Unified Modeling Language 2

Interactions

A first glimpse

all three are semantically equivalent

History and predecessors

- Simple sequence diagrams
 - 1990's
 - Message Sequence Charts (MSCs) used in TelCo-industry
 - several OO-methods use sequence diagrams
- Complex sequence diagrams
 - 1996: Complex MSCs introduced in standard MSC96
 - 1999: Life Sequence Charts (LSCs)
- Communication diagrams
 - 1991: used in Booch method
 - 1994: used in Cook/Daniels: Syntropy
- Timing diagrams
 - traditionally used in electrical engineering
 - 1991: used in Booch method
 - 1993: used in early MSCs
- Interaction overview
 - 1996: high-level MSCs (graphs of MSCs as notational alternative)

Usage scenarios

- Class/object interactions
 - design or document message exchange between objects
 - express synchronous/asynchronous messages, signals and calls, activation, timing constraints
- Use case scenarios
 - illustrate a use case by concrete scenario
 - useful in design/documentation of business processes (i.e. analysis phase and reengineering)
- Test cases
 - describe test cases on all abstraction levels
- Timing specification/documentation
- Interaction overview
 - organize a large number of interactions in a more visual style
 - defined as equivalent to using interaction operators

TP-AAA.CIA-4	^{Nuer} Einchecken (Automatisch) mit zuvie Gepäck
Wern ein Pa beim Autors Schalter ver	enagier zuviele Gepäckettlicke hat, soll er aten-Check-In auf den Check-In am wiesen werden
Possagier ist	auf Plug gebucht
Kaffer, Neil	enkarte, Buchungedateneatz
Dae reetlich Paesagier wi	e Gepäck wird nicht angenommen, der rd an den Schalter verwiesen.
Passagier un Passagier un Plug angeme	d Teile seines Gepäcks sind auf den idet.
Amerikangen, siltere Passite Kottimet	

Syntactical variants

- Sequence diagram
 - traditional sequence diagrams + interaction operators
 - focuses on exchanging many messages in complex patterns among few interaction partners
- Communication diagram
 - "collaboration diagram" in UML 1.x
 - focuses on exchanging few messages between (many) interaction partners in complex configuration
- Timing diagram
 - new in UML 2.0, oscilloscope-type representation, not necessarily metric time
 - focuses on (real) time and coordinated state change of interaction partners over time
- Interaction overview diagram
 - looks like restricted activity diagram, but isn't
 - arrange elementary interactions to highlight their interaction

Exectnang		
Antrage		
Rahe		
	dant (MSr	
wartend	Autuden	
Antrage gesendet		
beschäftigt		
	0 I 2 3 4 5 4	Ì

Checkin (Automatisch)/	
Passagier averables	
Reg & Platz within	
	v áck aufgeben
ě	

Activation

Usage: Use case scenarios

- Interaction participants are actors and systems rather than classes and objects.
- May be **refined** successively.
- Useful also for specifying high-level non-functional requirements such as response times.
- All kinds of interaction diagrams may be applied, depending on the circumstances.

Usage: Class interactions

- Interaction participants are classes and objects rather than actors and systems.
- Again, successive refinement may be applied in different styles:
 - break down processing of messages
 - break down structure of interaction participants.
- All kinds of interaction diagrams may be applied, depending on the circumstances.

- Like any other interaction, but with a different intention.
- Typically accompanied by a **tabular description** of purpose, expected parameters and result (similar to use case description).

ITF-AAA.CIA-4	name Check In (automatic) too much luggage	
If a passenger has too many pieces of luggage and tries to check in using the check in machine, he should be referred to the check in counter.		
precondition passenger is booked on respective flight		
^{arguments} luggage, bonus mile card, booking data		
passenger is referred to counter		
luggage is not checked in, passenger is checked in		
remarks, open questions		
none		

Usage: Timing specification

• For **embedded** and **real-time** systems, it may be important to specify absolute timings and state evolution over time.

 This is not readily expressed in sequence diagrams, much less communication diagrams.

• UML 2.0 introduces **timing diagrams** for this purpose.

Abstraction in timing diagram

- An alternative syntax presents states not on the vertical axis but as hexagons on the lifeline.
- Timing diagrams present the coordination of (the states of) several objects over (real) time.

Usage: Interaction overview

- Organize large number of interactions in a more visual style
- Defined as equivalent to using interaction operators

also allowed: fork/join (said to be equivalent to par, but ...)

Complex interactions

- A complex interaction is like a functional expression:
 - an InteractionOperator,
 - one or several InteractionOperands (separated by dashed lines),
 - (and sometimes also numbers or sets of signals).

- strict
 - operand-wise sequencing
- seq
 - lifeline-wise sequencing
- loop
 - repeated seq
- par
 - interleaving of events
- region (aka. "critical")
 - suspending interleaving
- consider
 - restrict model to specific messages
 - i.e. allow anything else anywhere
- ignore
 - dual to consider

- ref
 - macro-expansion of fragment
- alt
 - alternative execution
- opt
 - optional execution
 - syntactic sugar for alt
- break
 - abort execution
 - sometimes written as "brk"
- assert
 - remove uncertainty in specification
 - i.e. declare all traces as valid
- neg
 - declare all traces as invalid
 (→ three-valued semantics)

Modelling with UML, with semantics

Main concepts (metamodel)

Semantics

- The meaning of an interaction is
 - a set of valid traces, plus
 - a set of invalid traces.
- Traces are made up of occurrences of events such as
 - sending/receiving a message,
 - instantiating/terminating an object, or
 - time/state change events.
- Two types of constraints determine the valid traces:
 - 1) send occurs before receive,
 - 2) order on lifelines is definite.

This diagram contains the following seven constraints:

1) $a \rightarrow d$, $e \rightarrow b$, $f \rightarrow c$ 2) $a \rightarrow b$, $b \rightarrow c$, $d \rightarrow e$, $e \rightarrow f$

The set of resulting traces is: { a.d.e.b.f.c, a.d.e.f.b.c }.