
196Modelling with UML, with semantics

Meta-Object Facility 2

197Modelling with UML, with semantics

OMG’s standards UML and MOF

198Modelling with UML, with semantics

Relations between UML 2 and MOF 2

• MOF meta-meta-model of UML 2
• MOF is (based on) the core of UML 2
• UML 2 is a drawing tool of the MOF 2
• Definition synchronization

CORECore MOF

UML

MOF

199Modelling with UML, with semantics

Meta-Object Facility (MOF)

• A meta-data management framework
• A language to be used for defining languages

• i.e., it is an OMG-standard meta-modelling language.
• The UML metamodel is defined in MOF.

• MOF 2.0 shares a common core with UML 2.0
• Simpler rules for modelling metadata
• Easier to map from/to MOF
• Broader tool support for metamodeling (i.e., any UML 2.0 tool can be used)

• MOF has evolved through several versions
• MOF 1.x is the one most widely supported by tools
• MOF 2.0 is the current standard, and it has been substantially influenced by UML 2.0
• MOF 2.0 is also critical in supporting transformations, e.g., QVT and Model-to-text

http://www.omg.org/spec/MOF/2.0

http://www.omg.org/spec/MOF/2.0

200Modelling with UML, with semantics

MOF 2.0 Structure

• MOF is separated into Essential MOF (EMOF) and Complete MOF (CMOF)
• EMOF corresponds to facilities found in OOP and XML.

• Easy to map EMOF models to JMI, XMI, etc.
• CMOF is what is used to specify metamodels for languages such as UML 2.

• It is built from EMOF and the core constructs of UML 2.
• Both EMOF and CMOF are based on variants of UML 2.

201Modelling with UML, with semantics

MOF 2.0 Relationships (1)

Vorführender
Präsentationsnotizen
Constructs: Relationships

202Modelling with UML, with semantics

MOF 2.0 Relationships (2)

Vorführender
Präsentationsnotizen
Common: Reflective collections and sequences
Extension: Tagging
Reflection: Reflective capabilities, in particular Object as superclass of Element
Identifiers: Identifier management (extents, …)

203Modelling with UML, with semantics

EMOF Types ― merged from UML Infrastructure

204Modelling with UML, with semantics

EMOF Classes ― merged from UML Infrastructure (1)

205Modelling with UML, with semantics

EMOF Classes ― merged from UML Infrastructure (2)

206Modelling with UML, with semantics

EMOF Data Types ― merged from UML Infrastructure

207Modelling with UML, with semantics

EMOF Packages ― merged from UML Core:Basic

208Modelling with UML, with semantics

XML Metadata Interchange (XMI)

• XMI is a standard (and a trademark) from the OMG.
• XMI is a framework for

• defining, interchanging, manipulating and integrating XML data and objects.
• Used for integration

• tools, applications, repositories, data warehouses
• typically used as interchange format for UML tools

• XMI defines rules for schema definition
• schema production ― how is a metamodel mapped onto a grammar?
• definition of schema from any valid Meta Object Facility (MOF) model

• XMI defines rules for metadata generation
• document production ― how is a model mapped onto text?
• Metadata according to a MOF metamodel is generated into XML according to the generated

XML schema.

http://www.omg.org/spec/XMI/2.4.1/

http://www.omg.org/spec/XMI/2.4.1/

209Modelling with UML, with semantics

XMI versions and MOF versions

• XMI 1.1 corresponds to MOF 1.3
• XMI 1.2 corresponds to MOF 1.4
• XMI 1.3 (added schema support) corresponds to MOF 1.4
• XMI 2.0 (adds schema support and changes document format) corresponds to MOF 1.4
• XMI 2.1 corresponds to MOF 2.0
• XMI 2.4.1 corresponds to MOF 2.4.1

210Modelling with UML, with semantics

MOF and XMI

MOF Metamodel

MOF Metadata

XML Schema

XMI Document
Generation Rules

Generation Rules

conformsTo conformsTo

211Modelling with UML, with semantics

UML Superstructure as XMI document (1)

<?xml version="1.0" encoding="UTF-8"?>
<cmof:Package xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:cmof="http://schema.omg.org/spec/MOF/2.0/cmof.xml"
xmi:id="_0" name="UML">

<ownedMember xmi:type="cmof:Package" xmi:id="Actions" name="Actions">
<packageImport xmi:type="cmof:PackageImport"

xmi:id="Actions-_packageImport.0"
importedPackage="Activities"/>

<ownedMember xmi:type="cmof:Package" xmi:id="Actions-CompleteActions"
name="CompleteActions">

<packageImport xmi:type="cmof:PackageImport"
xmi:id="Actions-CompleteActions-_packageImport.0"
importedPackage="StateMachines-BehaviorStateMachines"/>

<packageImport xmi:type="cmof:PackageImport"
xmi:id="Actions-CompleteActions-_packageImport.1"
importedPackage="Classes-AssociationClasses"/>

<packageImport xmi:type="cmof:PackageImport"
xmi:id="Actions-CompleteActions-_packageImport.2"
importedPackage="Classes-Kernel"/>

<packageImport xmi:type="cmof:PackageImport"
xmi:id="Actions-CompleteActions-_packageImport.3"
importedPackage="CommonBehaviors-BasicBehaviors"/>

Vorführender
Präsentationsnotizen
This example is included in order to show the possible complexity of XMI documents.

212Modelling with UML, with semantics

UML Superstructure as XMI document (2)

<ownedMember xmi:type="cmof:Class"
xmi:id="Actions-CompleteActions-ReadExtentAction"
name="ReadExtentAction" superClass="Actions-BasicActions-Action">

<ownedComment xmi:type="cmof:Comment"
xmi:id="Actions-CompleteActions-ReadExtentAction-_ownedComment.0"
annotatedElement="Actions-CompleteActions-ReadExtentAction">

<body>A read extent action is an action that retrieves the current
instances of a classifier.</body>

</ownedComment>
<ownedRule xmi:type="cmof:Constraint"

xmi:id="Actions-CompleteActions-ReadExtentAction-type_is_classifier"
name="type_is_classifier"
constrainedElement="Actions-CompleteActions-ReadExtentAction">

<ownedComment …
<body>The type of the result output pin is the classifier.</body>

</ownedComment>
<specification xmi:type="cmof:OpaqueExpression"

xmi:id="…-ReadExtentAction-type_is_classifier-_specification">
<language>OCL</language>
<body>true</body>

</specification>
</ownedRule>
…

</cmof:Package>

Vorführender
Präsentationsnotizen
This example is included in order to show the possible complexity of XMI documents.

213Modelling with UML, with semantics

UML model as XMI document

<?xml version='1.0' encoding='UTF-8'?>
<xmi:XMI xmi:version='2.1' xmlns:uml='http://schema.omg.org/spec/UML/2.1.2'

xmlns:xmi='http://schema.omg.org/spec/XMI/2.1'>
<uml:Model xmi:id='eee_1045467100313_135436_1' name='Data' visibility='public'>
<packagedElement xmi:type='uml:Class' xmi:id='_477' name='Car' visibility='public'>

<ownedAttribute xmi:type='uml:Property' xmi:id='_628' name='owner'
visibility='private' type='_498' association='_627'>

<upperValue xmi:type='uml:LiteralUnlimitedNatural' xmi:id='_680' visibility='public' value='1'/>
<lowerValue xmi:type='uml:LiteralInteger' xmi:id='_679' visibility='public' value='1'/>

</ownedAttribute>
<ownedAttribute xmi:type='uml:Property' xmi:id='_681' name='manufacturer' visibility='private'>

<type xmi:type='uml:PrimitiveType' href='http://schema.omg.org/spec/UML/2.0/uml.xml#String'/>
</ownedAttribute>

</packagedElement>
<packagedElement xmi:type='uml:Class' xmi:id='_498' name='Owner' visibility='public'>

<ownedAttribute xmi:type='uml:Property' xmi:id='_629' name='ownedCars'
visibility='private' type='_477' association='_627'>

<upperValue xmi:type='uml:LiteralUnlimitedNatural' xmi:id='_678' visibility='public' value='-1'/>
<lowerValue xmi:type='uml:LiteralUnlimitedNatural' xmi:id='_677' visibility='public' value='-1'/>

</ownedAttribute>
<ownedAttribute xmi:type='uml:Property' xmi:id='_685' name='name' visibility='private'>

<type xmi:type='uml:PrimitiveType' href='http://schema.omg.org/spec/UML/2.0/uml.xml#String'/>
</ownedAttribute>

</packagedElement>
<packagedElement xmi:type='uml:Association' xmi:id='_627' visibility='public'>

<memberEnd xmi:idref='_628'/>
<memberEnd xmi:idref='_629'/>

</packagedElement>
</uml:Model>
</xmi:XMI> (MagicDraw 15.1, simplified)

Vorführender
Präsentationsnotizen
This example is included in order to show the possible complexity of XMI documents.

214Modelling with UML, with semantics

Schema production

• Schema production defined by set of rules
• Typically intended to be implemented, not for human usage

• EBNF (Extended Backus-Naur form) rules are supplied

• Control of schema production by MOF tags
• nsPrefix
• nsURI
• useSchemaExtensions
• enforceMinimumMultiplicity
• enforceMaximumMultiplicity

• …

Vorführender
Präsentationsnotizen
EMOF and ECORE do not allow attributes of complex type in classes

215Modelling with UML, with semantics

Schema production rules: Classes and properties

• Meta-model class
• Mapped to xsd:element and xsd:complexType with same name as metamodel class

• Property of meta-model class
• Mapped to xsd:element and xsd:attribute if simple data type and the cardinality of the

property is [1..1] or [0..1]
• Mapped to xsd:element if xsd:complexType

• Note: only possible in CMOF (Complete MOF)

Vorführender
Präsentationsnotizen
EMOF and ECORE do not allow attributes of complex type in classes

216Modelling with UML, with semantics

Schema production: Example (1)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3c.org/2001/XMLSchema"

xmlns:xmi="http://www.omg.org/XMI"
targetNamespace="http://www.example.org/CDs"
xmlns:cds="http://www.example.org/CDs">

<xsd:import namespace="http://schema.omg.org/spec/XMI/2.1"
schemaLocation="XMI.xsd"/>

<xsd:complexType name="CD">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="artist" type="xsd:string"/>
<xsd:element name="num_tracs" type="xsd:integer"/>
<xsd:element ref="xmi:Extension"/>

</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="title" type="xsd:string"/>
<xsd:attribute name="artist" type="xsd:string"/>
<xsd:attribute name="num_tracs" type="xsd:integer"/>

</xsd:complexType>
<xsd:element name="CD" type="cds:CD"/>

</xsd:schema>

217Modelling with UML, with semantics

Document production: Example (1)

<?xml version="1.0" encoding="UTF-8"?>
<cds:CD xmlns:cds="http://www.example.org/CDs"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xsi:schemaLocation="http://www.example.org/CDs"

artist="Bruce Springsteen"
title="Born To Run" num_tracs="8"
xmi:id="_1">

</cds:CD>

Born to Run
Bruce Springsteen

8 tracks

218Modelling with UML, with semantics

Schema production rules: Relationships

• Association between classes
• An xsd:element is created with name set to the name of the reference and type set to the

type name of the referenced class.
• Multiplicity definitions are included if the appropriate parameters are set at the time of

generation.
• MOF tags enforceMinimumMultiplicity and enforceMaximumMultiplicity

• Inheritance
• Problem

• XML schemas only allow single inheritance
• MOF allows multiple inheritance

• Solution
• XMI uses a copy down strategy to implement inheritance
• For multiple inheritance properties that occur more than once in the hierarchy are included only once in

the schema.
• MOF tag useSchemaExtensions (if single inheritance only)

219Modelling with UML, with semantics

Schema production: Example (2)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
targetNamespace="http://www.example.org/CDLib"
xmlns:cdlib="http://www.example.org/CDLib">

<xsd:import namespace="http://schema.omg.org/spec/XMI"
schemaLocation="XMI.xsd"/>

<xsd:complexType name="CD">
…

</xsd:complexType>
<xsd:element name="CD" type="cdlib:CD"/>
<xsd:complexType name="CDCollection">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="cds" type="cdlib:CD"/>
<xsd:element ref="xmi:Extension"/>

</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="owner" type="xsd:string"/>

</xsd:complexType>
<xsd:element name="CDCollection" type="cdlib:CDCollection"/>

</xsd:schema>

Vorführender
Präsentationsnotizen
The red line indicates how the reference is implemented in the schema

220Modelling with UML, with semantics

Document production: Example (2)

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version='2.1'
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:cdlib="http://www.example.org/CDLib"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.example.org/CDLib">

<cdlib:CDCollection
owner="Jon Doe"
xmi:id="_1">

<cds artist="Bruce Springsteen"
title="Born To Run" num_tracs="8"
xmi:id="_2">

<cds artist="U2"
title="Achtung Baby" num_tracs="13"
xmi:id="_3">

</cdlib:CDCollection>
</xmi:XMI>

CD Collection
Owner = Jon Doe

Born to Run
Bruce Springsteen

8 tracks

Achtung Baby
U2

13 tracks

221Modelling with UML, with semantics

Schema production: Example (3)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
targetNamespace="http://www.example.org/MediaLib"
xmlns:medlib="http://www.example.org/MedLib">

<xsd:import …/>
<xsd:complexType name="Media">
<xsd:choice maxOccurs="unbounded" minOccurs="0">
<xsd:element name="title" type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>

</xsd:choice>
…
<xsd:attribute name="title" type="xsd:string"/>

</xsd:complexType>
<xsd:element name="Media" type="medlib:Media"/>
<xsd:complexType name="CD">
<xsd:attribute name="title" type="xsd:string"/>
<xsd:attribute name="artist" type="xsd:string"/>
…

</xsd:complexType>
<xsd:element name="CD" type="medlib:CD"/>

</xsd:schema>

Vorführender
Präsentationsnotizen
The red lines show that the copy-down pattern has been used to handle inheritance

222Modelling with UML, with semantics

Differences

• XMI allows you to express differences in XMI documents
• can be used to just communicate the changes in a document rather than the whole document

• Types of differences
• Add
• Delete
• Replace

223Modelling with UML, with semantics

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">
<MediaCollection xmi:id="_1">
<items xmi:id="_2" name="Purple Rain" xmi:type="CD"/>
<items xmi:id="_3" name="Pulp Fiction" xmi:type="DVD"/>

</MediaCollection>
</xmi:XMI>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">
<xmi:Delete>
<target href="collection.xmi#_2"/>

</xmi:Delete>
<xmi:Add addition="NM1" position="1">
<target href="collection.xmi#_1"/>

</xmi:Add>
<CD xmi:id="NM1" name="Thunder Road"/>

</xmi:XMI>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">
<MediaCollection xmi:id="_1">
<items xmi:id="NM1" name="Thunder Road" xmi:type="CD"/>
<items xmi:id="_3" name="Pulp Fiction" xmi:type="DVD"/>

</MediaCollection>
</xmi:XMI>

collection.xmi

differences

result

Differences: Example

224Modelling with UML, with semantics

Tool interoperability

• Use of XMI for tool interoperability is not always straightforward
• Different XMI versions and different metamodel versions

• Take XMI for UML as an example
• XMI 1.0 for UML 1.3
• XMI 1.1 for UML 1.3
• XMI 1.2 for UML 1.4
• XMI 2.0 for UML 1.4
• XMI 2.1 for UML 2.0

• Common to see that UML tools have a “choose XMI format” dialog when exporting to
XMI

225Modelling with UML, with semantics

Eclipse Modeling Framework

226Modelling with UML, with semantics

Eclipse Modeling Framework (EMF)

• Modelling ― more than just documentation
• Just about every program manipulates some data model

• It might be defined using Java, UML, XML Schemas, or some other definition language
• EMF aims to extract this intrinsic “model” and generate some of the implementation

code
• Can be a tremendous productivity gain

• EMF is one implementation of MOF (though it has differences)
• EMF ≈ EMOF

http://www.eclipse.org/emf/

http://www.eclipse.org/emf/

227Modelling with UML, with semantics

EMF

• EMF is a modelling framework and code generation facility for building tools and
other applications based on a structured data model.

• From a model specification described in XMI, EMF provides
• tools and runtime support to produce a set of Java classes for the model,
• adapter classes that enable viewing and command-based editing of the model,
• and a basic editor.

• Models can be specified using
• Annotated Java
• XML documents
• Modelling tools like Rational Rose, MagicDraw, …
• …

• EMF provides the foundation for interoperability with other EMF-based tools and
applications.

228Modelling with UML, with semantics

I
M
P
O
R
T

GENERATE

Ecore
Model

UML

XML
Schema

Java
model

Java
edit

Generator features:
Customizable JSP-like
templates (JET)
Command-line or
integrated with Eclipse
JDT
Fully supports
regeneration and
merge

Java
editor* * requires Eclipse to

run

Java
model

EMF architecture: Model import and generation

229Modelling with UML, with semantics

EMF ― Fundamental Pieces

• EMF
• The core EMF framework includes a meta-model (Ecore)

• for describing models
• runtime support for the models including change notification,
• persistence support with default XMI serialization,
• reflective API for manipulating EMF objects generically.

• EMF.Edit
• Generic reusable classes for building editors for EMF models.

• EMF.Codegen
• Capable of generating everything needed to build a complete editor for an EMF model.
• Includes a GUI from which generation options can be specified, and generators can be

invoked.

230Modelling with UML, with semantics

EMF in the meta-modelling architecture

Java code for manipulation
and default serialization of

EMF models
EMF codegen

Ecore (Java classes)MOF

UML, CWM, ...

M3
(Metametamodel)

M2
(Metamodel)

M1
(Model)

OMG EMF

EMF model

instanceOf

EMF model

instanceOf

EMF

EMF

EMF.CodegenEMF.Edit

EMF.Edit

conformsTo

231Modelling with UML, with semantics

• Ecore is EMF’s model of models (meta-model)
• Persistent representation is XMI
• Can be seen as an implementation of UML Core::Basic

EMF architecture: Ecore

232Modelling with UML, with semantics

Ecore: Overview

used for
meta-modelling

233Modelling with UML, with semantics

Ecore: Inheritance hierarchy

234Modelling with UML, with semantics

Ecore: Associations

235Modelling with UML, with semantics

Ecore: Generics

236Modelling with UML, with semantics

EMF model definition (1)

• Specification of an application’s data
• Object attributes
• Relationships (associations) between objects
• Operations available on each object
• Simple constraints (e.g., multiplicity) on objects and relationships

237Modelling with UML, with semantics

import java.io.*;
import java.util.*;
import org.eclipse.emf.ecore.*;
import org.eclipse.emf.common.util.URI;
import org.eclipse.emf.ecore.resource.*;
import org.eclipse.emf.ecore.resource.impl.*;
import org.eclipse.emf.ecore.xmi.impl.EcoreResourceFactoryImpl;

public class EMFTest {
public static void main(String[] args) {

EcoreFactory ecoreFactory = EcoreFactory.eINSTANCE;

factory for Ecore meta-models

EMF model definition: Programming (1)

238Modelling with UML, with semantics

EPackage aPackage = ecoreFactory.createEPackage();
aPackage.setName("somePackage");
aPackage.setNsPrefix("pkg");
aPackage.setNsURI("urn:www.pst.ifi.lmu.de/knapp/pkg");

EClass aClass = ecoreFactory.createEClass();
aClass.setName("SomeClass");
aPackage.getEClassifiers().add(aClass);

EAttribute anAttribute = ecoreFactory.createEAttribute();
anAttribute.setName("someAttribute");
anAttribute.setEType(ecoreFactory.getEcorePackage().

getEString());
aClass.getEStructuralFeatures().add(anAttribute);

EReference aReference = ecoreFactory.createEReference();
aReference.setName("someReference");
aReference.setEType(aClass);
aClass.getEStructuralFeatures().add(aReference);

namespace settings

EMF model definition: Programming (2)

239Modelling with UML, with semantics

try {
Resource.Factory.Registry.INSTANCE.
getExtensionToFactoryMap().put("ecore",

new EcoreResourceFactoryImpl());
ResourceSet resourceSet = new ResourceSetImpl();
Resource resource = resourceSet.
createResource(URI.createFileURI("test.ecore"));

resource.getContents().add(aPackage);

StringWriter stringWriter = new StringWriter();
URIConverter.WriteableOutputStream outputStream =
new URIConverter.WriteableOutputStream(stringWriter, "UTF-8");

Map<String, String> options = new HashMap<String, String>();
resource.save(outputStream, options);
System.out.println(stringWriter.toString());

} catch (IOException ioe) {
ioe.printStackTrace(); }

}
}

for saving as Ecore meta-model

options for resources
(compress, encrypt, save only when
modified, progress monitor, &c.)

EMF model definition: Programming (3)

240Modelling with UML, with semantics

EMF model definition (2)

• Unifying Java, XML, and UML technologies

• All three forms provide the same information
• Different visualization/representation
• The application’s “model” of the structure

• EMF models can be defined in (at least) four ways:
1. ECore diagram
2. Java interfaces
3. UML Class Diagram
4. XML Schema

• EMF can generate the others as well as the implementation code

241Modelling with UML, with semantics

EMF model definition: ECore diagrams

242Modelling with UML, with semantics

/** @model */
public interface PurchaseOrder {
/** @model */ String getShipTo();
/** @model */ String getBillTo();
/** @model containment="true" opposite="order" */
List<Item> getItems();

}

/** @model */
public interface Item {
/** @model opposite="items" */
PurchaseOrder getOrder();
/** @model */ String getProductName();
/** @model */ int getQuantity();
/** @model */ float getPrice();

}

EMF model definition: Annotated Java interfaces

• Setter methods for attributes generated

243Modelling with UML, with semantics

EMF model definition: UML class diagrams

• From Rational Software Architect, Eclipse UML 2, &c.

244Modelling with UML, with semantics

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.org/purchase"
xmlns:tns="http://www.example.org/purchase">

<complexType name="PurchaseOrder">
<sequence>
<element name="shipTo" type="string"/>
<element name="billTo" type="string"/>
<element name="items" type="tns:Item"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="id" type="ID"/>

</complexType>
<complexType name="Item">
<sequence>
<element name="order" type="IDREF" minOccurs="1" maxOccurs="1"/>
<element name="productName" type="string"/>
<element name="quantity" type="int"/>
<element name="price" type="float"/>

</sequence>
</complexType>

</schema>

EMF model definition: XML Schema

245Modelling with UML, with semantics

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="purchase"
nsURI="http://www.example.org/purchase" nsPrefix="purchase">
<eClassifiers xsi:type="ecore:EClass" name="Item">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="order"
lowerBound="1" eType="ecore:EDataType

http://www.eclipse.org/emf/2003/XMLType#//IDREF"/>
<eStructuralFeatures xsi:type="ecore:EAttribute"

name="productName" lowerBound="1"
eType="ecore:EDataType

http://www.eclipse.org/emf/2003/XMLType#//String"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="quantity"

lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2003/XMLType#//Int"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="price"
lowerBound="1" eType="ecore:EDataType

http://www.eclipse.org/emf/2003/XMLType#//Float"/>
</eClassifiers>

EMF architecture: Ecore/XMI (1)

246Modelling with UML, with semantics

<eClassifiers xsi:type="ecore:EClass" name="PurchaseOrder">
<eStructuralFeatures xsi:type="ecore:EAttribute" name="shipTo"

lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2003/XMLType#//String"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="billTo"
lowerBound="1" eType="ecore:EDataType

http://www.eclipse.org/emf/2003/XMLType#//String"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="items"

upperBound="-1" eType="#//Item" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="id"

eType="ecore:EDataType
http://www.eclipse.org/emf/2003/XMLType#//ID" iD="true"/>

</eClassifiers>
</ecore:EPackage>

• Alternative serialisation format is EMOF/XMI

EMF architecture: Ecore/XMI (2)

247Modelling with UML, with semantics

/** @model */
public interface Item extends EObject {
/** @model opposite="items" */ PurchaseOrder getOrder();
/** @generated */ void setOrder(PurchaseOrder value);
/** @model */ String getProductName();
/** @generated */ void setProductName(String value);
/** @model */ int getQuantity();
/** @generated */ void setQuantity(int value);
/** @model */ float getPrice();
/** @generated */ void setPrice(float value);

}

EMF.Codegen: Interface completion

• No regeneration of implementations when changing @generated to @generated NOT

248Modelling with UML, with semantics

public PurchaseOrder getOrder() {
if (eContainerFeatureID != PurchasePackage.ITEM__ORDER)

return null;
return (PurchaseOrder)eContainer();

}

EMF.Codegen: Implementation of associations (1)

• Proper handling of binary associations
• changes on either side of an association propagated to the other

• Special handling of composite associations
• only a single container, stored in eContainerFeatureID

249Modelling with UML, with semantics

public void setOrder(PurchaseOrder newOrder) {
if (newOrder != eInternalContainer() ||

(eContainerFeatureID != PurchasePackage.ITEM__ORDER &&
newOrder != null)) {

if (EcoreUtil.isAncestor(this, newOrder))
throw new IllegalArgumentException("Recursive containment " +
"not allowed for " + toString());

NotificationChain msgs = null;
if (eInternalContainer() != null)
msgs = eBasicRemoveFromContainer(msgs);

if (newOrder != null)
msgs = ((InternalEObject)newOrder).eInverseAdd(this,
PurchasePackage.PURCHASE_ORDER__ITEMS,
PurchaseOrder.class, msgs);

msgs = basicSetOrder(newOrder, msgs);
if (msgs != null) msgs.dispatch();

}
else
if (eNotificationRequired())
eNotify(new ENotificationImpl(this, Notification.SET,
PurchasePackage.ITEM__ORDER, newOrder, newOrder));

}

EMF.Codegen: Implementation of associations (2)

consistent update for
binary associations

single container

250Modelling with UML, with semantics

EMF: Creating models with generated code

PurchaseFactory purchaseFactory = PurchaseFactory.eINSTANCE;

PurchaseOrder order1 = purchaseFactory.createPurchaseOrder();
order1.setBillTo("X");
order1.setShipTo("Y");
Item item1 = purchaseFactory.createItem();
item1.setProductName("A");
item1.setQuantity(2);
item1.setPrice(10.0f);
item1.setOrder(order1);
Item item2 = purchaseFactory.createItem();
item2.setProductName("B");
item2.setQuantity(3);
item2.setPrice(100.0f);
item2.setOrder(order1);

factory for purchase models

251Modelling with UML, with semantics

EMF: Saving models

ResourceSet resourceSet = new ResourceSetImpl();
resourceSet.getResourceFactoryRegistry().
getExtensionToFactoryMap().put("xmi", new XMIResourceFactoryImpl());

URI fileURI = URI.createFileURI(new File("orders.xmi").getAbsolutePath());
Resource resource = resourceSet.createResource(fileURI);

resource.getContents().add(order1);

try {
resource.save(System.out, Collections.EMPTY_MAP);
resource.save(Collections.EMPTY_MAP);

}
catch (IOException ioe) {
ioe.printStackTrace();

}

mind containment
not resource.getContents().add(item1);

252Modelling with UML, with semantics

EMF: Ecore/XMI from generated code

<?xml version="1.0" encoding="ASCII"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:purchaseJava="http:///purchaseJava.ecore">
<purchaseJava:PurchaseOrder shipTo="Y" billTo="X">
<items productName="A" quantity="2" price="10.0"/>
<items productName="B" quantity="3" price="100.0"/>

</purchaseJava:PurchaseOrder>
</xmi:XMI>

containment

253Modelling with UML, with semantics

EMF: Querying with OCL (1)

import org.eclipse.ocl.ecore.OCL;
import org.eclipse.ocl.ParserException;
import org.eclipse.ocl.OCLInput;
import org.eclipse.ocl.ecore.Constraint;

OCL purchaseOCL = OCL.newInstance();
try {
purchaseOCL.parse(new OCLInput("package purchaseJava " +

"context Item " +
"inv: price < 100.0 " +
"endpackage"));

for (Constraint constraint : purchaseOCL.getConstraints()) {
System.out.println(purchaseOCL.check(item2, constraint));

}
}
catch (ParserException e) {
e.printStackTrace();

}

254Modelling with UML, with semantics

EMF: Querying with OCL (2)

import org.eclipse.ocl.ecore.OCL;
import org.eclipse.ocl.ParserException;
import org.eclipse.ocl.expressions.OCLExpression;
import org.eclipse.ocl.helper.OCLHelper;

OCL purchaseOCL = OCL.newInstance();
OCLHelper<EClassifier, ?, ?, ?> purchaseOCLHelper =
purchaseOCL.createOCLHelper();

purchaseOCLHelper.setContext(PurchaseJavaPackage.Literals.ITEM);
try {
OCLExpression<EClassifier> priceExpression =
purchaseOCLHelper.createQuery("price");

System.out.println(purchaseOCL.evaluate(item1, priceExpression));
}
catch (ParserException e) {
e.printStackTrace();

}

parametric in classifier, operation, property, and constraint representation
of the meta-model

convenient for embedded OCL constraints

255Modelling with UML, with semantics

EMF: Querying with OCL (3)

import org.eclipse.emf.query.conditions.eobjects.EObjectCondition;
import org.eclipse.emf.query.ocl.conditions.BooleanOCLCondition;
import org.eclipse.emf.query.statements.FROM;
import org.eclipse.emf.query.statements.SELECT;
import org.eclipse.emf.query.statements.WHERE;
import org.eclipse.emf.query.statements.IQueryResult;

try {
EObjectCondition itemsOK =
new BooleanOCLCondition<EClassifier, EClass, EObject>(

purchaseOCL.getEnvironment(),
"self.quantity < 2", PurchaseJavaPackage.Literals.ITEM);

IQueryResult result = new SELECT(
new FROM(resource.getContents()),
new WHERE(itemsOK)).execute();

for (Object next : result) {
System.out.println("Quantity too little in " +

((Item) next).getProductName());
}

} catch (ParserException pe) {
pe.printStackTrace();

}

context

parametric in classifier, class, and element of the meta-model

256Modelling with UML, with semantics

EMF: Querying UML models with OCL

import org.eclipse.uml2.uml.UMLFactory;

UMLFactory umlFactory = UMLFactory.eINSTANCE;
org.eclipse.uml2.uml.Activity activity = umlFactory.createActivity();
activity.setName("test");
OCL umlOCL = OCL.newInstance();
try {
umlOCL.parse(new OCLInput("package uml " +

"context Activity " +
"inv: name <> '' " +

"endpackage"));
for (Constraint constraint : umlOCL.getConstraints()) {
System.out.println(umlOCL.check(activity, constraint));

}
} catch (ParserException e) {
e.printStackTrace();

}

257Modelling with UML, with semantics

Xtext

258Modelling with UML, with semantics

Xtext

• Grammar language for describing domain-specific languages textually
• Based on LL(*)-parser generator ANTLR
• Generation of Eclipse-integrated editor (with validator, content assist, outline, formatting, …)

• Tightly integrated with EMF
• Ecore meta-model inference from grammar

• Model querying (and transformation) with Xtend
• Model-to-text transformation with Xpand
• Integration into EMFT’s Modeling Workflow Engine (MWE)

• Dependency injection using Google’s Guice

• Originally developed in the openArchitectureWare project (2006)
• Since 2008 integrated in the Textual Modeling Framework (TMF) of EMF

• Current version (July 2011): Xtext 2.0

http://www.eclipse.org/Xtext

http://www.eclipse.org/Xtext/

259Modelling with UML, with semantics

DSL example: Secret compartments (1)

“I have vague but persistent childhood memories of watching cheesy adventure films on TV.
Often, these films would be set in some old castle and feature secret compartments or
passages. In order to find them, heroes would need to pull the candle holder at the top of
stairs and tap the wall twice.
Let’s imagine a company that decides to build security systems based on this idea. They
come in, set up some kind of wireless network, and install little devices that send four-
character messages when interesting things happen. For example, a sensor attached to a
drawer would send the message D2OP when the drawer is opened. We also have little
control devices that respond to four-character command messages—so a device can
unlock a door when it hears the message D1UL.
At the center of all this is some controller software that listens to event messages, figures
out what to do, and sends command messages. The company bought a job lot of Java-
enabled toasters during the dot-com crash and is using them as the controllers. So
whenever a customer buys a gothic security system, they come in and fit the building with
lots of devices and a toaster with a control program written in Java.
For this example, I’ll focus on this control program. Each customer has individual needs, but
once you look at a good sampling, you will soon see common patterns.”

260Modelling with UML, with semantics

DSL example: Secret compartments (2)

“Miss Grant closes her bedroom door,
opens a drawer, and turns on a light to
access a secret compartment. Miss Shaw
turns on a tap, then opens either of her
two compartments by turning on correct
light. Miss Smith has a secret
compartment inside a locked closet inside
her office. She has to close a door, take a
picture off the wall, turn her desk light on
three times, open the top drawer of her
filing cabinet—and then the closet is
unlocked. If she forgets to turn the desk
light off before she opens the inner
compartment, an alarm will sound.”

Martin Fowler. Domain-specific Languages, 2010.

261Modelling with UML, with semantics

DSL example: Secret compartments (3)

events
doorClosed D1CL drawOpened D2OP lightOn L1ON doorOpened D1OP panelClosed PNCL end

resetEvents
doorOpened end

commands
unlockPanel PNUL lockPanel PNLK lockDoor D1LK unlockDoor D1UL end

state idle
actions { unlockDoor lockPanel }
doorClosed => active end

state active
drawOpened => waitingForLight
lightOn => waitingForDraw end

state waitingForLight
lightOn => unlockedPanel end

state waitingForDraw
drawOpened => unlockedPanel end

state unlockedPanel
actions { unlockPanel lockDoor }
panelClosed => idle end

262Modelling with UML, with semantics

Secret compartments in Xtext: Grammar (1)

grammar org.eclipse.xtext.example.fowlerdsl.Statemachine
with org.eclipse.xtext.common.Terminals

generate statemachine "http://www.eclipse.org/xtext/example/fowlerdsl/Statemachine"

Statemachine :
{Statemachine}
('events'

events+=Event+
'end')?
('resetEvents'

resetEvents+=[Event]+
'end')?
('commands'

commands+=Command+
'end')?
states+=State*

;

action generating an Ecore object

name and nsURI of EPackage

cross-reference

263Modelling with UML, with semantics

Secret compartments in Xtext: Grammar (2)

Event:
name=ID code=ID

;

Command:
name=ID code=ID

;

State:
'state' name=ID
('actions' '{' actions+=[Command]+ '}')?
transitions+=Transition*
'end'

;

Transition:
event=[Event] '=>' state=[State]

;

identifier token from terminals

264Modelling with UML, with semantics

Secret compartments: Code generation with Xtend/Xpand (1)

package org.eclipse.xtext.example.fowlerdsl.generator

import org.eclipse.emf.ecore.resource.Resource
import org.eclipse.xtext.generator.IGenerator
import org.eclipse.xtext.generator.IFileSystemAccess
import org.eclipse.xtext.example.fowlerdsl.statemachine.Statemachine
import org.eclipse.xtext.example.fowlerdsl.statemachine.Event
import org.eclipse.xtext.example.fowlerdsl.statemachine.Command
import org.eclipse.xtext.example.fowlerdsl.statemachine.State

class StatemachineGenerator implements IGenerator {
override void doGenerate(Resource resource, IFileSystemAccess fsa) {
fsa.generateFile(resource.className+".java",

toJavaCode(resource.contents.head as Statemachine))
}

def className(Resource res) {
var name = res.URI.lastSegment
return name.substring(0, name.indexOf('.'))

}

265Modelling with UML, with semantics

Secret compartments: Code generation with Xtend/Xpand (2)

def toJavaCode(Statemachine sm) '''
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class «sm.eResource.className» {
public static void main(String[] args) {
new «sm.eResource.className»().run();

}

«FOR c : sm.commands»
«c.declareCommand»

«ENDFOR»

protected void run() {
boolean executeActions = true;
String currentState = "«sm.states.head.name»";
String lastEvent = null;
while (true) {
«FOR state : sm.states»
«state.generateCode»

«ENDFOR»

266Modelling with UML, with semantics

Secret compartments: Code generation with Xtend/Xpand (3)

«FOR resetEvent : sm.resetEvents»
if ("«resetEvent.name»".equals(lastEvent)) {
System.out.println("Resetting state machine.");
currentState = "«sm.states.head.name»";
executeActions = true;

}
«ENDFOR»

}
}

private String receiveEvent() {
System.out.flush();
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
try {
return br.readLine();

} catch (IOException ioe) {
System.out.println("Problem reading input");
return "";

}
}

}
'''

267Modelling with UML, with semantics

Secret compartments: Code generation with Xtend/Xpand (4)

def declareCommand(Command command) ''‚
protected void do«command.name.toFirstUpper»() {
System.out.println("Executing command «command.name» («command.code»)");

}
'''

def generateCode(State state) ''‚
if (currentState.equals("«state.name»")) {
if (executeActions) {
«FOR c : state.actions» do«c.name.toFirstUpper»(); «ENDFOR»
executeActions = false;

}
System.out.println("Your are now in state '«state.name»'. Possible events are

[«state.transitions.map(t | t.event.name).join(', ')»].");
lastEvent = receiveEvent();
«FOR t : state.transitions»
if ("«t.event.name»".equals(lastEvent)) {
currentState = "«t.state.name»";
executeActions = true;

}
«ENDFOR»

}
'''

}

268Modelling with UML, with semantics

Secret compartments: Modelling workflow (1)

module org.eclipse.xtext.example.fowlerdsl.GenerateStatemachine

import org.eclipse.emf.mwe.utils.*
import org.eclipse.xtext.generator.*
import org.eclipse.xtext.ui.generator.*

var grammarURI = "classpath:/org/eclipse/xtext/example/fowlerdsl/Statemachine.xtext"
var file.extensions = "statemachine"
var projectName = "org.eclipse.xtext.example.fowlerdsl"
var runtimeProject = "../${projectName}"

Workflow {
bean = StandaloneSetup {
scanClassPath = true
platformUri = "${runtimeProject}/.."

}
component = DirectoryCleaner {
directory = "${runtimeProject}/src-gen"

}
component = DirectoryCleaner {
directory = "${runtimeProject}.ui/src-gen"

}

269Modelling with UML, with semantics

Secret compartments: Modelling workflow (2)

component = Generator {
pathRtProject = runtimeProject
pathUiProject = "${runtimeProject}.ui"
pathTestProject = "${runtimeProject}.tests"
projectNameRt = projectName
projectNameUi = "${projectName}.ui"
language = {
uri = grammarURI
fileExtensions = file.extensions
fragment = grammarAccess.GrammarAccessFragment { }
fragment = ecore.EcoreGeneratorFragment { }
fragment = serializer.SerializerFragment { }
fragment = resourceFactory.ResourceFactoryFragment {
fileExtensions = file.extensions

}
fragment = parser.antlr.XtextAntlrGeneratorFragment { }
fragment = validation.JavaValidatorFragment {
composedCheck = "org.eclipse.xtext.validation.ImportUriValidator"
composedCheck = "org.eclipse.xtext.validation.NamesAreUniqueValidator"

}
fragment = scoping.ImportNamespacesScopingFragment { }
fragment = exporting.QualifiedNamesFragment { }
fragment = builder.BuilderIntegrationFragment { }

270Modelling with UML, with semantics

Secret compartments: Modelling workflow (3)

fragment = generator.GeneratorFragment {
generateMwe = true
generateJavaMain = true

}
fragment = formatting.FormatterFragment {}
fragment = labeling.LabelProviderFragment {}
fragment = outline.OutlineTreeProviderFragment {}
fragment = outline.QuickOutlineFragment {}
fragment = quickfix.QuickfixProviderFragment {}
fragment = contentAssist.JavaBasedContentAssistFragment {}
fragment = parser.antlr.XtextAntlrUiGeneratorFragment {}
fragment = junit.Junit4Fragment {}
fragment = types.TypesGeneratorFragment {}
fragment = xbase.XbaseGeneratorFragment {}
fragment = templates.CodetemplatesGeneratorFragment {}
fragment = refactoring.RefactorElementNameFragment {}
fragment = compare.CompareFragment {
fileExtensions = file.extensions

}
}

}
}

271Modelling with UML, with semantics

Model Transformations

272Modelling with UML, with semantics

What is a transformation?

• A transformation is the automatic generation of a target model from a source model,
according to a transformation definition.

• A transformation definition is a set of transformation rules that together describe how
a model in the source language can be transformed into a model in the target language.

• A transformation rule is a description of how one or more constructs in the source
language can be transformed into one or more constructs in the target language.
• Unambiguous specifications of the way that (part of) one model can be used to create (part of)

another model

• Preferred characteristics of transformations
• semantics-preserving

273Modelling with UML, with semantics

Model-to-model vs. Model-to-code

• Model-to-model transformations
• Transformations may be between

different languages. In particular,
between different languages defined by
MOF

• Model-to-text transformations
• Special kind of model to model

transformations
• MDA TS to Grammar TS

Transformation
Rules

Meta-model
ModelModelModel

Meta-modelModel

Transformer

Transformer

Generated Code

Code
Generation
Templates

Manually
Written
Code

optional

op
tio

na
l,

ca
n

be
 re

pe
at

ed

274Modelling with UML, with semantics

Transformations as models

• Treating everything as a model leads not only to conceptual simplicity and regular
architecture, but also to implementation efficiency.

• An implementation of a transformation language can be composed of a transformation
virtual machine plus a metamodel-driven compiler.

• The transformation VM allows uniform access to model and metamodel elements.

Ma Mt Mb

Transformation
Virtual Machine

MMa MMt MMb

275Modelling with UML, with semantics

Model transformation

• Each model conforms to a metamodel.
• A transformation builds a target model (Mb) from a source model (Ma).
• A transformation is a model (Mt, here) conforming to a metamodel (MMt).

276Modelling with UML, with semantics

Characterisation of model transformations (1)

• Endogenous vs. exogenous
• Endogenous transformations are transformations between models expressed in the same

metamodel. Endogenous transformations are also called rephrasing
• Optimisation, refactoring, simplification, and normalization of models.

• Transformations between models expressed using different meta-models are referred to as
exogenous transformations or translations

• Synthesis of a higher-level specification into a lower-level one, reverse engineering, and migration from
a program written in one language to another

• Horizontal vs. vertical
• Horizontal transformations are transformations where the source and target models reside at

the same abstraction level
• Refactoring (an endogenous transformation) and migration (an exogenous transformation)

• Vertical transformations are transformation where the source and target models reside at
different abstraction levels

• Rrefinement, where a specification is gradually refined into a full-fledged implementation

Vorführender
Präsentationsnotizen
Endogenous vs. exogenous: Endogenous transformations are transformations between models expressed in the same metamodel. Endogenous transformations are also called rephrasing. Transformations between models expressed using different metamodels are referred to as exogenous transformations or translations [298]. Typical examples of endogenous transformations are optimization, refactoring, simplification, and normalization of models. Typical examples of exogenous transformations are synthesis of a higher-level specification into a lower-level one, reverse engineering, and migration from a program written in one language to another.
Horizontal vs. vertical: A horizontal transformation is a transformation where the source and target models reside at the same abstraction level. Typical examples are refactoring (an endogenous transformation) and migration (an exogenous transformation). A vertical transformation is a transformation where the source and target models reside at different abstraction levels. A typical example is refinement, where a specification is gradually refined into a full-fledged implementation, by means of successive refinement steps that add more concrete details.
Level of automation: The level of automation is the grade to which a model transformation an be automated. When applying MDSD in practice, one can often find transformations that need to be performed manually (or at least need a certain amount of manual intervention).
Complexity: Model transformation also differ in their complexity. Simple transformations can be for example mappings for identifying relations between source and target model elements. More complex transformations are needed to specify for example synthesis, where higher-level models are refined to lower-level models. The difference in complexity of transformations can require an entirely different sets of techniques and tools.
Preservation: Each transformation preserves certain aspects of the source model in the transformed target model. The properties that are preserved can differ significantly depending on the type of transformation. For example, with refactorings the (external) behaviour needs to be preserved, while the structure is modified. With refinements, the program correctness needs to be preserved [20].

277Modelling with UML, with semantics

Characterisation of model transformations (2)

• Level of automation
• The level of automation is the grade to which a model transformation can be automated.

• Complexity
• Simple transformations

• Mappings for identifying relations between source and target model elements
• Complex transformations

• Synthesis, where higher-level models are refined to lower-level models

• Preservation
• Each transformation preserves certain aspects of the source model in the transformed target

model.
• The properties that are preserved can differ significantly depending on the type of

transformation.
• With refactorings the (external) behaviour needs to be preserved, while the structure is modified.
• With refinements, the program correctness needs to be preserved.

Vorführender
Präsentationsnotizen
Endogenous vs. exogenous: Endogenous transformations are transformations between models expressed in the same metamodel. Endogenous transformations are also called rephrasing. Transformations between models expressed using different metamodels are referred to as exogenous transformations or translations [298]. Typical examples of endogenous transformations are optimization, refactoring, simplification, and normalization of models. Typical examples of exogenous transformations are synthesis of a higher-level specification into a lower-level one, reverse engineering, and migration from a program written in one language to another.
Horizontal vs. vertical: A horizontal transformation is a transformation where the source and target models reside at the same abstraction level. Typical examples are refactoring (an endogenous transformation) and migration (an exogenous transformation). A vertical transformation is a transformation where the source and target models reside at different abstraction levels. A typical example is refinement, where a specification is gradually refined into a full-fledged implementation, by means of successive refinement steps that add more concrete details.
Level of automation: The level of automation is the grade to which a model transformation an be automated. When applying MDSD in practice, one can often find transformations that need to be performed manually (or at least need a certain amount of manual intervention).
Complexity: Model transformation also differ in their complexity. Simple transformations can be for example mappings for identifying relations between source and target model elements. More complex transformations are needed to specify for example synthesis, where higher-level models are refined to lower-level models. The difference in complexity of transformations can require an entirely different sets of techniques and tools.
Preservation: Each transformation preserves certain aspects of the source model in the transformed target model. The properties that are preserved can differ significantly depending on the type of transformation. For example, with refactorings the (external) behaviour needs to be preserved, while the structure is modified. With refinements, the program correctness needs to be preserved [20].

278Modelling with UML, with semantics

Transformation = Matching and deriving patterns

Lang. YLang. X

expressed in expressed in

Transformation
Definition

trans -
formation

defined by

derived
patterns
derived
patterns

matched
patterns
matched
patterns

Transformation in the same meta-model

Lang. X

expressed in expressed in

Transformation
Definition

defined by

trans -
formation

Transformation in the same model

Lang. X

expressed in

Transformation
Definition

defined by

matched
patterns

in-place
transformation

Characterisation of model transformations (3)

279Modelling with UML, with semantics

Refinement preserve meaning and derives complex patterns

Lang. YLang. X

expressed in expressed in

Refinement
Definition

refinement

defined by

higher
abstraction
level

lower
abstraction
level

Characterisation of model transformations (4)

Refinement in the same meta-model

Lang. X

expressed in expressed in

Refinement
Definition

defined by

refinement

Refinement in the same model

Lang. X

expressed in

Refinement
Definition

defined by

derived
patterns

in-place
refinement

280Modelling with UML, with semantics

Features of model transformations

• Specification
• Some approaches provide a dedicated specification mechanism, such as pre-/post-conditions

expressed in OCL.
• Transformation rules

• A transformation rule consists of two parts:
• A left-hand side (LHS), which accesses the source model
• A right-hand side right-hand side (RHS), which expands in the target model

• A domain is the rule part used for accessing the models on which the rule operates
• The body of a domain can be divided into three subcategories

• Variables: Variables may hold elements from the source and/or target models
• Patterns: Patterns are model fragments with zero or more variables
• Logic:. Logic expresses computations and constraints on model elements

• The transformations variables and patterns can be typed.

Vorführender
Präsentationsnotizen
Specification
 Some transformation approaches provide a dedicated specification mechanism, such as preconditions and postconditions expressed in Object Constraint Language (OCL) [229]. A particular transformation specification may represent a function between source and target models and be executable.
Transformation rules
A transformation rule consists of two parts: a left-hand side (LHS) and a right-hand side right-hand side (RHS). The LHS accesses the source model, whereas the RHS expands in the target model.
A domain is the part of a rule responsible for accessing one of the models on which the rule operates. Rules usually have a source and a target domain, but they may also involve more than two domains.
The body of a domain can be devided into three subcategries: variables, patterns and logic. Variables may hold elements from the source and/or target models (or some intermediate elements). Patterns are model fragments with zero or more variables. Sometimes, such as in the case of templates, patterns can have not only variables embedded in their body, but also expressions and statements of the metalanguage. Logic expresses computations and constraints on model elements.
The transformations variables and patterns can be typed. In the case of syntactic typing, a variable is associated with a metamodel element whose instances it can hold. Semantic typing allows stronger properties to be asserted, such as well-formedness rules (static semantics) and behavioral properties (dynamic semantics). A type system for a transformation language could statically ensure for a transformation that the models produced by the transformation will satisfy a certain set of syntactic and semantic properties, provided the input models satisfy some syntactic and semantic properties.

281Modelling with UML, with semantics

Features of model transformations

• Rule application control
• Location determination is the strategy for determining the model locations to which

transformation rules are applied.
• Scheduling determines the order in which transformation rules are executed.

• Rule organisation
• Rule organisation is concerned with composing and structuring multiple transformation rules by

mechanisms such as modularisation and reuse.
• Source-target relationship

• whether source and target are one and the same model or two different models
• Create new models
• Update existing models
• In-place update

Vorführender
Präsentationsnotizen
Rule application control
For rule application control one can distiguish between location determination and scheduling. Location determination is the strategy for determining the model locations to which transformation rules are applied. Scheduling determines the order in which transformation rules are executed.
Rule organisation
Rule organisation is concerned with composing and stucturing multiple transformation rules by mechanisms such as modularization and reuse.
Source-target relationship
This is concerned with issues such as whether source and target are one and the same model or two different models. Some approaches, such as ATL, mandate the creation of a new target model that has to be separate from the source. However, in-place transformation can be simulated in ATL through an automatic copy mechanism. In some other approaches, such as VIATRA and AGG, source and target are always the same model; that is, they only support in- lace update. Yet other approaches, for example, QVT Relations and MTF, allow creating a new model or updating an existing one. QVT Relations also support in-place update. Furthermore, an approach could allow a destructive update of the existing target or an update by extension only, that is, where existing model elements cannot be removed.

282Modelling with UML, with semantics

Features of model transformations

• Incrementality
• Ability to update existing target models based on changes in the source models

• Directionality
• Unidirectional transformations can be executed in one direction only, in which case a target

model is computed (or updated) based on a source model
• Multidirectional transformations can be executed in multiple directions, which is particularly

useful in the context of model synchronisation.

Vorführender
Präsentationsnotizen
Incrementality
This refers to the ability to update existing target models based on changes in the source models. The basic feature of all incremental transformations is target-incrementality, that is, the ability to update existing target models based on changes in the source models. This basic feature is also referred to as change propagation in the QVT final adopted specification [222]. A target-incremental transformation creates the target models if they are missing on the first execution. A subsequent execution with the same source models as in the previous execution has to detect that the needed target elements already exist. When any of the source models are modified and the transformation is executed again, the necessary changes to the target are determined and applied. At the same time, the target elements that can be preserved are preserved.
Directionality
Transformations may be unidirectional or multidirectional. Unidirectional transformations can be executed in one direction only, in which case a target model is computed (or updated) based on a source model. Multidirectional transformations can be executed in multiple directions, which is particularly useful in the context of model synchronization. Multidirectional transformations can be achieved using multidirectional rules or by defining several separate complementary unidirectional rules, one for each direction.

283Modelling with UML, with semantics

Features of model transformations

• Tracing
• Mechanisms for recording different aspects of transformation execution, such as creating and

maintaining trace links between source and target model elements.
• Trace information can be useful in

• performing impact analysis (i.e. analyzing how changing one model would affect other related models),
• determining the target of a transformation as in model synchronization
• model-based debugging (i.e. mapping the stepwise execution of an implementation back to its high-

level model)
• debugging model transformations themselves

Vorführender
Präsentationsnotizen
Tracing
This is concerned with the mechanisms for recording different aspects of transformation execution, such as creating and maintaining trace links between source and target model elements. Traceability links can be established by recoding the transformation rule and the source elements that were involved in creating a given target element. Trace information can be useful in performing impact analysis (i.e. analyzing how changing one model would affect other related models), determining the target of a transformation as in model synchronization, modelbased debugging (i.e. mapping the stepwise execution of an implementation backto its high-level model), and in debugging model transformations themselves.

284Modelling with UML, with semantics

Model-to-model approaches (1)

• Direct manipulation approaches
• Offers an internal model representation and some APIs to manipulate it
• Usually implemented as an object-oriented framework
• Users usually have to implement transformation rules, scheduling, tracing, etc.
• Examples: Java Metadata Interface (JMI), EMF, …

• Structure-driven approaches
• Two distinct phases:

• The first phase is concerned with creating the hierarchical structure of the target model
• The second phase sets the attributes and references in the target

• The overall framework determines the scheduling and application strategy; users are only
concerned with providing the transformation rules

• Example: OptimalJ

Vorführender
Präsentationsnotizen
Direct manipulation
This category of approach offers an internal model representation and some APIs to manipulate it, such as Java Metadata Interface (JMI). It is usually implemented as an object- riented framework, which may also provide some minimal infrastructure to organise the transformations (e.g. abstract class for transformations). However, users usually have to implement transformation rules, scheduling, tracing, and other facilities, mostly from the beginning, ina programming language such as Java.
Structure-driven
Approaches in this category have two distinct phases: The first phase is concerned with creating the hierarchical structure of the target model; whereas, the second phase sets the attributes and references in the target. The overall framework determines the scheduling and application strategy; users are only concerned with providing the transformation rules. An example of the structure-driven approach is the model-to-model transformation framework provided by OptimalJ.
Template-based approach
Model templates are models with embedded metacode that compute the variable parts of the resulting template instances. Model templates are usually expressed in the concrete syntax of the target language, which helps the developer to predict the result of template instantiation. The metacode can have the form of annotations on model elements. Typical annotations are conditions, iterations, and expressions, all being part of the metalanguage. An obvious choice for the expression language to be used in the metalanguage is OCL. A concrete model-template approach is given by Czarnecki and Antkiewicz [63].

285Modelling with UML, with semantics

Model-to-model approaches (2)

• Template-based approaches
• Model templates are models with embedded meta-code that compute the variable parts of the

resulting template instances.
• Model templates are usually expressed in the concrete syntax of the target language, which

helps the developer to predict the result of template instantiation
• Typical annotations are conditions, iterations, and expressions, all being part of the meta-

language. An expression language to be used in the meta-language is OCL.
• Examples: Czarnecki, Antkiewicz (2005)

• Operational approaches
• Similar to direct manipulation but offer more dedicated support for model transformation
• Extend the utilized metamodeling formalism with facilities for expressing computations

• Extend a query language such as OCL with imperative constructs.
• The combination of MOF with such extended executable OCL becomes a fully-fledged object-oriented

programming system.)
• Examples: QVT Operational mappings, XMF-Mosaic’s executable MOF, MTL, C-SAW,

Kermeta, etc.

Vorführender
Präsentationsnotizen
Direct manipulation
This category of approach offers an internal model representation and some APIs to manipulate it, such as Java Metadata Interface (JMI). It is usually implemented as an object- riented framework, which may also provide some minimal infrastructure to organise the transformations (e.g. abstract class for transformations). However, users usually have to implement transformation rules, scheduling, tracing, and other facilities, mostly from the beginning, ina programming language such as Java.
Structure-driven
Approaches in this category have two distinct phases: The first phase is concerned with creating the hierarchical structure of the target model; whereas, the second phase sets the attributes and references in the target. The overall framework determines the scheduling and application strategy; users are only concerned with providing the transformation rules. An example of the structure-driven approach is the model-to-model transformation framework provided by OptimalJ.
Template-based approach
Model templates are models with embedded metacode that compute the variable parts of the resulting template instances. Model templates are usually expressed in the concrete syntax of the target language, which helps the developer to predict the result of template instantiation. The metacode can have the form of annotations on model elements. Typical annotations are conditions, iterations, and expressions, all being part of the metalanguage. An obvious choice for the expression language to be used in the metalanguage is OCL. A concrete model-template approach is given by Czarnecki and Antkiewicz [63].

286Modelling with UML, with semantics

Model-to-model approaches (3)

• Relational approaches
• Declarative approaches in which the main concept is mathematical relations
• The basic idea is to specify the relations among source and target element types using

constraints
• Since declarative constraints are non-executable, declarative approaches give them an

executable semantics, such as in logic programming
• Relational approaches are side-effect-free, support multidirectional rules, can provide

backtracking …
• Examples: QVT Relations, MTF, Kent Model Transformation Language, Tefkat, AMW,

mappings in XMF-Mosaic, etc.

Vorführender
Präsentationsnotizen
Operational approaches
Approaches that are similar to direct manipulation but offer more dedicated support for model transformation are grouped in this category. A typical solution in this category is to extend the utilized metamodeling formalism with facilities for expressing computations. An example would be to extend a query language such as OCL with imperative constructs. The combination of MOF with such extended executable OCL becomes a fully-fledged object-oriented programming system. Examples of systems in this category are QVT Operational mappings, XMF-Mosaic’s executable MOF, MTL, C-SAW, and Kermeta. Specialized facilities such as tracing may be offered through dedicated libraries.
Relational approach
This category groups declarative approaches in which the main concept is mathematical relations. In general, relational approaches can be seen as a form of constraint solving. Examples of relational approaches are QVT Relations, MTF, Kent Model Transformation Language, Tefkat, AMW, and mappings in XMF-Mosaic. The basic idea is to specify the relations among source and target element types using constraints. In its pure form, such a specification is non-executable (e.g. relations [8, 215] and mapping rules [214]). However, declarative constraints can be given an executable semantics, such as in logic programming. All of the relational approaches are side-effect-free and, in contrast to the imperative direct manipulation approaches, create target elements implicitly. Relational approaches can naturally support multidirectional rules. They sometimes also provide backtracking. Most relational approaches require strict separationbetween source and target models; that is, they do not allow in-place update.

287Modelling with UML, with semantics

Model-to-model approaches (4)

• Graph-transformation-based approaches
• Based on the theoretical work on graph transformations
• Operates on typed, attributed, labelled graphs
• Graph transformation rules have an LHS and an RHS graph pattern.

• The LHS pattern is matched in the model being transformed and replaced by the RHS pattern in place
• Additional logic, for example, in string and numeric domains, is needed to compute target attribute

values such as element names
• Examples: AGG, AToM3, VIATRA, GReAT, UMLX, BOTL, MOLA, Fujaba, etc.

Vorführender
Präsentationsnotizen
Hybrid approach
Hybrid approaches combine different techniques from the previous categories. The different approaches can be combined asseparate components or, in a more fine-grained fashion, at the level of individual rules. QVT is an example of a hybrid approach with three separate components, namely Relations, Operational mappings, and Core. Examples of the fine-grained combination are ATL and YATL. A transformation rule in ATL may be fully declarative, hybrid, or fully imperative. The LHS of a fully declarative rule (so-called source pattern) consists of a set of syntactically typed variables with an optional OCL constraint as a filter or navigation logic. The RHS of a fully declarative rule (so-called target pattern) contains a set of variables and some declarative logic to bind the values of the attributes in the target elements. In a hybrid rule, the source or target patterns are complemented with a block of imperative logic which is run after the application of the target pattern. A fully imperative rule (so- alled procedure) has a name, a set of formal parameters, and an imperative block, but no patterns. Rules are unidirectional and support rule inheritance.
Graph-transformation-based approach
This category of model transformation
approaches draws on the theoretical work on graph transformations. In particular, this category operates on typed, attributed, labeled graphs [12], which can be thought of as formal representations of simplified class models. Examples include AGG, AToM3, VIATRA, GReAT, UMLX, BOTL, MOLA, and Fujaba. Graph transformation rules have an LHS and an RHS graph pattern. The LHS pattern is matched in the model being transformed and replaced by the RHS pattern in place. The LHS often contains conditions in addition to the LHS pattern. Some additional logic, for example, in string and numeric domains, is needed to compute target attribute values such as element names. Graph patterns can be rendered in the concrete syntax of their respective source or target language (e.g. in VIATRA) or in the MOF abstract syntax (e.g. in BOTL and AGG). The advantage of the concrete syntax is that it is more familiar to developers working with a given modeling language than the abstract syntax

288Modelling with UML, with semantics

Model-to-model approaches (5)

• Hybrid approaches
• Hybrid approaches combine different techniques from the previous categories

• as separate components
• or/and , in a more fine-grained fashion, at the level of individual rules

• In a hybrid rule, the source or target patterns are complemented with a block of imperative
logic which is run after the application of the target pattern

• Rules are unidirectional and support rule inheritance.
• Examples:

• Separate components: QVT (Relations, Operational mappings, and Core)
• Fine-grained combination: ATL and YATL

Vorführender
Präsentationsnotizen
Hybrid approach
Hybrid approaches combine different techniques from the previous categories. The different approaches can be combined asseparate components or, in a more fine-grained fashion, at the level of individual rules. QVT is an example of a hybrid approach with three separate components, namely Relations, Operational mappings, and Core. Examples of the fine-grained combination are ATL and YATL. A transformation rule in ATL may be fully declarative, hybrid, or fully imperative. The LHS of a fully declarative rule (so-called source pattern) consists of a set of syntactically typed variables with an optional OCL constraint as a filter or navigation logic. The RHS of a fully declarative rule (so-called target pattern) contains a set of variables and some declarative logic to bind the values of the attributes in the target elements. In a hybrid rule, the source or target patterns are complemented with a block of imperative logic which is run after the application of the target pattern. A fully imperative rule (so- alled procedure) has a name, a set of formal parameters, and an imperative block, but no patterns. Rules are unidirectional and support rule inheritance.
Graph-transformation-based approach
This category of model transformation
approaches draws on the theoretical work on graph transformations. In particular, this category operates on typed, attributed, labeled graphs [12], which can be thought of as formal representations of simplified class models. Examples include AGG, AToM3, VIATRA, GReAT, UMLX, BOTL, MOLA, and Fujaba. Graph transformation rules have an LHS and an RHS graph pattern. The LHS pattern is matched in the model being transformed and replaced by the RHS pattern in place. The LHS often contains conditions in addition to the LHS pattern. Some additional logic, for example, in string and numeric domains, is needed to compute target attribute values such as element names. Graph patterns can be rendered in the concrete syntax of their respective source or target language (e.g. in VIATRA) or in the MOF abstract syntax (e.g. in BOTL and AGG). The advantage of the concrete syntax is that it is more familiar to developers working with a given modeling language than the abstract syntax

289Modelling with UML, with semantics

Model-to-model approaches (6)

• Other approaches
• Extensible Stylesheet Language Transformation (XSLT)

• Models can be serialized as XML using the XMI
• Model transformations can be implemented with Extensible Stylesheet Language Transformation

(XSLT), which is a standard technology for transforming XML
• The use of XMI and XSLT has scalability limitations
• Manual implementation of model transformations in XSLT quickly leads to non-maintainable

implementations
• Application of meta-programming to model transformation

• Domain-specific language for model transformations embedded in a meta-programming language.

Vorführender
Präsentationsnotizen
Other approaches
There are two more approaches which do not fit in the described categories: transformation implemented using Extensible Stylesheet Language Transformation (XSLT) [301] and the application of metaprogramming to model transformation. Because models can be serialized as XML using the XMI [221], model transformations could be implemented with Extensible Stylesheet Language Transformation (XSLT), which is a standard technology for transforming XML. Unfortunately, the use of XMI and XSLT has scalability limitations. Manual implementation of model transformations in XSLT quickly leads to nonmaintainable implementations because of the verbosity and poor readability of XMI and XSLT. A more promising direction in applying traditional metaprogramming techniques to model transformations is a domain-specific language for model transformations embedded in a metaprogramming language [290].

290Modelling with UML, with semantics

Model-to-text approaches

• Visitor-based approaches
• Use visitor mechanism to traverse the internal representation of a model and write text to a text

stream
• Example: Jamda

• Template-based approaches
• The majority of currently available MDA tools support template-based model-to-text generation

• structure of a template resembles more closely the code to be generated
• Templates lend themselves to iterative development (they can be derived from examples)

• A template consists of the target text containing slices of meta-code to access information from
the source

• Examples: oAW, JET, Codagen Architect, AndroMDA, ArcStyler, MetaEdit, OptimalJ, etc.

Vorführender
Präsentationsnotizen
Visitor-based
Visitor-based approach: A very basic code generation approach consists in providing some visitor mechanism to traverse the internal representation of a model and write text to a text stream. An example of thisapproach is Jamda – an object-oriented framework providing a set of classes to represent UML models, an API for manipulating models, and a visitor mechanism (CodeWriters) to generate code. Jamda does not support the MOF standard to define new metamodels; however, new model element types can be introduced by subclassing the existing Java classes that represent the predefined model element types.
Template-based
Template-based approach: The majority of currently available MDA tools support template-based model-to-text generation (e.g. oAW, JET, Codagen Architect, AndroMDA, ArcStyler, MetaEdit, and OptimalJ). AndroMDA reuses existing opensource template-based generation technology: Velocity [297] and XDoclet [329]. A template usually consists of the target text containing slices of metacode to access information from the source and to perform code selection and iterative expansion. According to our terminology, the LHS uses executable logic to access source, and the RHS combines untyped string patterns with executable logic for code selection and iterative expansion. Furthermore, there is no clear syntactic separation between the LHS and RHS. Template approaches usually offer userdefined scheduling in the internal form of calling a template from within another template.
The LHS logic accessing the source model may have different forms. The logic could be simply Java code accessing the API provided by the internal representation of the source model such as JMI, or it could be declarative queries, for example, in OCL or XML Path Language (XPath) [316]. The oAW Generator Framework propagates the idea of separating more complex source access logic, which might need to navigate and gather information from different places of the source model, from templates by moving the logic into user-defined operations of the source-model elements.
Comparison
Compared with a visitor-based transformation, the structure of a template resembles more closely the code to be generated. Templates lend themselves to iterative developmentas they can be easily derived from examples.

