
Modeling with UML, with semantics

Till Mossakowski
Otto-von-Guericke-Universität Magdeburg

Based on a course by Alexander Knapp, Universität Augsburg

2Modelling with UML, with semantics

Overview

• Model-driven software design (MSDS)
• Model-driven architecture (MDA)

• Meta Modeling
• Unified Modeling Language 2 (UML), with semantics

• Classes and packages – semantics: sets, predicates, functions / first-order logic
• State machines – semantics: labeled transition systems
• Component diagrams
• Interactions – semantics: sets of traces
• Profiles

• Object constraint language 2 (OCL)
• Meta object facility 2 (MOF)
• Eclipse modelling framework (EMF)
• Model transformations (QVT, …)
• Specific topics

3Modelling with UML, with semantics

Literature

• Grady Booch, Alan Brown, Sridhar Iyengar, James Rumbaugh, Bran Selic. “An MDA
Manifesto”. MDA Journal, May 2004.
http://www.ibm.com/software/rational/mda/papers.html

• Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language
User Guide. Addison-Wesley, 2005

• Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Reference
Manual. Addison-Wesley, 2005

• Marco Brambilla, Jordi Cabot, Manuel Wimmer. Model-Driven Software Engineering
in Practice. Morgan & Claypool, 2012.

• Volker Gruhn, Daniel Pieper, Carsten Röttgers. MDA. Springer, 2006. [in German]
• Siegfried Nolte. QVT Operational Mappings. Springer, 2010.
• Kevin Lano, editor. UML 2 - Semantics and Applications. Wiley, 2009.
• P.H.Schmitt. UML and its Meaning Winter 2002/2003
• Tim Weilkiens. Systems Engineering with SysML/UML. Elsevier 2008
• http://www.uml-diagrams.org/

http://www.uml-diagrams.org/

4Modelling with UML, with semantics

Software

• Eclipse modelling framework: https://www.eclipse.org/modeling/emf/
• Modelling framework and code generation facility for MOF / MOF-based models

• Modelio: http://modelio.org
• Tool for editing UML diagrams (and generating code)

• Hugo/RT: http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
• Verification tool for UML, translation of UML state machines to autoamata

• Heterogeneous Tool Set (Hets): http://hets.eu
• Verification tool for various logics; translation of UML class diagrams to first-order logic

• UMLhub: http://umlhub.net
• Git-based repository and verification tool

https://www.eclipse.org/modeling/emf/
http://modelio.org/
http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
http://hets.eu/
http://umlhub.net/

5Modelling with UML, with semantics

What is a model?

“Modeling, in the broadest sense, is the cost-effective use of something in place of
something else for some cognitive purpose. It allows us to use something that is
simpler, safer or cheaper than reality instead of reality for some purpose. A model
represents reality for the given purpose; the model is an abstraction of reality in the
sense that it cannot represent all aspects of reality. This allows us to deal with the world
in a simplified manner, avoiding the complexity, danger and irreversibility of reality.” [Jeff
Rothenberg. “The Nature of Modeling”. 1989]

“Ein Modell ist seinem Wesen nach eine in Maßstab, Detailliertheit und/oder Funktionalität
verkürzte beziehungsweise abstrahierte Darstellung des originalen Systems.” [H.
Stachowiak. Allgemeine Modelltheorie. 1973]

“Ein Modell ist eine vereinfachte, auf ein bestimmtes Ziel hin ausgerichtete Darstellung
der Funktion eines Gegenstands oder des Ablaufs eines Sachverhalts, die eine
Untersuchung oder eine Erforschung erleichtert oder erst möglich macht.”
[H. Balzert. Lehrbuch der Software-Technik, Bd. 1. 2000]

6Modelling with UML, with semantics

Model engineering (1)

• Traditional rôle of models in software development
• Used for communication purposes with the customer and within the development team

(requirements specification, prototypes, etc.)
• Used for software design
• Specification for the programmer
• Code visualization

• Model engineering
• Models are the central artefacts in software development.
• Models represent

• different levels of abstraction (analysis, design, implementation);
• different parts of the system (UI, database, business logic, system administration);
• different concerns (security, performance, and resilience);
• different tasks (development, testing, deployment).

• Often, it is possible to partially generate one model from another.

7Modelling with UML, with semantics

Model engineering (2)

Model

Static Analysis

Documentation

Refactoring/
Transformation

Code generation

Automation

Automated testing

Rapid Prototyping

Verification

Test artefacts Pattern application

• Integration into Model-Driven Software Development (MDSD)

Vorführender
Präsentationsnotizen
A system involves many interdependent models at different levels of abstraction (analysis, design, implementation), representing different parts of the system (UI, database, business logic, system administration), different concerns (security, performance, and resilience), or different tasks (testing, deployment modeling). In many cases, it is possible to partially generate one model from another, for example moving from an analysis model to a design model, or from an application model to a test model.

8Modelling with UML, with semantics

Key concepts of MDSD (1)

• Abstraction
• Abstraction can be used to model applications at different levels of detail or from different

perspectives.
• Abstraction is the process of ignoring irrelevant details in order to focus on relevant ones.
• Abstraction allows to focus on the different aspects of a system without getting lost in detail.

• Precise modelling
• Models as part of the definition of a system, not just as sketches.
• These models have well-defined semantics and can be transformed into implementation

artefacts (in the same way that one compiles Java code into byte code).
• Abstraction is not the same as imprecision

• Using abstraction one omits specific details while being precise about those details on which one does
focus.

Vorführender
Präsentationsnotizen
AbstractionAbstraction is the process of ignoring irrelevant details in order to focus on relevant ones. In MDD, we use abstraction to enable us to work with a logical view of our application, focusing on the functionality of the system without being concerned with implementation details.Abstraction can be used to model applications at different levels of abstraction (including analysis, design, and implementation) or from different perspectives (including security, management, user interface). Abstraction allows us to focus on the different aspects of a system without getting lost in detail that, while crucial to the system as a whole, is irrelevant to the current viewpoint.When writing code we describe our applications using implementation concepts. Even when using full-featured middleware platforms we need to write a lot of code (and deployment descriptors, configuration files, and so on) to express application concepts. Much of the code that we write is similar, particularly when following the conventions adopted by a particular project or organization. In many cases, a large amount of code follows directly from a small number of design decisions and from the architectural principles of the project. MDD enables us to work at a level where we can directly capture those design decisions in models, and generate the appropriate code through transformations.Modeling concepts are much richer than implementation artifacts. We can say more with less effort. It is quicker to create the models than to write the code manually. Additionally, we can focus on the logical design of our application, which frees us from distracting implementation details.Precise modelingAbstraction is not the same as imprecision. When we use abstraction we omit specific details while being precise about those details on which we do focus. When using an MDD approach we can be very precise about the architecture and high-level design of a system while saying nothing about implementation details.The Unified Modeling Language (UML) is typically used to create models for MDD. UML is a software modeling language with a graphical notation and underlying semantics. It is often assumed that diagrams must be informal. While we can use UML in an informal way, it has semantics and precise models that we can create by using it in a consistent manner.In MDD, we use UML models as part of the definition of a system, not just as sketches. These models have well-defined semantics and can be transformed into implementation artifacts (in the same way that we compile Java code into byte code).AutomationModeling is a valuable technique in itself, but manually synchronizing models and code is error prone and time consuming. Automation is the main characteristic that distinguishes MDD from other approaches that use modeling.MDD is concerned with automating the development process so that any artifact, which can be derived from information in a model, is generated. This includes code as well as deployment descriptors, test cases, build scripts, other models, documentation, and any other kind of artifact that a software project needs to produce. You can achieve automation by using two main techniques:Transformations: Transformations automate the generation of artifacts from models. This includes the generation of code and also the generation of more detailed models, for example generating a design model from an analysis model. Transformations are typically applied in batch mode to entire models as illustrated in Figure 1-4 on page 15.Patterns: Patterns automate the creation and the modification of model elements within a model to apply a given software pattern. Patterns can occur at all levels of abstraction so we can have, for example, architecture patterns, design patterns, and implementation patterns. Patterns are typically applied interactively with a designer selecting a pattern and providing parameters. See Figure 1-3 on page 14.The transformations specify how higher-level concepts are mapped to lower-level concepts according to best practices. Lower- evel patterns are often applied by a transformation rather than manually applied, for example, a transformation from a design model to code generates code according to implementation patterns.

9Modelling with UML, with semantics

Key concepts of MDSD (2)

• Automation
• Automate the development process so that any artefact, which can be derived from information

in a model, is generated (e.g., code, deployment descriptors, test cases, build scripts, other
models, ...)

• Automation can be achieved by using two main techniques:
• Transformations automate the generation of artefacts from models.
• Patterns automate the creation and the modification of model elements; they are typically applied

interactively with a designer selecting a pattern and providing parameters (example: modelio).

• Direct representation
• Modelling with languages that map their concepts to domain concepts rather than computer

technology concepts
• More direct coupling of solutions (solution domain) to problems (problem domain), leading to

more accurate designs

Vorführender
Präsentationsnotizen
AbstractionAbstraction is the process of ignoring irrelevant details in order to focus on relevant ones. In MDD, we use abstraction to enable us to work with a logical view of our application, focusing on the functionality of the system without being concerned with implementation details.Abstraction can be used to model applications at different levels of abstraction (including analysis, design, and implementation) or from different perspectives (including security, management, user interface). Abstraction allows us to focus on the different aspects of a system without getting lost in detail that, while crucial to the system as a whole, is irrelevant to the current viewpoint.When writing code we describe our applications using implementation concepts. Even when using full-featured middleware platforms we need to write a lot of code (and deployment descriptors, configuration files, and so on) to express application concepts. Much of the code that we write is similar, particularly when following the conventions adopted by a particular project or organization. In many cases, a large amount of code follows directly from a small number of design decisions and from the architectural principles of the project. MDD enables us to work at a level where we can directly capture those design decisions in models, and generate the appropriate code through transformations.Modeling concepts are much richer than implementation artifacts. We can say more with less effort. It is quicker to create the models than to write the code manually. Additionally, we can focus on the logical design of our application, which frees us from distracting implementation details.Precise modelingAbstraction is not the same as imprecision. When we use abstraction we omit specific details while being precise about those details on which we do focus. When using an MDD approach we can be very precise about the architecture and high-level design of a system while saying nothing about implementation details.The Unified Modeling Language (UML) is typically used to create models for MDD. UML is a software modeling language with a graphical notation and underlying semantics. It is often assumed that diagrams must be informal. While we can use UML in an informal way, it has semantics and precise models that we can create by using it in a consistent manner.In MDD, we use UML models as part of the definition of a system, not just as sketches. These models have well-defined semantics and can be transformed into implementation artifacts (in the same way that we compile Java code into byte code).AutomationModeling is a valuable technique in itself, but manually synchronizing models and code is error prone and time consuming. Automation is the main characteristic that distinguishes MDD from other approaches that use modeling.MDD is concerned with automating the development process so that any artifact, which can be derived from information in a model, is generated. This includes code as well as deployment descriptors, test cases, build scripts, other models, documentation, and any other kind of artifact that a software project needs to produce. You can achieve automation by using two main techniques:Transformations: Transformations automate the generation of artifacts from models. This includes the generation of code and also the generation of more detailed models, for example generating a design model from an analysis model. Transformations are typically applied in batch mode to entire models as illustrated in Figure 1-4 on page 15.Patterns: Patterns automate the creation and the modification of model elements within a model to apply a given software pattern. Patterns can occur at all levels of abstraction so we can have, for example, architecture patterns, design patterns, and implementation patterns. Patterns are typically applied interactively with a designer selecting a pattern and providing parameters. See Figure 1-3 on page 14.The transformations specify how higher-level concepts are mapped to lower-level concepts according to best practices. Lower- evel patterns are often applied by a transformation rather than manually applied, for example, a transformation from a design model to code generates code according to implementation patterns.

10Modelling with UML, with semantics

Claimed benefits of MDSD (1)

• Improved stakeholder communication
• Models omit implementation detail not relevant to understand the logical behavior of a system
• Models are closer to the problem domain reducing the semantic gap between the concepts that

are understood by stakeholders and the language in which the solution is expressed
• Facilitates the delivery of solutions that are better aligned to business objectives

• Improved design communication
• Models facilitate understanding and reasoning about systems at the design level.
• Improved discussion making and communication about a system

• Expertise capture
• Projects or organizations often depend on best practice decisions of key experts
• Their expertise is captured in patterns and transformations
• When sufficient documentation accompanies the transformations, the knowledge of an

organization is maintained in the patterns and transformations

Vorführender
Präsentationsnotizen
RepeatabilityMDD is especially powerful when applied at a program or organization level. This is because the return on investment from developing the transformations increases each time they are reused. The use of tried and tested transformations also increases the predictability of developing new functions and reduces the risk since the architectural and technical issues were already resolved.Improved stakeholder communicationModels omit implementation detail that is not relevant to understanding the logical behavior of a system. Models are therefore much closer to the problem domain, reducing the semantic gap between the concepts that are understood by stakeholders and the language in which the solution is expressed. Improved stakeholder communication facilitates the delivery of solutions that are better aligned to business objectives. Improved design communicationModels facilitate understanding and reasoning about systems at the design level. This leads to improved discussion making and communication about a system. The fact that models are part of the system definition, rather than documentation, means that the models are never out of date and are reliable.Expertise captureProjects or organizations often depend on key expe rts who repeatedly make bestpractice decisions. With their expertise captured in patterns and transformations, they do not need to be present for other members of a project to apply their expertise. An additional benefit, provided sufficient documentation accompanies the transformations, is that the knowledge of an organization is maintained in the patterns and transformations even when experts leave the organization.Models as long-term assetsIn MDD, models are important assets that capture what the IT systems of an organization do. High-level models are resilient to changes at the state-of-the-art platform level. They change only when business requirements change.Ability to delay technology decisionsWhen using an MDD approach, early application development is focused on modeling activities. This means that it is possible to delay the choice of a specific technology platform or product version until a later point when further information is available. In domains with extremely long development cycles, such as air traffic control systems, this is crucial. The target platforms may not even exist when development begins.

11Modelling with UML, with semantics

Claimed benefits of MDSD (2)

• Models as long-term assets
• Models are important assets that capture what the IT systems of an organization do
• High-level models are resilient to changes at the state-of-the-art platform level. They change

only when business requirements change

• Ability to delay technology decisions
• Early application development is focused on modeling activities
• It is possible to delay the choice of a specific technology platform or product version until a

later point when further information is available.
• This is crucial in domains with extremely long development cycles, such as air traffic control

systems

Vorführender
Präsentationsnotizen
RepeatabilityMDD is especially powerful when applied at a program or organization level. This is because the return on investment from developing the transformations increases each time they are reused. The use of tried and tested transformations also increases the predictability of developing new functions and reduces the risk since the architectural and technical issues were already resolved.Improved stakeholder communicationModels omit implementation detail that is not relevant to understanding the logical behavior of a system. Models are therefore much closer to the problem domain, reducing the semantic gap between the concepts that are understood by stakeholders and the language in which the solution is expressed. Improved stakeholder communication facilitates the delivery of solutions that are better aligned to business objectives. Improved design communicationModels facilitate understanding and reasoning about systems at the design level. This leads to improved discussion making and communication about a system. The fact that models are part of the system definition, rather than documentation, means that the models are never out of date and are reliable.Expertise captureProjects or organizations often depend on key expe rts who repeatedly make bestpractice decisions. With their expertise captured in patterns and transformations, they do not need to be present for other members of a project to apply their expertise. An additional benefit, provided sufficient documentation accompanies the transformations, is that the knowledge of an organization is maintained in the patterns and transformations even when experts leave the organization.Models as long-term assetsIn MDD, models are important assets that capture what the IT systems of an organization do. High-level models are resilient to changes at the state-of-the-art platform level. They change only when business requirements change.Ability to delay technology decisionsWhen using an MDD approach, early application development is focused on modeling activities. This means that it is possible to delay the choice of a specific technology platform or product version until a later point when further information is available. In domains with extremely long development cycles, such as air traffic control systems, this is crucial. The target platforms may not even exist when development begins.

12Modelling with UML, with semantics

Claimed benefits of MDSD (3)

• Increased productivity
• Generation of code and artefacts from models
• Careful planning needs to ensure that there is an overall cost reduction.

• Maintainability
• MDSD helps to develop maintainable architectures where changes are made rapidly and

consistently, enabling more efficient migration of components onto new technologies.
• Keeping the high-level models free of implementation detail makes it easier to handle changes

in the underlying platform technology and its technical architecture.
• A change in the technical architecture of the implementation is made by updating a

transformation.

• Reuse of legacy
• One can consistently model existing legacy platforms.
• Reverse transformations from the components
• Migrating the components to a new platform or generating wrappers to enable the legacy

component to be accessed via integration technologies such as Web services.

Vorführender
Präsentationsnotizen
Increased productivity: MDD reduces the cost of software development by generating code and artifacts from models, which increases developer productivity. Note that you must factor in the cost of developing (or buying) transformations, but careful planning will ensure that there is an overall cost reduction. Maintainability: Technological progress leads to solution components becoming stranded legacies of previous platform technologies. MDD helps to solve this problem by leading to a maintainable architecture where changes are made rapidly and consistently, enabling more efficient migration of components onto new technologies. High-level models are kept free of irrelevant implementation detail. Keeping the models free of implementation detail makes it easier to handle changes in the underlying platform technology and its technical architecture. A change in the technical architecture of the implementation is made by updating a transformation. The transformation is reapplied to the original models to produce implementation artifacts following the new approach. This flexibility also means that it is possible to try out different ideas before making a final decision. It also means that bad decisions are easily changed. Software projects are often stuck with decisions that are a mistake in retrospect but are too costly to fix. Reuse of legacy: You can consistently model existing legacy platforms in UML. If there are many components implemented on the same legacy platform, you can develop reverse transformations from the components to UML. Then you have the option of migrating the components to a new platform or generating wrappers to enable the legacy component to be accessed via integration technologies such as Web services. Adaptability: Adaptability is a key requirement for businesses, and IT systems need to be able to support it. When using an MDD approach, adding or modifying a business function is quite straight forward since the investment in automation was already made. When adding new business function, you only develop the behavior specific to that capability. The remaining information needed to generate implementation artifacts was captured in transformations. Consistency: Manually applying coding practices and architectural decisions is an error prone activity. MDD ensures that artifacts are generated consistently.

13Modelling with UML, with semantics

Claimed benefits of MDSD (4)

• Adaptability
• Adding or modifying a business function is simplified since the investment in automation was

already made.

• Consistency
• Manually applying coding practices and architectural decisions is an error prone activity.

• Repeatability
• ROI from developing the transformations increases each time they are reused.
• The use of tried and tested transformations

• increases the predictability of developing new functions;
• reduces the risk since the architectural and technical issues were already resolved.

Vorführender
Präsentationsnotizen
Increased productivity: MDD reduces the cost of software development by generating code and artifacts from models, which increases developer productivity. Note that you must factor in the cost of developing (or buying) transformations, but careful planning will ensure that there is an overall cost reduction. Maintainability: Technological progress leads to solution components becoming stranded legacies of previous platform technologies. MDD helps to solve this problem by leading to a maintainable architecture where changes are made rapidly and consistently, enabling more efficient migration of components onto new technologies. High-level models are kept free of irrelevant implementation detail. Keeping the models free of implementation detail makes it easier to handle changes in the underlying platform technology and its technical architecture. A change in the technical architecture of the implementation is made by updating a transformation. The transformation is reapplied to the original models to produce implementation artifacts following the new approach. This flexibility also means that it is possible to try out different ideas before making a final decision. It also means that bad decisions are easily changed. Software projects are often stuck with decisions that are a mistake in retrospect but are too costly to fix. Reuse of legacy: You can consistently model existing legacy platforms in UML. If there are many components implemented on the same legacy platform, you can develop reverse transformations from the components to UML. Then you have the option of migrating the components to a new platform or generating wrappers to enable the legacy component to be accessed via integration technologies such as Web services. Adaptability: Adaptability is a key requirement for businesses, and IT systems need to be able to support it. When using an MDD approach, adding or modifying a business function is quite straight forward since the investment in automation was already made. When adding new business function, you only develop the behavior specific to that capability. The remaining information needed to generate implementation artifacts was captured in transformations. Consistency: Manually applying coding practices and architectural decisions is an error prone activity. MDD ensures that artifacts are generated consistently.RepeatabilityMDD is especially powerful when applied at a program or organization level. This is because the return on investment from developing the transformations increases each time they are reused. The use of tried and tested transformations also increases the predictability of developing new functions and reduces the risk since the architectural and technical issues were already resolved.Improved stakeholder communicationModels omit implementation detail that is not relevant to understanding the logical behavior of a system. Models are therefore much closer to the problem domain, reducing the semantic gap between the concepts that are understood by stakeholders and the language in which the solution is expressed. Improved stakeholder

14Modelling with UML, with semantics

“Normal” software development

Level of Detail

Result of
Analysis

virtual or real
Implementation model Implementation

In
fo

rm
at

io
n

G
ai

n

Start

Goal
Implementation

Analy
sis

Design

Effort

15Modelling with UML, with semantics

MDSD effort (stage 1)

Reuse

Automation

Manual refinement

16Modelling with UML, with semantics

Level of Detail

Results of
Analysis

virtual or real
implementation model Implementation

In
fo

rm
at

io
n

 G
ai

n

Start

Goal

An
aly

sis

Effort

M
od

el
lin

g

Automation

Savings based on
the use of a semantically

rich platform

Savings
because

of generation

A

BA'

MDSD effort (stage 2)

Reuse

Automation

Without manual
refinement

Vorführender
Präsentationsnotizen
Im Extremfall spezifiziert das Modell die komplette Semantik der (Teil-)Anwendung, so dass die manuelle Kodierung ganz entfällt

17Modelling with UML, with semantics

Model-driven software development

• Makes software development more domain related opposed to computing related

• Narrows the semantic gap between business models and IT
• Re-use of components (assets)
• Generation techniques reduce time-to-market
• Makes software development more efficient

Domain
Concepts

Software Technology
Concepts

Domain
Concepts

Software Technology
Concepts

manual
refinement

manual refinement
& automation

Vorführender
Präsentationsnotizen
MDSD is a promising softwareengineering approach that focuses on the creation of modelsrather than on programming code. In MDSD models areused to describe business concerns, user requirements, informationstructures, components, component interactions,and any other issues that are relevant in a software developmentprocess.Models describe business concerns, information structures, components, etc.Models are transformed into (executable) code

18Modelling with UML, with semantics

Automation in software development

Requirements Requirements Requirements

Implementation

Source in a
general-purpose
language, e.g.,

Java or C++

Implementation

(may generate
code in

Java or C++)

Source in
domain-specific
language (DSL)

Implementation

(may generate
code in

Java or C++)

Source in
domain-specific
language (DSL)

High-level spec
(functional and
nonfunctional)

Manually
implement

Manually
implement

Manually
implement

Compile Compile Compile

Compile Compile

Implement
with
interactive,
automated
support

Vorführender
Präsentationsnotizen
One of the original goals of model-driven development was to increase automation in software development. Bridging the gap between requirements and manual implementation is done by introducing new modeling and abstraction layers where development tools can provide interactive and automated support for software implementation.

19Modelling with UML, with semantics

ModelModelModel

ModelModelArtefact (e.g., code)

Transform
ation/

C
odegeneration
Transform

ation/
C

odegeneration
Transform

ation/
C

ode generation

ModelModelling
Language

Meta-modelling
Language

ModelTransformation
Definition

Transformation
Language

ModelPlatform defined through
used

Reuse Abstraction (bottom-up)

Construction (top-down)

Reuse

MDSD: Basic architecture

20Modelling with UML, with semantics

MDSD: A bird’s view

Model Implementation

J2EE

Transformation
Knowledge

Transformer

Implementation

.Net

Implementation

. . .

Vorführender
Präsentationsnotizen
MDA promotes the idea of designing software systems at a platform-independent model (PIM) level which can be transformed to software implementations with model transformation technologies that incorporates the knowledge of the execution platforms in question.

21Modelling with UML, with semantics

How is MDSD realised?

• Developer develops model(s),
expressed using a DSL, based on
certain meta-model(s).

• Using code generation templates, the
model is transformed into executable
code.
• Alternative: Interpretation

• Optionally, the generated code is
merged with manually written code.

• One or more model-to-model
transformation steps may precede
code generation.

Transformation
Rules

Meta-model
ModelModelModel

Meta-modelModel

Transformer

Transformer

Generated Code

Code
Generation
Templates

Manually
Written
Code

optional

op
tio

na
l,

ca
n

be
 re

pe
at

ed

22Modelling with UML, with semantics

(Meta-)Model hierarchy

Meta-model

Meta-model element

Meta-meta-model
Meta-meta-model
element

conformsTometa

conformsTo

Model

Model element

conformsTometa

repOfSystem

meta MOF

Relational
meta-model

M3

M2

M1

UML
meta-model…

… …

Vorführender
Präsentationsnotizen
The model-driven architecture defines a metamodel hierarchy for modeling a system. A system is described by a model (at the M1 level). A model conforms to a metamodel (at the M2 level) which defines the modeling constructs used in the model. The metamodel itself is described in a common meta-metamodel language (at the M3 level). The meta-metamodel language in the OMG MDA is MOF. MOF defines the core modeling constructs needed to describe all metamodels of interest to model-driven development. MOF can e.g. be used to describe the UML metamodel and a relational metamodel.

23Modelling with UML, with semantics

(Meta-)Model hierarchy: Example

repOf

Relational Model

Book

conformsTo

Relational Meta-model

MOF Meta-meta-model

ClassAssociation
source

destination

conformsTo

conformsTo

System

…………

…………

AuthorIdPagesNbTitleBookId

Type

name: String

Table

name: String
+ type*+ col

+ owner

+ keyOf + key1..* *

*

Column

name: String
{ordered}

Vorführender
Präsentationsnotizen
This figure illustrates an example of the metamodel hierarchy. A MOF metamodel describes two concepts Association and Class with source and destination relationships. In the relational metamodel we use the MOF modeling constructs to define Table, Column and Type as classes and relationships between these classes using the Association construct. In the relational model we used the constructs defined in the relational metamodel to describe a database table for a Book (which is the System that we are describing).

