
19Modelling with UML, with semantics

ModelModelModel

ModelModelArtefact (e.g., code)

Transform
ation/

C
odegeneration
Transform

ation/
C

odegeneration
Transform

ation/
C

ode generation

ModelModelling
Language

Meta-modelling
Language

ModelTransformation
Definition

Transformation
Language

ModelPlatform defined through
used

Reuse Abstraction (bottom-up)

Construction (top-down)

Reuse

MDSD: Basic architecture

20Modelling with UML, with semantics

MDSD: A bird’s view

Model Implementation

J2EE

Transformation
Knowledge

Transformer

Implementation

.Net

Implementation

. . .

Vorführender
Präsentationsnotizen
MDA promotes the idea of designing software systems at a platform-independent model (PIM) level which can be transformed to software implementations with model transformation technologies that incorporates the knowledge of the execution platforms in question.

21Modelling with UML, with semantics

How is MDSD realised?

• Developer develops model(s),
expressed using a DSL, based on
certain meta-model(s).

• Using code generation templates, the
model is transformed into executable
code.
• Alternative: Interpretation

• Optionally, the generated code is
merged with manually written code.

• One or more model-to-model
transformation steps may precede
code generation.

Transformation
Rules

Meta-model
ModelModelModel

Meta-modelModel

Transformer

Transformer

Generated Code

Code
Generation
Templates

Manually
Written
Code

optional

op
tio

na
l,

ca
n

be
 re

pe
at

ed

22Modelling with UML, with semantics

(Meta-)Model hierarchy

Meta-model

Meta-model element

Meta-meta-model
Meta-meta-model
element

conformsTometa

conformsTo

Model

Model element

conformsTometa

repOfSystem

meta MOF

Relational
meta-model

M3

M2

M1

UML
meta-model…

… …

Vorführender
Präsentationsnotizen
The model-driven architecture defines a metamodel hierarchy for modeling a system. A system is described by a model (at the M1 level). A model conforms to a metamodel (at the M2 level) which defines the modeling constructs used in the model. The metamodel itself is described in a common meta-metamodel language (at the M3 level). The meta-metamodel language in the OMG MDA is MOF. MOF defines the core modeling constructs needed to describe all metamodels of interest to model-driven development. MOF can e.g. be used to describe the UML metamodel and a relational metamodel.

23Modelling with UML, with semantics

(Meta-)Model hierarchy: Example

repOf

Relational Model

Book

conformsTo

Relational Meta-model

MOF Meta-meta-model

ClassAssociation
source

destination

conformsTo

conformsTo

System

…………

…………

AuthorIdPagesNbTitleBookId

Type

name: String

Table

name: String
+ type*+ col

+ owner

+ keyOf + key1..* *

*

Column

name: String
{ordered}

Vorführender
Präsentationsnotizen
This figure illustrates an example of the metamodel hierarchy. A MOF metamodel describes two concepts Association and Class with source and destination relationships. In the relational metamodel we use the MOF modeling constructs to define Table, Column and Type as classes and relationships between these classes using the Association construct. In the relational model we used the constructs defined in the relational metamodel to describe a database table for a Book (which is the System that we are describing).

24Modelling with UML, with semantics

MDSD: Process

• Changed development process
• Two stages of development – infrastructure and application

• Setting up/developing infrastructure: modelling languages, platform (e.g., frameworks), model
transformations, …

• Application development: modelling, efficient reuse of infrastructure, less coding
• Simplified application development

• Automated code generation makes implementation tasks obsolete.
• Tasks on code level (implementation, test, maintenance, etc.) are drastically reduced.

• New development tools
• Tools for language definition, especially meta-modelling
• Editors and transformations engines
• Customizable tools and suites: Model editors, repositories, tools for simulation, verification, and

test, etc.

25Modelling with UML, with semantics

Set-up of MDSD project and tooling

26Modelling with UML, with semantics

MDSD approaches: A short overview

• Approaches
• Computer-Aided Software Engineering (CASE)
• Executable UML
• Model-Driven Architecture (MDA)
• Architecture-Centric Model Driven Software Development (AC-MDSD)
• MetaCASE
• Software Factories

27Modelling with UML, with semantics

Computer-Aided Software Engineering (CASE)

• Historical approach (end of 20th century)
• Example: Computer Associates’ AllFusion Gen

• Support Information Engineering Method of James Martin through different diagrams types
• Fully automatic code-generation for 3-tier architecture and some execution platforms (Mainframe, Unix, .NET, J2EE,

various databases, …)
• Advantage/disadvantage: changes to target platform not necessary/possible

• Differences to the basic architecture of MDSD
• Meta-level description not supported or accessible to modeller
• General-purpose graphical language representations with tool specific variants
• Modelling languages mapped poorly onto the underlying platforms
• No or fixed description of execution platform

• Advantages
• Productivity, development and maintenance costs, quality, documentation

• Disadvantages
• Proprietary modelling languages
• Tools not interoperable and rather complex
• Support of platforms and new features strongly depends on tool vendors
• No standardization, no (real) abstraction levels, and DSLs
• Limited to programs written by a single person or by a team that serializes its access to files

28Modelling with UML, with semantics

Executable UML

• “CASE with UML”
• Subset of UML: class diagrams, state charts, component diagrams
• UML Action Semantic Language (ASL) as programming language

• Niche products
• Some specialized tool vendors like Kennedy/Carter
• Used e.g. for developing embedded systems

• Realizes parts of the MDSD basic architecture
• There is one predefined modelling language (xUML)
• Transformation definitions can be changed and adapted (with ASL)

• Advantages compared to CASE
• Standardized modelling language based on UML

• Disadvantages compared to CASE
• Modelling language has less modelling elements

29Modelling with UML, with semantics

Model-Driven Architecture (MDA)

• MDA is a standard promoted by the OMG
• A set of specifications defined by OMG’s open, worldwide process

• MDA looks at software development from the point of view of
models

• Models are the core; design is the focus
• MDA supports technology-independent design

• MDA divides domain knowledge and platform knowledge

• Advantages
• Portability to different platforms and technologies

• Re-usability

• Open Source

• Disadvantage
• General-purpose approach, sometimes specific solutions perform

better

30Modelling with UML, with semantics

Architecture-Centric Model Driven Software Development

• Efficient reuse of architecture
• Focus on efficient reuse of infrastructure/frameworks (= architecture) for multiple applications
• Concrete methodology

• Development of reference architectures
• Analysis of code that is individual, has schematic repetitions, or is generic
• Extraction of necessary modelling concepts and definition of modelling language, transformations, and

platform
• Tool support (e.g. www.openarchitectureware.org)

• Advantages to MDA
• Supports development of individual platforms and modelling languages

• Disadvantages to MDA
• Little support for portability

http://www.openarchitectureware.org/

31Modelling with UML, with semantics

MetaCASE/MetaEdit+

• Individual configurable CASE
• Metamodeling for developing domain-specific languages (DSLs)
• Focuses on best support of application domain (intentional programming for e.g. cell phone

software)
• Methodology defined through DSL development

• Good (meta-)modelling support
• Good meta-modelling support, incl. graphical editors
• No separated support for platform development, but suggests to use components and

frameworks
• Advantage

• Domain-specific modelling
• Disadvantages

• Tool support focused on graphical modelling
• No tool interoperability, since proprietary M3-level (meta-meta-model)

32Modelling with UML, with semantics

Software Factories

• (Industrial) manufacturing of software products
• Combines ideas of different approaches (e.g. MDA, AC-MDSD, MetaCASE/DSLs) as well as

common SW-engineering technologies (patterns, components, frameworks)
• Objective is to support the development of software product lines (SPLs) through automation,

i.e. a set of applications with a common application domain and infrastructure
• “A software factory is a software product line that configures extensible tools, processes,

and content […] automates the development and maintenance of variants of an archetypical
product by adapting, assembling, and configuring framework-based components.”

• Advantages
• Focuses on domain-specific solutions

• Disadvantages
• Little tool support

33Modelling with UML, with semantics

Model-Driven Architecture (MDA): Overview

• Separates the operational specification of a system from the details
such as how the system uses the platform on which it is developed

• MDA provides the means to
• Specify a system independently of its platform

• Specify platforms

• Choose a platform for the system

• Transform the system specifications into a platform dependent system

• Three fundamental objectives
• Portability

• Interoperability

• Reuse

• Productivity (derived objective)

34Modelling with UML, with semantics

MDA basic elements: Models

• Cornerstone of MDA
• Abstraction of reality, different from it, and that can be used for

(re)producing such reality

• Expressed in a well-defined language (syntax and semantics)
which is suitable for automated interpretation

• In MDA, “everything is a model”
• One model may describe only part of the complete system
• A model helps

• Focusing on essentials of a problem to better understand it
• Moving towards an effective solution

35Modelling with UML, with semantics

MDA basic elements: Models

• Types of models
• Business models or Computation Independent Models (CIM)

• Define domains identifying fundamental business entity types and the
relationships between them

• Say nothing about the software systems used within the company
• System models

• These models are a description of the software system
• Platform independent models (PIM)

• resolves functional requirements through purely problem-space terms.
• No platform-specific details are necessary.

• Platform specific models (PSM)
• It is a solution model that resolves both functional and non-functional

requirements.
• A PSM requires information on specific platform related concepts and

technologies.
• Platform independence is a relative term.

36Modelling with UML, with semantics

MDA basic elements: Meta-models (1)

• Meta-models allow the exchange of models among
modelling tools.

• Meta-models represent specific domain elements.
• Use of a common terminology
• Reduce misunderstandings
• Production of a complete documentation
• Check of consistent processes
• Traceability of process artefacts: impact analysis

• A meta-model
• is also a model and must be written in a well-defined

language;
• defines structure, semantics and constraints for a family

of models.

37Modelling with UML, with semantics

MDA basic elements: Meta-models (2)

• The three-layer architecture
• (M3) Meta-meta-model

• One unique meta-meta-model, the Meta-Object Facility (MOF).
• It is some kind of “top level ontology”.

• (M2) Meta-model
• defines structure, semantics and constraints for a family of

models.
• (M1) Model

• Each of the models is defined in the language of its unique
meta-model.

• UML profiles are adapted modelling languages.

38Modelling with UML, with semantics

MDA basic elements: Transformations (1)

• A transformation is the automatic generation of a target model from a source model,
according to a transformation definition.

• A transformation definition is a set of transformation rules that together describe how a
model in the source language can be transformed into a model in the target language.

• A transformation rule is a description of how one or more constructs in the source
language can be transformed into one or more constructs in the target language.

39Modelling with UML, with semantics

MDA basic elements: Transformations (2)

40Modelling with UML, with semantics

MDA basic elements: Transformations (3)

• Composition
• Special case of transformation
• allows bringing new details or “aspects” into a model.
• allows splitting functionality across several platforms.

41Modelling with UML, with semantics

MDA technologies and standards

• MOF: Meta-modelling language, repository interface (JMI), interchange (XMI)
• UML: Standard modelling language; instance of the MOF model; for developers and

“meta-developers”
• CWM: modelling languages for data warehousing applications (e.g. Relational DBs)
• OCL: expression language, extends the expressive power of UML and MOF
• QVT: Transformations definition language; also for Queries and Views of models.
• SPEM: metamodel and a UML profile used to describe a concrete software development

process.

42Modelling with UML, with semantics

Conforms

SLA
Combine

Trust & SecCombine

MarkingNote

Conforms

QoS

Trust & Sec

Help

Combine

Combine

Generates

Marking

Note

New
generated
information

New
modelled
Information

Conforms New
generated
information

New
modelled
information

Help Generates

Marking Note

QoS

Trust & Sec

Combine

Combine

-Software
-Systems (sizing, HA,…)
-Networks

MDA development process

43Modelling with UML, with semantics

Acronyms / Definitions

• MDE: Model-Driven Engineering
• ME: Model Engineering
• MBDE: Model-Based Data

Engineering
• MDA: Model-Driven Architecture
• MDD: Model-Driven Development
• MDSD: Model-Driven Software

Development
• MDSE: Model-Driven Software

Engineering
• MM: Model Management
• ADM: Architecture-Driven

Modernization
• DSL: Domain-Specific Language
• DSM: Domain-Specific Modelling
• etc.

• MDE is a generic term.
• ME and MDSE more or less synonyms of

MDE
• MDA™ and MDD™ are OMG trademarks;

MDD is a protection trademark (no use as of
today/just reserved by OMG for future use).

• MDSD like MDE is sometimes used instead
of MDD when one does not wish to be
associated to OMG-only technology,
vocabulary and vision.

• ADM is another standard intended to be the
reverse of MDA: MDA covers forward
engineering while ADM covers backward
engineering.

• MM mainly used in data engineering like
MBDE

• DSM is more Microsoft marked but of
increasing use by the academic and
research community.

44Modelling with UML, with semantics

transform

compile

interpret

textual

graphical

precise/
executable

Domain

Ontology

bounded area of
knowledge/interest

Metamodel

Specific
Language

Domain

semanticsModel

multiple

partial

viewpoint

subdomains

composable

Metametamodel

several target
software

architecture
software

architecture

Application

multi-step

single-step

no
roundtrip

design
expertise

Software
System
Family

Application
Specification

Family
Architecture

Product

Map of MDSD concepts

Metamodeling

Transformations

Constraints

Editors

SPL & Variants

45Modelling with UML, with semantics

References

• Grady Booch, Alan Brown, Sridhar Iyengar, James Rumbaugh, Bran Selic. “An MDA Manifesto”.
MDA Journal, May 2004.
http://www.ibm.com/software/rational/mda/papers.html

• Marco Brambilla, Jordi Cabot, Manuel Wimmer. Model-Driven Software Engineering in Practice.
Morgan & Claypool, 2012.

• Jack Greenfield, Keith Short, Steve Cook, Stuart Kent. Software Factories. John Wiley & Sons,
2004.

• Chris Raistrick, Paul Francis, John Wright, Colin Carter, Ian Wilkie. Model-Driven Architecture with
Executable UML. Cambridge University Press, 2004.

• Thomas Stahl, Markus Völter, Sven Efftinge, Arno Haase. Modellgetriebene Softwareentwicklung.
dpunkt.verlag, 22007.

• Peter Swithinbank, Mandy Chessell, Tracy Gardner, Catherine Griffin, Jessica Man, Helen Wylie,
Larry Yussuf. Patterns: Model-Driven Development Using IBM Rational Software Architect. IBM
Redbooks, 2005.
http://www.redbooks.ibm.com/redbooks/sdbooks/pdfs/sg247105.pdf

• Stephan Roser. Vorlesung „Modellgetriebene Softwareentwicklung“. Universität Augsburg,
Sommersemester 2008.

http://www.ibm.com/software/rational/mda/papers.html
http://www.redbooks.ibm.com/redbooks/sdbooks/pdfs/sg247105.pdf

