
184Modelling with UML, with semantics

Expressions: Standard library (2)

• Finite quantification
• c->forAll(i : T | e) = c->iterate(i : T; a : Boolean = true | a and e)
• c->exists(i : T | e) = c->iterate(i : T; a : Boolean = false | a or e)

• Selecting values
• c->any(i : T | e) some element of c satisfying e
• c->select(i : T | e) all elements of c satisfying e

• Collecting values
• c->collect(i : T | e) collection of elements with e applied to

each element of c
• c.p collection of elements v.p for each v in c

(short-hand for collect)

C.allInstances() all current instances of classifier C

o.oclIsInState(s) is o currently in state machine state s?

v.oclIsUndefined() is value v null or invalid?

v.oclIsInvalid() is value v invalid?

185Modelling with UML, with semantics

Evaluation

• Strict evaluation with some exceptions
• (if (1/0 = 0) then 0.0 else 0.0 endif).oclIsInvalid() = true
• (1/0).oclIsInvalid() = true

• Short-cut evaluation for and, or, implies
• (1/0 = 0.0) and false = false
• true or (1/0 = 0.0) = true
• false implies (1/0 = 0.0) = true
• (1/0 = 0.0) implies true = true
• if (0 = 0) then 0.0 else 1/0 endif = 0.0

• In general, OCL expressions are evaluated over a system state.

e.g., represented
by an object diagram

186Modelling with UML, with semantics

Connection to UML

• Import of classifiers and enumerations as types
• Properties accessible in OCL

• Attributes
• p.milesCard (with p : Passenger)

• Association ends
• p.flight, p.booking, p.booking[flight]

• { query } operations
• Access to stereotypes via v.stereotype

• Representation of multiplicities
a[1] : T a : T

a[0..1] : T a : Set(T) or T

a[m..n] : T a : Set(T)

a[*] : T { unordered } a : Set(T)

a[*] : T { ordered } a : OrderedSet(T)

a[*] : T { bag } a : Bag(T)

Vorführender
Präsentationsnotizen
For a[0..1] : T type T is used for initial values and derived bodies (s. formal/05-06-06, pp. 179f.).

187Modelling with UML, with semantics

Invariants

context Passenger
inv: ma.statusMiles > 10000 implies

status = Status::Albatros

boolean expression

context Passenger
inv statusLimit: self.ma.statusMiles > 10000 implies

self.status = Status::Albatros

context p : Passenger
inv statusLimit: p.ma.statusMiles > 10000 implies

p.status = Status::Albatros

optional name

replacement for self

Notational variants

context classifier

explicit self (refers to instance of discourse)

188Modelling with UML, with semantics

Semantics of invariants

context C
inv: I1

context C
inv: I2

context C
inv: I1 and I2

• Restriction of valid states of classifier instances
• when observed from outside

• One possibility: Combination of several invariants by conjunction

• Invariants (as all constraints) are inherited via generalizations
• but how they are combined is not predefined

↝

189Modelling with UML, with semantics

Pre-/post-conditions

context Passenger::consumeMiles(b : Booking) : Boolean
pre: ma->notEmpty() and

ma.flightMiles >= b.flight.miles

context Passenger::consumeMiles(b : Booking) : Boolean
post: ma.flightMiles = ma.flightMiles@pre-b.flight.miles and

result = true

• Some constructs only available in post-conditions
• values at pre-condition time p@pre
• result of operation call result
• whether an object has been newly created o.oclIsNew()
• messages sent o^op(), o^^op()

• In UML models, pre- and post-conditions are defined separately
• not necessarily as pairs
• «precondition» and «postcondition» as constraint stereotypes

Vorführender
Präsentationsnotizen
Perhaps have a boolean return flag for consumeMiles in class diagram.

190Modelling with UML, with semantics

• Standard interpretation
• A pre-/post-condition pair (P, Q) defines a relation R on system states such that (σ, σ’) ∈ R, if σ

P and (σ, σ’) Q.
• system state σ on operation invocation
• system state σ’ on operation termination (Q may refer to σ by @pre).

• Thus (P, Q) equivalent to (true, P@pre and Q).

Semantics of pre-/post-conditions

obligation benefit
user satisfy P Q established

implementer if P satisfied, establish Q P established

• Meyer’s contract view
• A pre-/post-condition pair (P, Q) induces benefits and obligations.
• benefits and obligations differ for implementer and user

Vorführender
Präsentationsnotizen
Standard interpretation not included in ptc/05-06-06.

