Semantic variation points

* Some semantic variation points have been mentioned before.
* delays in event pool
* handling of deferred events
* entering of composite states without default entry

* Which events are prioritized?
* completion events only
* allinternal events (completion, time, change)

* Which (additional) timing assumptions?
* delays in communication

* time for run-to-completion step
* zero-time assumption

Modelling with UML, with semantics 134

State machine refinement

®* State machines are behaviors and

may thus be refined.

[extended} p_

[Control]-::1—[Control
ﬂﬂ

Eﬁl Control /

m Waiting J

cardlnserted
/ loadCard() after(1s)

[Ca rd F_Iea d y)

{ if check successful
then green light read
else red light

o Lfinal}

(CheckData

: 7
no refinement possible

Modelling with UML, with semantics

not refined (may be /omlitted)

7

Control { extended }f //'

- /
A Y B A,
(>[Ready }---- >[Waiting |
""" T T cardlnserted‘ T
. blocked /! IOadCard{} : aft{:_‘r“ 5}
3 |
§ R
S (Acceptedj [Card Ready
E = [check :
= |.B successful]) read
E T / free(); green light :
ey I "%
_:f CheckData 1
' {final } J

135

Protocol state machines

* Protocol state machines specify which behavioral features of a classifier can be called in
which state and under which condition and what effects are expected.

* particularly useful for object life cycles and ports
* no effects on transitions, only effect descriptions

Client {protocol} / [true]
when(isAssigned(order))/
l [calls = calls@pre+1]

) connect() /
(Idle J‘; >r Connected

disconnect() / N

e / _ |- —precondition
y, [calls>1]= = = = _ — |- —specified operation
/ receiveResult(order,e) / = "
/ [calls = calls@pre-1] — — — — |- —postcondition

ProtocolTransition

Modelling with UML, with semantics 136

Protocol state machines

Several operation specifications are combined conjunctively:

context C::op(Q)

pre: inState(S;) and P, S5) [P 1op0 /[0] X
post: Q; and iInState(S;) C 1) >C 3 j

context C::op(Q)

pre: inState(S,) and P,) [P]1op() /1O] S
2
post: Q, and inState(S,) C J (S)

results in

context C::op()

pre: (inState(S;) and P;) or (inState(S,) and P,)

post: (inState@pre(S;) and P,@pre) implies (Q; and InState(S;))
and (inState@pre(S,) and P,@pre) implies (Q, and inState(S,))

Modelling with UML, with semantics 137

How things work together

* Static structure
* sets the scene for state machine behavior
* state machines refer to
* properties
* behavioral features (operations, receptions)
* signals
* |Interactions
°* may be used to exemplify the communication of state machines
* refer to event occurrences used in state machines

* OCL

° may be used to specify guards and pre-/post-conditions
* refers to actions of state machines (OclMessage)

®* Protocols and components
* state machines may specify protocol roles

Modelling with UML, with semantics

138

Wrap up

* State machines model behaviour
* object and use case life cycles
° control automata
* protocols

* State machines consist of
°* Regions and ...
* ... (Pseudo)States (with entry, exit, and do-activities) ...
* connected by Transitions (with triggers, guards, and effects)

* State machines communicate via event pools.

* State machines are executed by run-to-completion steps.

Modelling with UML, with semantics 139

