Usage: Test cases

Like any other interaction, but with a different intention.

idﬂl‘ir{i,ﬂ,‘ﬂ_6|ﬁ_4 ™™ Check In (automatic) too much luggage

teest goal
If a passenger has too many pieces of luggage and tries to check in

using the check in machine, he should be referred to the check in
counter.

precondilion
passenger is booked on respective flight

argumenls
luggage, bonus mile card, booking data

reslt
passenger is referred to counter

postcandilion
luggage Is not checked in, passenger is checked in

remarks, open questions
none

Modelling with UML, with semantics

Typically accompanied by a tabular description of purpose, expected parameters and
result (similar to use case description).

150

Usage: Timing specification

* Forembedded and real-time systems,
it may be important to specify absolute
timings and state evolution over time.

* This is not readily expressed in
sequence diagrams, much less
communication diagrams.

* UML 2.0 introduces timing diagrams
for this purpose.

Modelling with UML, with semantics

server behavior /

[job processing |

-—

(&<

\

e=(oene an)
= oompasion

[EX client behavior / |

]

J

t=now callService(self, parameter)

<=Jg

<={+10s <

BB C/S protocol /
e D

Y ..\

receiveResult(jobNo)

BEN C/S protocol /

Server

Client

computation
idle
receive query

job issued

busy
waiting

L !

1
’?i:all- :jnhNn , receiveResult(jobNo)
1Service V !

S P P AP VAR SRR W

151

Abstraction in timing diagram

* An alternative syntax presents states not
on the vertical axis but as hexagons on
the lifeline.

* Timing diagrams present the
coordination of (the states of) several
objects over (real) time.

Modelling with UML, with semantics

server behavior /

[job processing |

-—

O

\

(oo o)
= D

[EH client behavior /' |

]
\ J

Protocol abstraction /

Server

< idle chv.queryX idle ><:omputation>< idle >

Client <

':‘call- ijnan ireceiveResuIl(jobNo)
! Service W \

busy job issued waiting X busy >
]]] ~
| | -
t=now <=t+2s <=t+10s

Protocol abstraction /

Server

Client

computafion
i 1]
receive quary

job issued

buey
waitimg

job processing

_<

>_

A
icall-
| Barvion

1
| fecaiveRasulfjobMo)

delegate job

p—

0 1

RS RN DRAE DR B S

T

[=r

152

Usage: Interaction overview

* Organize large number of interactions in a more visual style
* Defined as equivalent to using interaction operators

sequence equivalent to seq - -

choice/merge
equivalent to alt/opt

]! Check-In (automatic) /

¥

ref) jogin passenger

W

lret) submit luggage
J

il

ref) print boarding pass

v
®

also allowed: fork/join

(said to be equivalent to par, but ...)

Modelling with UML, with semantics

153

Complex interactions

A complex interaction is like a functional expression:
° an InteractionOperator,

one or several InteractionOperands (separated by dashed lines),
(and sometimes also numbers or sets of signals).

] Check-In (automatic) /O

Check-In-
X Machine
Interaction
~

Passenger
Operator ~ |~

Interaction\
Fragment ~

Interaction™ |
Operand

Modelling with UML, with semantics

154

Interaction operators (overview)

* strict

* operand-wise sequencing
* seq

* lifeline-wise sequencing
* loop

* repeated seq

® par
* interleaving of events

®* region (aka. “critical”)
* suspending interleaving

®* consider
* restrict model to specific messages
* i.e. allow anything else anywhere

®* ignore
* dual to consider

Modelling with UML, with semantics

ref
° macro-expansion of fragment

alt

* alternative execution
opt

* optional execution

* syntactic sugar for alt
break

* abort execution

* sometimes written as “brk”

assert
° remove uncertainty in specification
* j.e. declare all traces as valid
neg
* declare all traces as invalid
(— three-valued semantics)

155

