
150Modelling with UML, with semantics

Usage: Test cases

• Like any other interaction, but with a different intention.

• Typically accompanied by a tabular description of purpose, expected parameters and
result (similar to use case description).

151Modelling with UML, with semantics

Usage: Timing specification

• For embedded and real-time systems,
it may be important to specify absolute
timings and state evolution over time.

• This is not readily expressed in
sequence diagrams, much less
communication diagrams.

• UML 2.0 introduces timing diagrams
for this purpose.

152Modelling with UML, with semantics

Abstraction in timing diagram

• An alternative syntax presents states not
on the vertical axis but as hexagons on
the lifeline.

• Timing diagrams present the
coordination of (the states of) several
objects over (real) time.

153Modelling with UML, with semantics

Usage: Interaction overview

also allowed: fork/join
(said to be equivalent to par, but …)

choice/merge
equivalent to alt/opt

sequence equivalent to seq

• Organize large number of interactions in a more visual style
• Defined as equivalent to using interaction operators

154Modelling with UML, with semantics

Complex interactions

Interaction
Operator

Interaction
Fragment

Interaction
Operand

• A complex interaction is like a functional expression:
• an InteractionOperator,
• one or several InteractionOperands (separated by dashed lines),
• (and sometimes also numbers or sets of signals).

155Modelling with UML, with semantics

Interaction operators (overview)

• strict
• operand-wise sequencing

• seq
• lifeline-wise sequencing

• loop
• repeated seq

• par
• interleaving of events

• region (aka. “critical”)
• suspending interleaving

• consider
• restrict model to specific messages
• i.e. allow anything else anywhere

• ignore
• dual to consider

• ref
• macro-expansion of fragment

• alt
• alternative execution

• opt
• optional execution
• syntactic sugar for alt

• break
• abort execution
• sometimes written as “brk”

• assert
• remove uncertainty in specification
• i.e. declare all traces as valid

• neg
• declare all traces as invalid

(→ three-valued semantics)

