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A first glimpse
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®)
History and predecessors

* Simple sequence diagrams
°* 1990°'s
* Message Sequence Charts (MSCs) used in TelCo-industry
* several OO-methods use sequence diagrams

* Complex sequence diagrams
* 1996: Complex MSCs introduced in standard MSC96
* 1999: Life Sequence Charts (LSCs)

®* Communication diagrams
* 1991: used in Booch method
* 1994: used in Cook/Daniels: Syntropy

* Timing diagrams
* traditionally used in electrical engineering
* 1991: used in Booch method
* 1993: used in early MSCs

* Interaction overview
* 1996: high-level MSCs (graphs of MSCs as notational alternative)
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Usage scenarios

Class/object interactions
* design or document message exchange between objects

* express synchronous/asynchronous messages, signals and calls,
activation, timing constraints

Use case scenarios
* illustrate a use case by concrete scenario

* useful in design/documentation of business processes (i.e. analysis
phase and reengineering)

Test cases
* describe test cases on all abstraction levels

Timing specification/documentation

Interaction overview

° organize a large number of interactions in a more visual style
* defined as equivalent to using interaction operators
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Syntactical variants

* Sequence diagram G e
* traditional sequence diagrams + interaction operators

* focuses on exchanging many messages in complex patterns among few
interaction partners

®* Communication diagram %-:%
* “collaboration diagram” in UML 1.x ",
* focuses on exchanging few messages between (many) interaction =

partners in complex configuration

* Timing diagram
°* new in UML 2.0, oscilloscope-type representation, not necessarily metric e

::::::

time N B R A | i

* focuses on (real) time and coordinated state change of interaction
partners over time

* Interaction overview diagram : et
* looks like restricted activity diagram, but isn’t -
° arrange elementary interactions to highlight their interaction = .ﬂ.f;..“.
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Main concepts
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Message types

instantiation E}/ent lost & found Messages
\ (i.e.: very slow messages)
1 ™
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Activation
external CfS-ProtocoI 2 /
Event ~~ _ Client Server
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Usage: Use case scenarios

* Interaction participants are
actors and systems rather
than classes and objects.

* May be refined successively.

* Useful also for specifying

{00l Check-In at terminal /

high-level non-functional
requirements such as
response times.

* All kinds of interaction
diagrams may be applied,
depending on the
circumstances.
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Usage: Class interactions

* Interaction participants are
classes and objects rather than
actors and systems.

* Again, successive refinement
may be applied in different styles:

* break down processing of
messages

° break down structure of
interaction participants.

* All kinds of interaction diagrams
may be applied, depending on the
circumstances.
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