Putting it all together

Till Mossakowskil

Otto-von-Guericke Universitat Magdeburg, Germany

partially based on the book “UML@Classroom”
http://www.uml.ac.at/en/

Till Mossakowski Putting it all together

http://www.uml.ac.at/en/

An Automated Teller Machine (ATM)

The user inserts a card and then enters a PIN. The PIN is verified
by the bank. After three unsuccessful trials, the card is kept.
Otherwise, the card is ejected again.

Till Mossakowski Putting it all together

ATM — Sequence Diagram

sd: AT M2Bank Scerario]

verify(17, 4711)

regmerPIN(Q

verified()

e N LY

|
|
|
|
|
i verify(17, 4242)
|
|
[
|
|
|
|

Till Mossakowski Putting it all together

ATM — Class Diagrams + OCL

«Interface»
UserOut
+ card(in c:Integer)
+ PIN(in p:Integer)

«Interface»
Userln
+ keepCard() |- Precondition
+ ejectCard() { {OCL} trialsNum >= 3 }

Till Mossakowski Putting it all together

M — State Machine for Class A

ATM behaviour

PIN/
[) m CardEntersd s PINEmered

| bankCom verify{cardid, pin)

[trizalsNum < 3]/
trialsNum ++

trizlsMum == 3)f reemerPIN

userCom kespCard();

bankCom.marklmvalid (cardid);

trialsNum =0 verified
/ Verified
user ejeciCard();
trialsNum =0

Till Mossakowski Putting it all together

A Coffee Machine

The coffee machine consists of a water tank, a heating plate, a
coffee pot, and a water pipe that leads from the water container to
the filter. When there is water in the tank and the coffee machine
is switched on, the water is heated. The pressure pushes the water
up- wards through the pipe into the filter which contains the
ground coffee. Finally, the brewed coffee flows out of the filter into
the coffee pot.

The coffee machine is available in two different versions, one with
a “keep warm” function (model A) and one without (model B). If
the water tank is empty and the coffee machine is switched on, in
model A the “keep warm” function is activated. In the same
situation, model B simply switches off.

Till Mossakowski Putting it all together

A Coffee Machine

Water
tank

Coffee
pot

Heating plate

Till Mossakowski

Putting it all together

Coffee Machine — Use Cases

Coffee machine Coffee machine
model A model B
Make
coffee
—] Make
~ coffee
User Heat User
coffee

Till Mossakowski Putting it all together

Coffee Machine B — State Machine

switchon on w
off
\do/Make coffee J

Till Mossakowski Putting it all together

Coffee Machine A — State Machine

- on 2
ready W
ready Wtdo/Heat coffee

when(filled)

utilized 7 inuse)
do/Make coffee
switch off

& J

Till Mossakowski Putting it all together

Coffee Machine B — Activity Diagram

Add Clean
water filter

‘ Switch on LAdd ground]
coffee

Till Mossakowski Putting it all together

Switch on

Add
water

Clean
filter

Add ground
coffee

E Switch off

Till Mossakowski Putting it all together

Submission System at a University

The submission system for managing submissions (students’ papers
for assignment tasks). Requirements are:

@ Every course in the system has lecturers assigned to it. This is
done by one of the course administrators, who is also a
lecturer. As part of a course, lecturers may create tasks and
assess papers submitted by students. Therefore, the lecturers
award points and give feedback.

@ The course administrator defines which lecturer assesses which
papers. At the end of the course, the course administrator
also arranges for certificates to be issued. A student’s grade is
calculated based on the total number of points achieved for
the submissions handed in.

@ Students can take courses and upload papers.

Till Mossakowski Putting it all together

Submission System at a University (cont’d)

@ All users —students and lecturers— can manage their user
data, view the courses and the tasks set for the courses
(provided the respective user is involved in the course), and
view submitted papers as well as grade points. However,
students can only view their own papers and the related
grades. Lecturers can only view the papers assigned to them
and the grades they have given. The course administrator has
access rights for all data.

@ A course is created and deleted by an administrator.

@ When a course is created, at least one administrator must be
assigned to it. Further course administrators can be assigned
at a later point in time or assignments to courses can be
deleted. The administrator can also delete whole courses.

@ Information about users and administrators is automatically
trans- ferred from another system. Therefore, functions that
allow the creation of user data are not necessary.

@ All functions can only be used by persons-who-are logged in.

Till Mossakowski Putting it all together

Submission System —

iew
assessment

User
Student

r

Lecturer
Manage
course
—1 Assign paper
= for correction
Course
Administrator

21

Admin

Create task

0G

Create course

Delete
course

Submissions Management

View
submission

View
course

Manage
user data

Take course

Upload
paper

Issue
certificate

~“incy

Assign course
administrator

Remove course.
administrator

Till Mossakowsk

Putt all together

Submission System — Class Diagram

tion»
User «enumeral
BType
adi

name
login

password
authorization:BType
)
updateData() ~
getAuthorization()
checkPW()
getData()
Submission Lecturer
paper * assesses 1 | getCourses()
date getCourseAdministration()
oints.
1% 1.%
correction
. courseAdministrator
getData() for
updateData()
assignLecturer() 4
setGrade()
setPaper() Task gives participates
*
name
description
K] deadline
I points
Participation | | pmissioneadine
* 1*
ItotalPoints getData()
/Grade updateData() Course
)
getPoints() * omest
getSubmissions() y [Somester
f"’"a‘g";‘;‘s(‘) o addCourseAdministrator()
issueCertificatef delCourseAdministrator()
\ getData()
AN updateData()
Student N\ addParticipation()
\ addTask()
matNo issueCertificate()
informStudent()
getData() . informLecturer()
a) informC:)
certificatelnfo() uploadPaper()

Putt all together

Submission System — OCL Constraint

A lecturer can only assess tasks of a course in which this lecturer is
involved:

context Lecturer:
submissions.task.course—>forAll(c: Course
gives—>includes(c) or
participates —>includes(c))

Till Mossakowski Putting it all together

Submission System — Sequence Diagram

r

:Course | ‘:Submission‘ ‘:Panicipa(ion‘ % %
T

T
Student | Course Lecturer
|

| Administrator 1

T
1 |
1 i
+ t + t
loop(1,numberTasks) _J 1 I I |
i | | |
| I 1 I I I
| uploadPaper() | : } } }
e
| | i | I |
} | setPaper() : } } }
———p
| I 1 I I |
! ! | notification() | | !
I I 1] | I
I notification() | : ! ! !
| I 1 | | |
} } ! assignLecturer() ! }
e
I I inform | | | |
} | Lecturer() | } } }
| | | | | |
| ! ! notification() ! J
| | | | | 1
! | [| getData) ! I
I I I | I I
! | 1 | setGrade() | |
I | informStu- | | i i
I I dent() | | I I
I | | |
I I | update | | |
! | | Points) | ! }
I I 1 | | |
| notification() ! : } } }
e
I | | i | i
t t t t t t
} [issueCertificate() ! }
I issueCer- | 1 | I I
} - tificate() ! : } } }
! certifi- | | | | |
I catelnfo() ! : } } }
I I 1 | I |

Till Mossakowsk

Putting it all together

Submission System — Activity Diagram

Course Administrator Course Student Office

Select Display
course students
Select
issue mode

[for all]

Calculate
grades
Send Receive
grades grades
Issue
certificates
Inform
students

Till Mossakowski Putting it all together

Select
students

Submission System — State Machine for Class Submission

upload paper assign lecturer i
created uploaded assigned

S| as d |«
when(submission deadline<now) (J grade

/points=0

Till Mossakowski Putting it all together

State Machine for Class Participation

not

when(end of semester)

assessed

updateAssessment

part
asse

issueCertificate
[250% of points]

mil updateAssessment
ssed

issueCertificate
[<50% of points]

certificate issued

correction[grade<5]

positive

negative

correction[grade=5]

Till Mossakowski

Putting it all together

Requirements for the data structure Stack:

@ Elements can be placed on the stack using the push function
and removed from the stack using the pop function.

@ The order in which elements are removed follows the LIFO
principle (Last In, First Out), which means that pop always
delivers the element that was last placed on the stack with
push and removes it from the stack.

@ Further functions that the class Stack should support are the
determination of the actual size of the stack, that is, the
number of elements on the stack, and the query about
whether an element is on the stack at all.

Till Mossakowski Putting it all together

A Stack — Class Diagram

preceding element | 0,1

Stack
StackEl
- Isize: int 0,1
0,1 top 0,1 |_ content: Object
+ getSize(): int >
+ push(Object): void + setPrecedingEl(StackEl): void
+ pop(): Object + getContent(): Object
+ empty(): boolean + getPrecedingEl(): StackEl
- setTop(StackEl): void

Till Mossakowski Putting it all together

A Stack — State Machine

(W push/size=1

pop[size>1]
size--

not empty

entry/size=0 poplsize==1]

push
Isizet++

Till Mossakowski Putting it all together

A Stack — Sequence Diagram for Push
% :Stack

User

push(object)

_yY__

I new(object)

fo——— == > st:StackEl

setPrecedingEl(top)

E] setTop(st)

——_————___N__

Till Mossakowski Putting it all together

A Stack — Sequence Diagram for Pop

% :Stack top:StackEl

User . ;
I pop() ;: !
| | |
1 1 }
break J [empty()==true] : :
| | |
| - | |
| _popOinul ! !
| |
} }
| |
! getContent() N
| g

|

P - obiect |
< object = getContent(): object J

getPrecedingEl()

v__

|
|
L
| |
| prev = getPrecedingEl(): prev |

|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: setTop(prev)
|

|

|

op(): object
K _____ p _p_()__l ______ _|

I S

Till Mossakowski Putting it all together

