
109Modelling with UML, with semantics

State machines

Unified Modeling Language 2

110Modelling with UML, with semantics

History and predecessors

• 1950’s: Finite State Machines
• Huffmann, Mealy, Moore

• 1987: Harel Statecharts
• conditions
• hierarchical (and/or) states
• history states

• 1990’s: Objectcharts
• adaptation to object orientation

• 1994: ROOM Charts
• run-to-completion (RTC) step

111Modelling with UML, with semantics

• Object life cycle
• Behaviour of objects according to business rules
• in particular for active classes

• Use case life cycle
• Integration of use case scenarios
• Alternative: activity diagrams

• Control automata
• Embedded systems

• Protocol specification
• Communication interfaces

Usage scenarios

Vorführender
Präsentationsnotizen
Perhaps add operation specifications

112Modelling with UML, with semantics

States and transitions

simple State

trigger (CallEvent) guard (Constraint)initial Pseudostate

FinalStateeffect (CallAction)Transition

• State machines model behaviour
• using states interconnected …
• with transitions triggered …
• by event occurrences.

Vorführender
Präsentationsnotizen
Final state of top region = terminate pseudostate; i.e., terminate pseudostate for unstructured termination of context object

113Modelling with UML, with semantics

• State machines are defined in the context of a BehavioredClassifier.

• Context
defines which
• events can occur
• features are

available

Relation to class diagrams

Operation
corresponding CallEvent

called Operation

CallAction

114Modelling with UML, with semantics

TimeEvent
(relative)

Triggers and events (1)

ChangeEvent

completion
event
(no explicit
trigger)

SignalEvent

deferred
event

115Modelling with UML, with semantics

Triggers and events (2)

• CallEvent
• receipt of a (a)synchronous Operation call
• triggering after Behavior of Operation executed

• SignalEvent
• receipt of an asynchronous Signal instance
• reaction declared by a Reception for the Signal

• TimeEvent
• absolute reference to a time point (at t)
• relative reference to trigger becoming active (after t)

• presumably meaning relative to state entry

• ChangeEvent
• raised each time condition becomes true

• may be raised at some point after condition changes to true
• could be revoked if condition changes to false

Vorführender
Präsentationsnotizen
The remarks to change events are semantic variation points, see formal/05-07-04, p. 423.

116Modelling with UML, with semantics

Triggers and events (3)

• Completion event
• raised when all internal activities of a state are finished

• do activity, subregion
• no metamodel element for completion events

• dispatched before all other events in the event pool

• Deferred events
• events that cannot be handled in a state but should be kept in the event pool

• reconsidered when state is changed
• no predefined deferring policy

• Internal transitions
• … are executed without leaving and

entering their containing state
• normally, on transition execution states are left and entered

Vorführender
Präsentationsnotizen
Next slide: what happens on entering and exiting a state; what are do-activities.

117Modelling with UML, with semantics

Behaviours

entry Behavior
(on entering a state)

exit Behavior
(on exiting a state)

do activity Behavior
(concurrently while
in state, may be
interrupted)

Vorführender
Präsentationsnotizen
Do-activities seem to behave like an additional orthogonal region;they may raise a completion event when finished: is the state exited if it hasan active region? (If it has no active region, it is exited for sure, see formal/05-07-04, p. 535.)

118Modelling with UML, with semantics

How state machines communicate

network

event pool event pool

starts new RTC-step

signals: asynchronous (no waiting)
calls: asynchronous or synchronous (waiting for RTC of callee)

during
run-to-completion (RTC)

No assumptions are made on timing between
event occurrence, event dispatching, and event consumption.

Event occurrences for which no trigger exists may be discarded
(if they are not deferred).

119Modelling with UML, with semantics

Hierarchical states (1)

composite State

• Hierarchical states allow to encapsulate behaviour and facilitate reuse.
• However, they are rarely used this way.
• UML 2.0 provides concepts supporting this usage.

• entry and exit points

Transition triggering is prioritized inside-out, i.e., transitions deeper in the hierarchy are considered
first.

Vorführender
Präsentationsnotizen
Here, I assume that “startCheckIn”, “closeCheckIn”, &c. are all signals and that there are correspondingly declared receptions in “FlightHandling”.

120Modelling with UML, with semantics

Hierarchical states (2)

detailed
(non-orthogonal)
composite State

Region

substates

default entry

Vorführender
Präsentationsnotizen
If a transition terminates on an enclosing state and the enclosed regions do not have an initial pseudostate, theinterpretation of this situation is a semantic variation point. In some interpretations, this is considered an ill-formedmodel. That is, in those cases the initial pseudostate is mandatory.An alternative interpretation allows this situation and it means that, when such a transition is taken, the state machinestays in the composite state, without entering any of the regions or their substates. (formal/05-07-04, p. 532)

121Modelling with UML, with semantics

Orthogonal regions

orthogonal Regions,
both active if
Client/Server active

• Simple State: containing no Region
• Composite State: containing at least one Region

• simple composite State: exactly one
• orthogonal composite State: at least two

orthogonal states are “concurrent” as a single event may trigger a transition in each orthogonal region
“simultaneously”

122Modelling with UML, with semantics

Forks and joins

fork Pseudostate
(one incoming, at least two outgoing Transitions;
outgoing Transitions must target States in different Regions of an orthogonal State)

join Pseudostate
(restrictions dual to forks)

all Regions must be
entered simultaneously

all Regions are left
simultaneously
(if FinalStates are reached)

