Unified Modeling Language 2

Interactions

]
=

ot o] ae et

stack]
. [n2 Py i
m Yy [[
ol g wartund
"“h_-,g‘-e%
.......... . i ki
s

Modelling with UML, with semantics

140

A first glimpse

sequence diagram

communication
diagram

timing diagram

o] C/S-Protocol 1 /

| Client Server

callSarvice! salf, parametar | -
] joblNo _
o receaRasull] jobho |
C/S-Protocol 1 /
—

Client I

1: callService| salf, parameter | I Server

S receiveResult{ jobNo) 2 jobo

) C/S-Protocol 1 /

cormputation

Server racaive quany
idhe

waiting

Client job issued

busy

I L
Tta”_ iljuan \memﬁamll{;:bh}m
Em.-ica[
ulIII%IIIIEIIIIJ;‘IIIIAIIIIéIIIIé Ts]

Modelling with UML, with semantics

all three are
semantically
equivalent

141

®)
History and predecessors

* Simple sequence diagrams
°* 1990°'s
* Message Sequence Charts (MSCs) used in TelCo-industry
* several OO-methods use sequence diagrams

* Complex sequence diagrams
* 1996: Complex MSCs introduced in standard MSC96
* 1999: Life Sequence Charts (LSCs)

®* Communication diagrams
* 1991: used in Booch method
* 1994: used in Cook/Daniels: Syntropy

* Timing diagrams
* traditionally used in electrical engineering
* 1991: used in Booch method
* 1993: used in early MSCs

* Interaction overview
* 1996: high-level MSCs (graphs of MSCs as notational alternative)

Modelling with UML, with semantics 142

Vorführender
Präsentationsnotizen
SD93 in 2730: Rainer Schlör, Werner Damm: Specification and Verification of System Level Hardware designs using timing diagrams. Proc Eur Conf Design Automation, 1993

Usage scenarios

Class/object interactions
* design or document message exchange between objects

* express synchronous/asynchronous messages, signals and calls,
activation, timing constraints

Use case scenarios
* illustrate a use case by concrete scenario

* useful in design/documentation of business processes (i.e. analysis
phase and reengineering)

Test cases
* describe test cases on all abstraction levels

Timing specification/documentation

Interaction overview

° organize a large number of interactions in a more visual style
* defined as equivalent to using interaction operators

Modelling with UML, with semantics

-'Pungir.n eaf Flug sabuckt

" Kaffar, Mailmborte, Buchungdoraraia

Do raashcke daadch: mird rical ergarznman, dar
Fiomt sagiar wird an dan Sovalar varasaan

" Pamsag er und Taila sais dazscs snd ef des
g angaraidas
b ra

L] [. D e |

143

Syntactical variants

* Sequence diagram G e
* traditional sequence diagrams + interaction operators

* focuses on exchanging many messages in complex patterns among few
interaction partners

®* Communication diagram %-:%
* “collaboration diagram” in UML 1.x ",
* focuses on exchanging few messages between (many) interaction =

partners in complex configuration

* Timing diagram
°* new in UML 2.0, oscilloscope-type representation, not necessarily metric e

::::::

time N B R A | i

* focuses on (real) time and coordinated state change of interaction
partners over time

* Interaction overview diagram : et
* looks like restricted activity diagram, but isn’t -
° arrange elementary interactions to highlight their interaction = .ﬂ.f;..“.

Modelling with UML, with semantics 144

Main concepts

o] C/S-Protocol 1 /
Interaction— — - — — _ _ _ _ Client Server
rtner
pa e - callService! salf, parametar) >
)) i —— —-— P .r:lbr'k:l\ \
Lifeline — U ST~
l’ \ \l N
ol recaiveResull] jobNo) [\ S
- - 1 1 \ N
- - - ‘\ I, ' \ \ <
- - \/, 1 \‘ ~ ”
OccurrenceSpecification I reply ca

I
aka. EventOccurrence asynchronous signal

Modelling with UML, with semantics 145

Message types

instantiation E}/ent lost & found Messages
\ (i.e.: very slow messages)
1 ™
S0 Message types 1 / "
! I\
A 1 C 11 D
[——-— L I Voo !
e B e >
charTolnt(a') > | - = __hl
<o)k ST e ———
| / |“"f—)'_'__-\—"_—.r—.|
/ "
/ non-instantaneous
termination Event Message

Modelling with UML, with semantics 146

o

Activation
external CfS-ProtocoI 2 /
Event ~~ _ Client Server

_:': callService(self, parameter)

L = ——— >

activation bar =1 jobNo = nextNumber()

activation — 1
suspended

jobParameter.store(jobNo, parameter, client)

A

waitingClients.ng(client)

2
&
A

;Ipendingﬁequests,nq{jnbﬂﬂ} A

result = execute(jobParameters.dq())

(non-UML)
(tlngchents dq()

warp lines = |~ /-I\: receiveResult(jobNo, result) lj\l
T

N
nested activation

Modelling with UML, with semantics 147

Vorführender
Präsentationsnotizen
ExecutionOccurrenceSpecification

Usage: Use case scenarios

* Interaction participants are
actors and systems rather
than classes and objects.

* May be refined successively.

* Useful also for specifying

{00l Check-In at terminal /

high-level non-functional
requirements such as
response times.

* All kinds of interaction
diagrams may be applied,
depending on the
circumstances.

O Check-In-
Machine
Passenger
I
insert card -
<=2s Z| initialisation, load data
P S greeting with name__
Check-In atterminal / O e
Machine
Passenger
insert card -
ref analyse card
alt [credit card] check data with
. . ZI bookings database
P greeting with name_ |
etk greeting with name [« read name
. ntutuiteiet ittty check data with
< bookings database

Modelling with UML, with semantics

148

Usage: Class interactions

* Interaction participants are
classes and objects rather than
actors and systems.

* Again, successive refinement
may be applied in different styles:

* break down processing of
messages

° break down structure of
interaction participants.

* All kinds of interaction diagrams
may be applied, depending on the
circumstances.

Modelling with UML, with semantics

B C/S-Protocol 1 /

Client

call Sarvicel sall. parameatar |

receivaRasuly HdMr)

e

CfS-ProtocoI 2/

start()

Client

Server

> callService(self, parameter)

N
(—_l jobNo = nextNumber()

:I jobParameter.store(jobNo, parameter, client)

:l waitingClients.ng(client)

;|pendingRequests.nq{joch} %

T

I:I result = execute(jobParameters.dq())

receiveResult(jobNo, result)

done

Zl waitingClients.dq()

149

Usage: Test cases

Like any other interaction, but with a different intention.

idﬂl‘ir{i,ﬂ,‘ﬂ_6|ﬁ_4 ™™ Check In (automatic) too much luggage

teest goal
If a passenger has too many pieces of luggage and tries to check in

using the check in machine, he should be referred to the check in
counter.

precondilion
passenger is booked on respective flight

argumenls
luggage, bonus mile card, booking data

reslt
passenger is referred to counter

postcandilion
luggage Is not checked in, passenger is checked in

remarks, open questions
none

Modelling with UML, with semantics

Typically accompanied by a tabular description of purpose, expected parameters and
result (similar to use case description).

150

Usage: Timing specification

* Forembedded and real-time systems,
it may be important to specify absolute
timings and state evolution over time.

* This is not readily expressed in
sequence diagrams, much less
communication diagrams.

* UML 2.0 introduces timing diagrams
for this purpose.

Modelling with UML, with semantics

server behavior /

[job processing |

-—

(&<

\

e=(oene an)
= oompasion

[EX client behavior / |

]

J

t=now callService(self, parameter)

<=Jg

<={+10s <

BB C/S protocol /
e D

Y ..\

receiveResult(jobNo)

BEN C/S protocol /

Server

Client

computation
idle
receive query

job issued

busy
waiting

L !

1
’?i:all- :jnhNn , receiveResult(jobNo)
1Service V !

S P P AP VAR SRR W

151

Abstraction in timing diagram

* An alternative syntax presents states not
on the vertical axis but as hexagons on
the lifeline.

* Timing diagrams present the
coordination of (the states of) several
objects over (real) time.

Modelling with UML, with semantics

server behavior /

[job processing |

-—

O

\

(oo o)
= D

[EH client behavior /' |

]
\ J

Protocol abstraction /

Server

< idle chv.queryX idle ><:omputation>< idle >

Client <

':‘call- ijnan ireceiveResuIl(jobNo)
! Service W \

busy job issued waiting X busy >
]]] ~
| | -
t=now <=t+2s <=t+10s

Protocol abstraction /

Server

Client

computafion
i 1]
receive quary

job issued

buey
waitimg

job processing

_<

>_

A
icall-
| Barvion

1
| fecaiveRasulfjobMo)

delegate job

p—

0 1

RS RN DRAE DR B S

T

[=r

152

Usage: Interaction overview

* Organize large number of interactions in a more visual style
* Defined as equivalent to using interaction operators

sequence equivalent to seq - -

choice/merge
equivalent to alt/opt

]! Check-In (automatic) /

¥

ref) jogin passenger

W

lret) submit luggage
J

il

ref) print boarding pass

v
®

also allowed: fork/join

(said to be equivalent to par, but ...)

Modelling with UML, with semantics

153

Complex interactions

A complex interaction is like a functional expression:
° an InteractionOperator,

one or several InteractionOperands (separated by dashed lines),
(and sometimes also numbers or sets of signals).

] Check-In (automatic) /O

Check-In-
X Machine
Interaction
~

Passenger
Operator ~ |~

Interaction\
Fragment ~

Interaction™ |
Operand

Modelling with UML, with semantics

154

Interaction operators (overview)

* strict

* operand-wise sequencing
* seq

* lifeline-wise sequencing
* loop

* repeated seq

® par
* interleaving of events

®* region (aka. “critical”)
* suspending interleaving

®* consider
* restrict model to specific messages
* i.e. allow anything else anywhere

®* ignore
* dual to consider

Modelling with UML, with semantics

ref
° macro-expansion of fragment

alt

* alternative execution
opt

* optional execution

* syntactic sugar for alt
break

* abort execution

* sometimes written as “brk”

assert
° remove uncertainty in specification
* j.e. declare all traces as valid
neg
* declare all traces as invalid
(— three-valued semantics)

155

Main concepts (metamodel)

Modelling with UML, with semantics

InteractionFragment -
Lifeline ——| Interaction CombinedFragment
interactionOperator:
InteractionOperator
Message : T
@ =
<<enumeration>> = = InteractionOperand
J 2
InteractionOperator g Z'E P |’_
seq, alt, opt, par, strict, E &
loop, break, region, “ =
neg, assert, ignore, consider
MessageEnd
PaN
EventOccurrence Gate
Specification

156

Semantics

®* The meaning of an interaction is

* a set of valid traces, plus BRI C/SProtocol 1 /
° asetof invalid traces. [Ciient | Server
callService] salf, parameter |
* Traces are made up of occurrences of a1 oo | d
events such as b) BN
* sending/receiving a message, cl f
* instantiating/terminating an object, or
* time/state change events. This diagram contains the following

seven constraints:

* Two types of constraints determine the 1) a—d, e—b, foc

valid traces: 2) a—b, b—c, d—e, e—f
1) send occurs before receive,
2) order on lifelines is definite. The set of resulting traces is:

{a.d.e.b.f.c, a.d.e.f.b.c}.

Modelling with UML, with semantics 157

