internal scheduling, where the sequence of applying the transformation
rules is specified within the transformation rules

• Updates have to be implemented in the model transformations

297Modelling with UML, with semantics

Flattening class hierarchies example

• Flattening UML class hierarchies: given a source UML model transform it to another
UML model in which only the leaf classes (classes not extended by other classes) in
inheritance hierarchies are kept.

• Rules:
• Transform only the leaf classes in the source model
• Include the inherited attributes and associations
• Attributes with the same name override the inherited attributes
• Copy the primitive types

298Modelling with UML, with semantics

Sample input model

name : String
ssn : String

Person
school : String
EnrolledInSchool

organizationName : String
Employed

Student Employee

«primitive type»
String

CarPhDStudent

firstName : String
lastName : String

FullName

name : FullName
Professor carOwnership

supervisor

name : String
Course

street : String
city : String

Address

residesAtattends

299Modelling with UML, with semantics

Sample output model

«primitive type»
String

Carname : String
ssn : String
school : String

PhDStudent

firstName : String
lastName : String

FullName

name : FullName
ssn : String
organizationName : String

Professor carOwnership

supervisor

name : String
Course

street : String
city : String

Address

residesAtattends residesAt

300Modelling with UML, with semantics

transformation
flatten
(in hierarchical : UML,
out flat : UML);

main() {

…
}

…

helper declarations
…

mapping operations declarations

OM language: Transformation program structure

Entry point: execution of the
transformation starts here by executing the
operations in the body of main

Transformation elements:
Transformation consists of mapping
operations and helpers forming the
transformation logic.

Signature: declares the
transformation name and the
source and target metamodels.
in and out keywords indicate
source and target model variables.

301Modelling with UML, with semantics

Mapping operations

• A mapping operation maps one or more source elements into one or more target
elements

• Always unidirectional
• Selects source elements on the base of a type and a Boolean condition (guard)
• Executes operations in its body to create target elements
• May invoke other mapping operations and may be invoked
• Mapping operations may be related by inheritance, merging, and disjunction

302Modelling with UML, with semantics

mapping Type::operationName(((in|out|inout) pName : pType)*)
: (rName : rType)+
when {guardExpression}
where {guardExpression} {
init {

…
}

population {

…
}

end {

…
}

}

General structure of mapping operations

end section contains code executed before exiting the operation

population section contains code that sets the values or the result and the
parameters declared as out or inout. The population keyword may be
skipped. The population section is the default section in the operation body.

There exists an implicit instantiation section that creates all the output parameters not created in
the init section. The trace links are created in the instantiation section.

init section contains code executed before the instantiation of the declared result
elements

pre-condition
post-condition

303Modelling with UML, with semantics

Mapping operations: Example

• Rule for transforming leaf classes
• selects only classes without subclasses, collects all the inherited properties and associations,

creates new class in the target model

mapping Class::copyLeafClass() : Class
when {
not hierarchical.allInstances(Generalization)->exists(g | g.general = self)

} {
name := self.name;
ownedAttribute += self.ownedAttribute.

map copyOwnedProperty();
ownedAttribute += (self.allFeatures()[Property] –

self.ownedAttribute).copyProperty(self);
self.allFeatures()[Property]->select(p |
not p.association.oclIsUndefined()).association.copyAssociation(self);

}

guard: mapping operation
only executed for elements
for which the guard expression
evaluates to true

call of another mapping

call of a helper

target type: instance created on call

object on which mapping is called

• Mappings only executed once
• Call of mappings with OCL-syntax (collection->map vs. object.map)

304Modelling with UML, with semantics

Helpers: Example

intermediate property Property::mappedTo : Set(Tuple(c : Class, p : Property));

helper Property::copyProperty(in c : Class) : Property {
log('[Property] name = ' + self.name);
var copy := object Property {
name := self.name;
type := self.type.map transformType();

};
self.mappedTo += Tuple{ c = c, p = copy };
return copy;

}

meta-model extension

object creation and population

305Modelling with UML, with semantics

• The transformation engine maintains links among source and target model elements.
These links are used for resolving object references from source to target model
elements and back.
• resolveIn is an operation that looks for model elements of a given type (Class) in the

target model derived from a source element by applying a given rule (copyLeafClass).

• Variants: resolve(i | exp), resolveone(i | exp)
• late resolve for resolving after the transformation (in order of calls)

helper Association::copyAssociation(in c : Class) : Association {
var theOwnedEnd : Property := self.ownedEnd->any(true); …
return object Association {
name := self.name;
package := self.package.resolveoneIn(Package::transformPackage, Package);
ownedEnd += new Property(theOwnedEnd.name,

c.resolveoneIn(Class::copyLeafClass, Class)); …
}

}

Resolving object references

call to constructor

306Modelling with UML, with semantics

Mapping operations: Disjunction, inheritance, merging

mapping DataType::copyDataType() : DataType {
name := self.name;
ownedAttribute += self.ownedAttribute.map copyOwnedProperty();

}

mapping PrimitiveType::copyPrimitiveType() : PrimitiveType {
init {
result := self.deepclone().oclAsType(PrimitiveType);

}
}

mapping Type::transformType() : Type
disjuncts DataType::copyDataType,

Class::copyLeafClass,
PrimitiveType::copyPrimitiveType;

• Inherited rules executed after init
• Merged rules executed after end

307Modelling with UML, with semantics

• More sophisticated control flow
• compute (v : T := exp) body

• like let … in
• while (cond) body
• coll->forEach (i | exp) body
• break, continue
• switch-statement, exceptions

Imperative OCL constructs

