
166Modelling with UML, with semantics

Profiles

Unified Modeling Language 2

167Modelling with UML, with semantics

Usage scenarios

• Metamodel customization for
• adapting terminology to a specific platform or domain
• adding (visual) notation
• adding and specializing semantics
• adding constraints
• transformation information

• Profiling
• packaging domain-specific

extensions
• “domain-specific language”

engineering

168Modelling with UML, with semantics

Stereotypes (1)

• Stereotypes define how an existing (UML) metaclass may be extended.

optional

• Stereotypes may be applied textually or graphically.

• Visual stereotypes may replace original notation.
• But the element name should appear below the icon…

extension

lower-case initial

Vorführender
Präsentationsnotizen
The box can be replaced by the icon, and the name of the model element appears
below the icon. This presentation option can be used only when a model element is extended by one single stereotype
and when properties of the model element (i.e., attributes, operations of a class) are not presented. (formal/05-07-04, p. 650)

Stereotype is the only kind of metaclass that cannot be extended by stereotypes. (formal/05-07-04, p. 636)

169Modelling with UML, with semantics

Stereotypes (2)

• Stereotypes may define meta-properties.
• commonly known as “tagged values”

• Stereotypes can be defined to be required.
• Every instance of the extended metaclass has to be extended.
• If a required extension is clear from the context it need not be visualized.

170Modelling with UML, with semantics

Profiling

• Profiles package extensions.

171Modelling with UML, with semantics

Metamodel

• Based on infrastructure library constructs
• Class, Association, Property, Package, PackageImport

172Modelling with UML, with semantics

Metamodeling with Profiles

• Profile extension mechanism imposes restrictions on how the UML metamodel can be
modified.
• UML metamodel considered as “read only”.
• No intermediate metaclasses

• Stereotypes metaclasses below UML metaclasses.

Vorführender
Präsentationsnotizen
“As part of a profile …”: see formal/05-07-04, p. 643. Why can’t we use meta-properties here?

OCL access to stereotypes is not clear: see, e.g., self.trigger.stereotype.name = ’create’ (formal/05-07-04, p. 554) or self.constraint.stereotype.name = ’definition’ (ptc/05-06-06, p. 176)

173Modelling with UML, with semantics

Wrap up

• Metamodel extensions
• with stereotypes and meta-properties
• for restricting metamodel semantics
• for extending notation

• Packaging of extensions into profiles
• for declaring applicable extensions
• “domain-specific language” engineering

174Modelling with UML, with semantics

Object Constraint Language 2

175Modelling with UML, with semantics

A first glimpse

176Modelling with UML, with semantics

History and predecessors

• Predecessors
• Model-based specification languages, like

• Z, VDM, and their object-oriented variants; B
• Algebraic specification languages, like

• OBJ3, Maude, Larch

• Similar approaches in programming languages
• ESC, JML

• History
• developed by IBM as an easy-to-use formal annotation language
• used in UML metamodel specification since UML 1.1
• current version: OCL 2.3.1

• specification: formal/2012-01-01

177Modelling with UML, with semantics

Usage scenarios

• Constraints on implementations of a model
• invariants on classes
• pre-/post-conditions for operations

• cf. protocol state machines
• body of operations
• restrictions on associations, template parameters, …

• Formalization of side conditions
• derived attributes

• Guards
• in state machines, activity diagrams

• Queries
• query operations

• Model-driven architecture (MDA)/query-view-transformation (QVT)

178Modelling with UML, with semantics

Language characteristics

• Integration with UML
• access to classifiers, attributes, states, …
• navigation through attributes, associations, …
• limited reflective capabilities
• model extensions by derived attributes

• Side-effect free
• not an action language
• only possibly describing effects

• Statically typed
• inherits and extends type hierarchy from UML model

• Abstract and concrete syntax
• precise definition new in OCL 2

179Modelling with UML, with semantics

Simple types

• Predefined primitive types
• Boolean true, false
• Integer -17, 0, 3
• Real -17.89, 0.0, 3.14
• String “Hello”

• Types induced by UML model
• Classifier types, like

• Passenger no denotation of objects, only in context

• Enumeration types, like
• Status Status::Albatros, #Albatros

• Model element types
• OclModelElement, OclType, OclState

• Additional types
• OclInvalid invalid (OclUndefined)
• OclVoid null
• OclAny top type of primitives and classifiers

180Modelling with UML, with semantics

Parameterized types

• Collection types
• Set(T) sets
• OrderedSet(T) like Sequence without duplicates
• Bag(T) multi-sets
• Sequence(T) lists
• Collection(T) abstract

• Tuple types (records)
• Tuple(a1 : T1, …, an : Tn)

• Message type
• OclMessage for operations and signals

Examples
• Set{Set{ 1 }, Set{ 2, 3 }} : Set(Set(Integer))
• Bag{1, 2.0, 2, 3.0, 3.0, 3} : Bag(Real)
• Tuple{x = 5, y = false} : Tuple(x : Integer, y : Boolean)

Vorführender
Präsentationsnotizen
TupleType (ptc/03-10-14, p. 25) seems to be a typo; see concrete syntax (ptc/03-10-04, p. 78).

181Modelling with UML, with semantics

Type hierarchy

• Type conformance (reflexive, transitive relation ≤)
• OclVoid ≤ T for all types T but OclInvalid
• OclInvalid ≤ T for all types T
• Integer ≤ Real
• T ≤ T’ ⇒ C(T) ≤ C(T’) for collection type C
• C(T) ≤ Collection(T) for collection type C
• generalization hierarchy from UML model
• B ≤ OclAny for all primitives and classifiers B

Counterexample
• ¬(Set(OclAny) ≤ OclAny)

• Casting
• v.oclAsType(T) if v : T’ and (T ≤ T’ or T’ ≤ T)
• upcast necessary for accessing overridden properties

Vorführender
Präsentationsnotizen
Cyclic type conformance of OclVoid and OclInvalid to all other types is strange (formal/06-05-01, Sect. 11.2.3, Sect. 11.2.4).

Upcasts are still forbidden in ptc/03-10-14, Sect. 7.4.6; ptc/05-06-06, Sect. 7.4.6; formal/06-05-01, Sect. 7.4.6.

182Modelling with UML, with semantics

Expressions

• Local variable bindings
let x = 1 in x+2

• Iteration
c->iterate(i : T; a : T’ = e’ | e)

source collection
iteration variable
(bound to current value in c)

accumulator with initial value e’
(gathers result, returned after iteration)

iteration expression
(using variables i and a)

Set{1, 2}->iterate(i : Integer; a : Integer = 0 | a+i) = 3

Example:

• Many operations on collections are reduced to iterate

183Modelling with UML, with semantics

• Operations on primitive types (written: v.op(…))
• operations without () are mixfix

• Operations on collection types (written: v->op(…))

Expressions: Standard library (1)

OclAny =, <>, oclIsTypeOf(T), oclIsKindOf(T), …
Boolean and, or, xor, implies, not
Integer +, -, *, /, div(i), mod(i), …
Real +, -, *, /, floor(), round(), …
String size(), concat(s), substring(l, u), …

Collection size(), includes(v), isEmpty(), …
Set union(s), including(v), flatten(), asBag(), …
OrderedSet append(s), first(), at(i), …
Bag union(b), including(v), flatten(), asSet(), …
Sequence append(s), first(), at(i), asOrderedSet(), …

