
90Modelling with UML, with semantics

Inheritance (1)

• Generalizations relate specific classes to more general classes.
• instances of specific class also instances of the general class
• features of general class also implicitly specified for specific class

• implies substitutability (in the sense of Liskov & Wing)
• must be specified on specific class separately by { substitutable }

• Generalizations also apply to
associations.
• as both are Classifiers

{ abstract } class
(no direct instances,
only specializations

may have instances)

if decorated with { root }: no superclass

if decorated with { leaf }: no subclass

Vorführender
Präsentationsnotizen
isSubstitutable: Boolean [0..1]
Indicates whether the specific classifier can be used wherever the general classifier
can be used. If true, the execution traces of the specific classifier will be a superset of
the execution traces of the general classifier. (formal/05-07-04, p. 67)

What is the semantics of a generalization between associations?

91Modelling with UML, with semantics

• Generalization sets detail the relation between a general and more specific classifiers.
• { complete } (opposite: { incomplete })

• all instances of general classifier are instances of one of the specific classifiers in the generalization set
• { disjoint } (opposite: { overlapping })

• no instance of general classifier belongs to more than one specific classifier in the generalization set
• default: { disjoint, incomplete }

• several generalization sets may be applied to a classifier
• useful for taxonomies

Inheritance (2)

name of generalization set

Vorführender
Präsentationsnotizen
Each GeneralizationSet defines a particular set of Generalization relationships that describe the way
in which a general Classifier (or superclass) may be divided using specific subtypes. (formal/05-07-04, p. 71)

No example for a name of a generalization set found in the specification (formal/05-07-04), but seems to be useful, if the “dashed line” notation can’t be used. If, in the example, cards is replaced by a “: CardType” and we have an association between Card and CardType, we would introduce a powertype, where AccessCard, CreditCard, and MilesCard are all instances of CardType and also classes of their own.

