
389Modelling with UML, with semantics

Climbing the MDSD mountain (1)

• Objectives of MDSD
• Flexible implementation: platform changes

• Derivation of different PSM is possible

• Simpler and more effective maintenance
• Changes can be done directly to existing designs

• Effective development: Common language; requirements 
traceability; earlier testing and simulation

• Separation of concerns: allow stakeholders to be focused on a 
specific domain

• Reduces the loss of information from logical to technical 
implementation

• Model (conceptual) integration is easier than application integration
• Improves requirements traceability: changes and validation
• Facilitates early testing and simulation



390Modelling with UML, with semantics

Climbing the MDSD mountain (2)

• Objectives of MDSD
• Increased productivity: automation; increased reuse; reduction of 

rework
• Automate steps of the development process

• Quality improvement
• Reduces the amount of rework due to errors

• Updated documentation of the system
• Ensure customers, designers and architects understanding



391Modelling with UML, with semantics

Climbing the MDSD mountain (3)

• Difficulties of adopting MDSD
• Shift in development culture; staff not ready for modelling; new rôles are 

needed
• Requires people to be trained in modelling: analysts vs. programmers 

• Difficult to distinguish real MDSD/MDA providers
• Lack of confidence on MDSD/MDA promises being real



392Modelling with UML, with semantics

Climbing the MDSD mountain (4)

• Difficulties of adopting MDSD
• Usually seen as a heavyweight methodology

• High importance of maintaining the modelling approach (instead of 
tweaking the code)

• Transformations promises not a reality yet
• Strong dependence on quality of models and transformations 

• Incomplete and not interoperable nor integrated tool chain
• Relatively high cost of adoption (training, infrastructure, tools) 

• Requires the development of basic “infrastructure”
• Definition of an extension mechanism to allow customization and 

specialization without breaking the code generation


