
Object-Oriented Modeling

U C DiUse Case Diagram

Slides accompanying UML@ClassroomSlides accompanying UML@Classroom
Version 1.0

Business Informatics Group
Institute of Software Technology and Interactive Systems
Vienna University of Technologyy gy
Favoritenstraße 9-11/188-3, 1040 Vienna, Austria
phone: +43 (1) 58801-18804 (secretary), fax: +43 (1) 58801-18896
office@big.tuwien.ac.at, www.big.tuwien.ac.at

Literature

The lecture is based on the following book:
UML @ ClUML @ Classroom:
An Introduction to Object-Oriented
Modeling
Martina Seidl, Marion Scholz, Christian Huemer , ,
and Gerti Kappel

Springer Publishing, 2015

ISBN 3319127411

Use Case Diagram
Structure Modeling
State Machine Diagram
S DiSequence Diagram
Activity Diagram

© BIG / TU Wien 3

Content

Introduction
Use casesUse cases
Actors
Relationships between use cases and actors
Relationships between use cases
Relationships between actors
Description of use casesDescription of use cases
Best practices
Typical errorsyp
Notation elements

© BIG / TU Wien 3

Introduction

The use case is a fundamental concept of many object-oriented
development methodsdevelopment methods.
Use case diagrams express the expectations of the
customers/stakeholders

ti l f d t il d d iessential for a detailed design
The use case diagram is used during the entire analysis and design
process.
We can use a use case diagram to answer the following questions:

What is being described? (The system.)
Who interacts with the system? (The actors)Who interacts with the system? (The actors.)
What can the actors do? (The use cases.)

© BIG / TU Wien 3

Example: Student Administration Systemp y

System
(what is being described?)(what is being described?)

Student administration system

Actors
(who interacts with the system?)

ProfessorProfessor

Use cases
(what can the actors do?)(what can the actors do?)

Query student data
Issue certificate
Announce exam

© BIG / TU Wien 4

Use Case

Describes functionality expected from the system under development.
Provides tangible benefit for one or more actors that communicate withProvides tangible benefit for one or more actors that communicate with
this use case.
Derived from collected customer wishes.
Set of all use cases describes the functionality that a system shall
provide.

Documents the functionality that a system offers.y y
Alternative notations:

© BIG / TU Wien 5

Actor (1/3)()

Actors interact with the system …
by using use casesby using use cases,
i.e., the actors initiate the execution of use cases.
by being used by use cases,
i e the actors provide functionality for the execution of use casesi.e., the actors provide functionality for the execution of use cases.

Actors represent roles that users adopt.
Specific users can adopt and set aside multiple roles simultaneously.

Actors are not part of the system, i.e., they are outside of the system
boundaries.
Alternative notations:Alternative notations:

6

Actor (2/3)()

Usually user data is also administered within the system. This data is
modeled within the system in the form of objects and classesmodeled within the system in the form of objects and classes.
Example: actor Assistant

The actor Assistant interacts with the system Laboratory
A i t by using itAssignment by using it.
The class Assistant describes objects representing user data (e.g.,
name, ssNr, …).

© BIG / TU Wien 7

Actor (3/3)()

Human
E g Student ProfessorE.g., Student, Professor

Non-human
E.g., E-Mail Server

Primary: has the main benefit of the execution of the use case
Secondary: receives no direct benefit
Active: initiates the execution of the use caseActive: initiates the execution of the use case
Passive: provides functionality for the execution of the use case

Example:

Human
Primary

Human
Primary

Non-human

Primary
Active

Primary
Active

Human

8
Secondary
Passive

Secondary
Active

Relationships between Use Cases and Actors p

Actors are connected with use cases via solid lines (associations).
Every actor must communicate with at least one use caseEvery actor must communicate with at least one use case.
An association is always binary.
Multiplicities may be specified.

8
9

Relationships between Use Cases
«inlcude» - Relationship

The behavior of one use case (included use case) is integrated in the
behavior of another use case (base use case)behavior of another use case (base use case)

Base use case
requires the behavior of the included use
case to be able to offer its functionalitycase to be able to offer its functionality

Included use case
may be executed on its own

Example:

© BIG / TU Wien 10

Relationships between Use Cases
«extend» - Relationship

The behavior of one use case (extending use case) may be integrated
in the behavior of another use case (base use case) but does not havein the behavior of another use case (base use case) but does not have
to.
Both use cases may also be executed independently of each other.

Base use case

Extending use case

A decides if B is executed.
Extension points define at which point the behavior is integrated

Extending use case

Extension points define at which point the behavior is integrated.
Conditions define under which circumstances the behavior is
integrated.

© BIG / TU Wien 11

Relationships between Use Cases
«extend» - Relationship: Extension Points

Extension points are written directly within the use case.
Specification of multiple extension points is possibleSpecification of multiple extension points is possible.

Example:

© BIG / TU Wien 12

Relationships between Use Cases
Generalization of Use Cases

Use case A generalizes use case B.
B inherits the behavior of A and may Base use caseB inherits the behavior of A and may
either extend or overwrite it.
B also inherits all relationships from A.

Base use case

Sub use case

B adopts the basic functionality of A but
decides itself what part of A is executed or changed.
A may be labeled {abstract}A may be labeled {abstract}

Cannot be executed directly
Only B is executable

E lExample:

© BIG / TU Wien 13

Relationships between Actors
Generalization of Actors

Actor A inherits from actor B.
A can communicate with X and YA can communicate with X and Y.
B can only communicate with Y.
Multiple inheritance is permitted.

Super-actor

Sub-actor

Abstract actors are possible.

Example:Example:

Professor AND Assistant needed
for executing Query student data

Professor OR Assistant needed
for executing Query student data

© BIG / TU Wien 14

for executing Query student data for executing Query student data

Description of Use Casesp

Structured approach
NameName
Short description
Precondition: prerequisite for successful execution
P t diti t t t ft f l tiPostcondition: system state after successful execution
Error situations: errors relevant to the problem domain
System state on the occurrence of an error
Actors that communicate with the use case
Trigger: events which initiate/start the use case
Standard process: individual steps to be taken p p
Alternative processes: deviations from the standard process

[A. Cockburn: Writing Effective Use Cases, Addison Wesley, 2000][A. Cockburn: Writing Effective Use Cases, Addison Wesley, 2000]

© BIG / TU Wien 15

Description of Use Cases - Examplep p

Name: Reserve lecture hall
Short description: An employee reserves a lecture hall at the university for an event.
Precondition: The employee is authorized to reserve lecture halls.
Postcondition: A lecture hall is reserved.
Error situations: There is no free lecture hall.
System state in the event of an error: The employee has not reserved a lecture hall.
Actors: Employee
Trigger: Employee requires a lecture hall.
Standard process: (1) Employee logs in to the system.

(2) Employee selects the lecture hall.
(3) Employee selects the date.
(4) System confirms that the lecture hall is free.
(5) Employee confirms the reservation.

Alternative processes: (4’) Lecture hall is not free.
(5’) System proposes an alternative lecture hall.
(6’) Employee selects alternative lecture hall and confirms the reservation.

© BIG / TU Wien 16

Best Practices
«include»

UML standard Best practice

© BIG / TU Wien 17

Best Practices
«extend»

UML standard Best practice

© BIG / TU Wien 18

Best Practices
Identifying Actorsy g

Who uses the main use cases?
Who needs support for their daily work?Who needs support for their daily work?
Who is responsible for system administration?
What are the external devices/(software) systems with which the
system must communicate?
Who is interested in the results of the system?

© BIG / TU Wien 19

Best Practices
Identifying Use Casesy g

What are the main tasks that an actor must perform?
Does an actor want to query or even modify information contained inDoes an actor want to query or even modify information contained in
the system?
Does an actor want to inform the system about changes in other

t ?systems?
Should an actor be informed about unexpected events within the
system?y

© BIG / TU Wien 20

Best Practices
Typical Errors To Avoid (1/5)y ()

Use case diagrams do not model processes/workflows!

© BIG / TU Wien 21

Best Practices
Typical Errors To Avoid (2/5)y ()

Actors are not part of the system, hence, they are positioned outside
the system boundaries!the system boundaries!

© BIG / TU Wien 22

Best Practices
Typical Errors To Avoid (3/5)y ()

Use case Issue information needs EITHER one actor
i OR t f tiAssistant OR one actor Professor for execution

© BIG / TU Wien 23

Best Practices
Typical Errors To Avoid (4/5)y ()

Many small use cases that have the same objective may be grouped to
form one use case

© BIG / TU Wien 24

Best Practices
Typical Errors To Avoid (5/5)y ()

The various steps are part of the use cases not separate use casesThe various steps are part of the use cases, not separate use cases
themselves! -> NO functional decomposition

© BIG / TU Wien 25

Notation Elements (1/2)

Name Notation Description

()

System Boundaries between the system
and the users of the systemy

Use case Unit of functionality of the system

A t R l f th f th tActor Role of the users of the system

© BIG / TU Wien 40

Notation Elements (2/2)

Name Notation Description

()

Association Relationship between use cases
and actors

Generalization Inheritance relationship between Generalization actors or use cases

Extend B extends A: optional use of useExtend
relationship

B extends A: optional use of use
case B by use case A

Include
relationship

A includes B: required use of use
case B by use case A

© BIG / TU Wien 41

