
186Modelling with UML, with semantics

Connection to UML

• Import of classifiers and enumerations as types
• Properties accessible in OCL

• Attributes
• p.milesCard (with p : Passenger)

• Association ends
• p.flight, p.booking, p.booking[flight]

• { query } operations
• Access to stereotypes via v.stereotype

• Representation of multiplicities
a[1] : T a : T

a[0..1] : T a : Set(T) or T

a[m..n] : T a : Set(T)

a[*] : T { unordered } a : Set(T)

a[*] : T { ordered } a : OrderedSet(T)

a[*] : T { bag } a : Bag(T)

Vorführender
Präsentationsnotizen
For a[0..1] : T type T is used for initial values and derived bodies (s. formal/05-06-06, pp. 179f.).




187Modelling with UML, with semantics

Invariants

context Passenger
inv: ma.statusMiles > 10000 implies

status = Status::Albatros

boolean expression

context Passenger
inv statusLimit: self.ma.statusMiles > 10000 implies

self.status = Status::Albatros

context p : Passenger
inv statusLimit: p.ma.statusMiles > 10000 implies

p.status = Status::Albatros

optional name

replacement for self

Notational variants

context classifier

explicit self (refers to instance of discourse)



188Modelling with UML, with semantics

Semantics of invariants

context C
inv: I1

context C
inv: I2

context C
inv: I1 and I2

• Restriction of valid states of classifier instances
• when observed from outside

• One possibility: Combination of several invariants by conjunction

• Invariants (as all constraints) are inherited via generalizations
• but how they are combined is not predefined

↝



189Modelling with UML, with semantics

Pre-/post-conditions

context Passenger::consumeMiles(b : Booking) : Boolean
pre: ma->notEmpty() and

ma.flightMiles >= b.flight.miles

context Passenger::consumeMiles(b : Booking) : Boolean
post: ma.flightMiles = ma.flightMiles@pre-b.flight.miles and

result = true

• Some constructs only available in post-conditions
• values at pre-condition time p@pre
• result of operation call result
• whether an object has been newly created o.oclIsNew()
• messages sent o^op(), o^^op()

• In UML models, pre- and post-conditions are defined separately
• not necessarily as pairs
• «precondition» and «postcondition» as constraint stereotypes

Vorführender
Präsentationsnotizen
Perhaps have a boolean return flag for consumeMiles in class diagram.



190Modelling with UML, with semantics

• Standard interpretation
• A pre-/post-condition pair (P, Q) defines a relation R on system states such that (σ, σ’) ∈ R, if σ

P and (σ, σ’) Q.
• system state σ on operation invocation
• system state σ’ on operation termination (Q may refer to σ by @pre).

• Thus (P, Q) equivalent to (true, P@pre and Q).

Semantics of pre-/post-conditions

obligation benefit
user satisfy P Q established

implementer if P satisfied, establish Q P established

• Meyer’s contract view
• A pre-/post-condition pair (P, Q) induces benefits and obligations.
• benefits and obligations differ for implementer and user

Vorführender
Präsentationsnotizen
Standard interpretation not included in ptc/05-06-06.



191Modelling with UML, with semantics

Combining pre-/post-conditions

• Standard interpretation
• joining pre- and post-conditions conjunctively

• Alternative interpretation
• case distinction (like in protocol state machines)
• only useful for pre-/post-condition pairs

context C::op()
pre: P1 post: Q1

context C::op()
pre: P2 post: Q2

context C::op()
pre: P1 or P2
post: (P1@pre implies Q1)
and (P2@pre implies Q2)

context C::op()
pre: P1 post: Q1

context C::op()
pre: P2 post: Q2

context C::op()
pre: P1 and P2
post: Q1 and Q2

↝

↝



192Modelling with UML, with semantics

context Subject::hasChanged()
post: let messages : Set(OclMessage) =

observer^^update(? : Subject)
in messages->notEmpty() and

messages->forAll(m |
m.result().oclIsUndefined() and
m.hasReturned() and
m.subject = self)

Messages

context Subject::hasChanged()
post: observer^update(self)

context Subject::hasChanged()
post: observer^update(? : Subject)

in calls on hasChanged,
some update message with argument
self will have been sent to observer

the actual argument
does not matter

all those
messages

result of message call
whether it has finished

its actual parameter value



193Modelling with UML, with semantics

• Initial values
• fix the initial value of a property of a classifier

Initial values and derived properties

package Booking
context Passenger::status
init: Status::Swallow

endpackage

-- which package
-- which property
-- initial value

• { derived } properties
• define how the value of a property is derived from other information

context Passenger::currentFlights : Sequence(Flight)
derive: self->collect(booking)

->select(date = today()).flight->asSequence()



194Modelling with UML, with semantics

Query bodies and model features

• Bodies of { query } operations
• define the value returned by a query operation
• can be combined with a precondition

context TravelHandling::delay() : Minutes
body: tsh.delay->sum()

context TravelStageHandling
def: isEarly() : Boolean = self.delay < 0

context TravelHandling
def: someEarly() : Boolean = tsh->exists(isEarly())

• Definition of additional model features
• defined for the context classifier



195Modelling with UML, with semantics

Wrap up

• Formal language for specifying
• invariants context C inv: I
• pre-/post-conditions context C::op() : T

pre: P post: Q
• query operation bodies context C::op() : T body: e
• initial values context C::p : T init: e
• derived attributes context C::p : T derive: e
• modelling attributes and operations context C def: p : T = e

• Side-effect free
• Typed language

• OCL specifications provide
• verification conditions
• assertions for implementations



196Modelling with UML, with semantics

Meta-Object Facility 2



197Modelling with UML, with semantics

OMG’s standards UML and MOF



198Modelling with UML, with semantics

Relations between UML 2 and MOF 2

• MOF meta-meta-model of UML 2
• MOF is (based on) the core of UML 2
• UML 2 is a drawing tool of the MOF 2
• Definition synchronization

CORECore MOF

UML

MOF



199Modelling with UML, with semantics

Meta-Object Facility (MOF)

• A meta-data management framework
• A language to be used for defining languages

• i.e., it is an OMG-standard meta-modelling language.
• The UML metamodel is defined in MOF.

• MOF 2.0 shares a common core with UML 2.0
• Simpler rules for modelling metadata
• Easier to map from/to MOF
• Broader tool support for metamodeling (i.e., any UML 2.0 tool can be used)

• MOF has evolved through several versions
• MOF 1.x is the one most widely supported by tools
• MOF 2.0 is the current standard, and it has been substantially influenced by UML 2.0
• MOF 2.0 is also critical in supporting transformations, e.g., QVT and Model-to-text

http://www.omg.org/spec/MOF/2.0

http://www.omg.org/spec/MOF/2.0


200Modelling with UML, with semantics

MOF 2.0 Structure

• MOF is separated into Essential MOF (EMOF) and Complete MOF (CMOF)
• EMOF corresponds to facilities found in OOP and XML.

• Easy to map EMOF models to JMI, XMI, etc.
• CMOF is what is used to specify metamodels for languages such as UML 2.

• It is built from EMOF and the core constructs of UML 2.
• Both EMOF and CMOF are based on variants of UML 2.



201Modelling with UML, with semantics

MOF 2.0 Relationships (1)

Vorführender
Präsentationsnotizen
Constructs: Relationships




202Modelling with UML, with semantics

MOF 2.0 Relationships (2)

Vorführender
Präsentationsnotizen
Common: Reflective collections and sequences
Extension: Tagging
Reflection: Reflective capabilities, in particular Object as superclass of Element
Identifiers: Identifier management (extents, …)



203Modelling with UML, with semantics

EMOF Types ― merged from UML Infrastructure



204Modelling with UML, with semantics

EMOF Classes ― merged from UML Infrastructure (1)



205Modelling with UML, with semantics

EMOF Classes ― merged from UML Infrastructure (2)



206Modelling with UML, with semantics

EMOF Data Types ― merged from UML Infrastructure



207Modelling with UML, with semantics

EMOF Packages ― merged from UML Core:Basic 



208Modelling with UML, with semantics

XML Metadata Interchange (XMI)

• XMI is a standard (and a trademark) from the OMG.
• XMI is a framework for

• defining, interchanging, manipulating and integrating XML data and objects.
• Used for integration

• tools, applications, repositories, data warehouses
• typically used as interchange format for UML tools

• XMI defines rules for schema definition
• schema production ― how is a metamodel mapped onto a grammar?
• definition of schema from any valid Meta Object Facility (MOF) model

• XMI defines rules for metadata generation
• document production ― how is a model mapped onto text?
• Metadata according to a MOF metamodel is generated into XML according to the generated 

XML schema.

http://www.omg.org/spec/XMI/2.4.1/

http://www.omg.org/spec/XMI/2.4.1/


209Modelling with UML, with semantics

XMI versions and MOF versions

• XMI 1.1 corresponds to MOF 1.3 
• XMI 1.2 corresponds to MOF 1.4 
• XMI 1.3 (added schema support) corresponds to MOF 1.4 
• XMI 2.0 (adds schema support and changes document format) corresponds to MOF 1.4
• XMI 2.1 corresponds to MOF 2.0
• XMI 2.4.1 corresponds to MOF 2.4.1



210Modelling with UML, with semantics

MOF and XMI

MOF Metamodel

MOF Metadata

XML Schema

XMI Document
Generation Rules

Generation Rules

conformsTo conformsTo


