
123Modelling with UML, with semantics

• Entry and exit points (Pseudostates)
• provide better encapsulation of composite states
• help avoid “unstructured” transitions

Entry and exit points (1)

entry
point

exit point (on border of state machine 
diagram or composite state) 



124Modelling with UML, with semantics

Entry and exit points (2)

Notational alternatives

Semantically equivalent

“unstructured” transitions

Vorführender
Präsentationsnotizen
Entry and exit points may be used on both composite states and submachine states.
When used in submachine states, the referring entry/exit point is called ConnectionPointReference.




125Modelling with UML, with semantics

History states

shallow history Pseudostate
(enter last State in this Region)

deep history Pseudostate
(enter last States in this Region
and all sub-Regions)

• History states represent the last active
• substate (shallow history), or
• configuration (deep history)

of a region.



126Modelling with UML, with semantics

Metamodel

Vorführender
Präsentationsnotizen
Would be nice to show
transition kinds
pseudostate kinds
events
actions



127Modelling with UML, with semantics

Run-to-Completion Step: Overview

• Choose an event from the event pool (queue)
• Choose a maximal, conflict-free, prioritized, set of transitions enabled by the event
• Execute set of transitions

• exit source states (inside-out)
• execute transition effects
• enter target states (outside-in)

thereby generating new events and activities



128Modelling with UML, with semantics

Run-to-Completion Step: Preliminaries (1)

• Active state configuration
• the states the state machine currently is in
• forms a tree

• if a composite state is active, all its regions are active

• Least-common-ancestor (LCA) of states s1 and s2
• the least region or orthogonal state (upwards) containing s1 and s2

bold: active state configuration bold: LCA of states A1 and A2



129Modelling with UML, with semantics

Run-to-Completion Step: Preliminaries (2)

• Compound transitions
• transitions for an event are “chained” into compound transitions

• eliminating pseudostates like junction, fork, join, entry, exit
• this is not possible for choice pseudostates where the guard of outgoing transitions are evaluated 

dynamically (in contrast to junctions)
• several source and target states



130Modelling with UML, with semantics

Run-to-Completion Step: Preliminaries (3)

• Main source / target state m of compound transition t
• Let s be LCA of all source and target states of t
• If s region: m = direct subvertex of s containing all source states of t
• If s orthogonal state: m = s
• Similarly for main target state
• All states between main source and explicit source states are exited, all state between main 

target and explicit target states are entered.

• Conflict of compound transitions t1 and t2
• intersection of states exited by t1 and t2 not empty

• Priority of compound transition t1 over t2
• si “deepest” source state of transition ti
• s1 (direct or transitive) substate of s2



131Modelling with UML, with semantics

Run-to-Completion Step (1)

RTC(env, conf ) ≡
⎡event ← fetch()

step ← choose steps(conf, event)
if step = ∅ ∧ event ∈ deferred(conf )
then defer(event)
fi
for transition ∈ step do

conf ← handleTransition(env, conf, transition)
od
if isCall (event) ∧ event ∉ deferred(conf )
then acknowledge(event)
fi
conf ⎦



132Modelling with UML, with semantics

Run-to-Completion Step (2)

steps(env, conf, event) ≡
⎡transitions ← enabled(env, conf, event)
{step | (guard, step) ∈ steps(conf, transitions) ∧ env guard } ⎦

steps(conf, transitions) ≡
⎡steps ← {(true, ∅)}
for transition ∈ transitions do

for (guard, step) ∈ steps(conf, transitions \ {transition}) do
if inConflict(conf, transition, step)
then if higherPriority(conf, transition, step)

then guard ← guard ∧ ¬guard(transition) fi
else step ← step ∪ {transition}

guard ← guard ∧ guard(transition) fi
steps ← steps ∪ {(guard, step)} od od

steps⎦

Vorführender
Präsentationsnotizen
Explain foundations of “inConflict” and “higherPriority”: Configuration, least common ancestor, and main source/target state.




133Modelling with UML, with semantics

Run-to-Completion Step (3)

handleTransition(conf, transition) ≡
⎡for state ∈ insideOut(exited(transition)) do

uncomplete(state)
for timer ∈ timers(state) do stopTimer(timer) od
execute(exit(state))
conf ← conf \ {state}

od
execute(effect(transition))
for state ∈ outsideIn(entered(transition)) do

execute(entry(state))
for timer ∈ timers(state) do startTimer(timer) od
conf ← conf ∪ {state}
complete(conf, state)

od
conf ⎦


