Unified Modeling Language 2

Interactions

]
=

ot o] ae et

stack]
. [n2 Py i
m Yy [[
ol g wartund
"“h_-,g‘-e%
.......... . i ki
s

Modelling with UML, with semantics

140

A first glimpse

sequence diagram

communication
diagram

timing diagram

o] C/S-Protocol 1 /

| Client Server

callSarvice! salf, parametar | -
] joblNo _
o receaRasull] jobho |
C/S-Protocol 1 /
—

Client I

1: callService| salf, parameter | I Server

S receiveResult{ jobNo) 2 jobo

) C/S-Protocol 1 /

cormputation

Server racaive quany
idhe

waiting

Client job issued

busy

I L
Tta”_ iljuan \memﬁamll{;:bh}m
Em.-ica[
ulIII%IIIIEIIIIJ;‘IIIIAIIIIéIIIIé Ts]

Modelling with UML, with semantics

all three are
semantically
equivalent

141

®)
History and predecessors

* Simple sequence diagrams
°* 1990°'s
* Message Sequence Charts (MSCs) used in TelCo-industry
* several OO-methods use sequence diagrams

* Complex sequence diagrams
* 1996: Complex MSCs introduced in standard MSC96
* 1999: Life Sequence Charts (LSCs)

®* Communication diagrams
* 1991: used in Booch method
* 1994: used in Cook/Daniels: Syntropy

* Timing diagrams
* traditionally used in electrical engineering
* 1991: used in Booch method
* 1993: used in early MSCs

* Interaction overview
* 1996: high-level MSCs (graphs of MSCs as notational alternative)

Modelling with UML, with semantics 142

Vorführender
Präsentationsnotizen
SD93 in 2730: Rainer Schlör, Werner Damm: Specification and Verification of System Level Hardware designs using timing diagrams. Proc Eur Conf Design Automation, 1993

Usage scenarios

Class/object interactions
* design or document message exchange between objects

* express synchronous/asynchronous messages, signals and calls,
activation, timing constraints

Use case scenarios
* illustrate a use case by concrete scenario

* useful in design/documentation of business processes (i.e. analysis
phase and reengineering)

Test cases
* describe test cases on all abstraction levels

Timing specification/documentation

Interaction overview

° organize a large number of interactions in a more visual style
* defined as equivalent to using interaction operators

Modelling with UML, with semantics

-'Pungir.n eaf Flug sabuckt

" Kaffar, Mailmborte, Buchungdoraraia

Do raashcke daadch: mird rical ergarznman, dar
Fiomt sagiar wird an dan Sovalar varasaan

" Pamsag er und Taila sais dazscs snd ef des
g angaraidas
b ra

L] [. D e |

143

Syntactical variants

* Sequence diagram G e
* traditional sequence diagrams + interaction operators

* focuses on exchanging many messages in complex patterns among few
interaction partners

®* Communication diagram %-:%
* “collaboration diagram” in UML 1.x ",
* focuses on exchanging few messages between (many) interaction =

partners in complex configuration

* Timing diagram
°* new in UML 2.0, oscilloscope-type representation, not necessarily metric e

::::::

time N B R A | i

* focuses on (real) time and coordinated state change of interaction
partners over time

* Interaction overview diagram : et
* looks like restricted activity diagram, but isn’t -
° arrange elementary interactions to highlight their interaction = .ﬂ.f;..“.

Modelling with UML, with semantics 144

Main concepts

o] C/S-Protocol 1 /
Interaction— — - — — _ _ _ _ Client Server
rtner
pa e - callService! salf, parametar) >
)) i —— —-— P .r:lbr'k:l\ \
Lifeline — U ST~
l’ \ \l N
ol recaiveResull] jobNo) [\ S
- - 1 1 \ N
- - - ‘\ I, ' \ \ <
- - \/, 1 \‘ ~ ”
OccurrenceSpecification I reply ca

I
aka. EventOccurrence asynchronous signal

Modelling with UML, with semantics 145

Message types

instantiation E}/ent lost & found Messages
\ (i.e.: very slow messages)
1 ™
S0 Message types 1 / "
! I\
A 1 C 11 D
[——-— L I Voo !
e B e >
charTolnt(a') > | - = __hl
<o)k ST e ———
| / |“"f—)'_'__-\—"_—.r—.|
/ "
/ non-instantaneous
termination Event Message

Modelling with UML, with semantics 146

®

Activation
external CfS-ProtocoI 2 /
Event ~~ _ Client Server

_:': callService(self, parameter)

L = ——— >

activation bar =1 jobNo = nextNumber()

activation — 1
suspended

jobParameter.store(jobNo, parameter, client)

A

waitingClients.ng(client)

2
&
A

;Ipendingﬁequests,nq{jnbﬂﬂ} A

result = execute(jobParameters.dq())

(non-UML)
(tlngchents dq()

warp lines = |~ /-I\: receiveResult(jobNo, result) lj\l
T

N
nested activation

Modelling with UML, with semantics 147

Vorführender
Präsentationsnotizen
ExecutionOccurrenceSpecification

Usage: Use case scenarios

* Interaction participants are
actors and systems rather
than classes and objects.

* May be refined successively.

* Useful also for specifying

{00l Check-In at terminal /

high-level non-functional
requirements such as
response times.

* All kinds of interaction
diagrams may be applied,
depending on the
circumstances.

O Check-In-
Machine
Passenger
I
insert card -
<=2s Z| initialisation, load data
P S greeting with name__
Check-In atterminal / O e
Machine
Passenger
insert card -
ref analyse card
alt [credit card] check data with
. . ZI bookings database
P greeting with name_ |
etk greeting with name [« read name
. ntutuiteiet ittty check data with
< bookings database

Modelling with UML, with semantics

148

Usage: Class interactions

* Interaction participants are
classes and objects rather than
actors and systems.

* Again, successive refinement
may be applied in different styles:

* break down processing of
messages

° break down structure of
interaction participants.

* All kinds of interaction diagrams
may be applied, depending on the
circumstances.

Modelling with UML, with semantics

B C/S-Protocol 1 /

Client

call Sarvicel sall. parameatar |

receivaRasuly HdMr)

e

CfS-ProtocoI 2/

start()

Client

Server

> callService(self, parameter)

N
(—_l jobNo = nextNumber()

:I jobParameter.store(jobNo, parameter, client)

:l waitingClients.ng(client)

;|pendingRequests.nq{joch} %

T

I:I result = execute(jobParameters.dq())

receiveResult(jobNo, result)

done

Zl waitingClients.dq()

149

