
140Modelling with UML, with semantics

Unified Modeling Language 2

Interactions

141Modelling with UML, with semantics

A first glimpse

sequence diagram

communication
diagram

timing diagram

all three are
semantically
equivalent

142Modelling with UML, with semantics

History and predecessors

• Simple sequence diagrams
• 1990‘s

• Message Sequence Charts (MSCs) used in TelCo-industry
• several OO-methods use sequence diagrams

• Complex sequence diagrams
• 1996: Complex MSCs introduced in standard MSC96
• 1999: Life Sequence Charts (LSCs)

• Communication diagrams
• 1991: used in Booch method
• 1994: used in Cook/Daniels: Syntropy

• Timing diagrams
• traditionally used in electrical engineering
• 1991: used in Booch method
• 1993: used in early MSCs

• Interaction overview
• 1996: high-level MSCs (graphs of MSCs as notational alternative)

Vorführender
Präsentationsnotizen
SD93 in 2730: Rainer Schlör, Werner Damm: Specification and Verification of System Level Hardware designs using timing diagrams. Proc Eur Conf Design Automation, 1993

143Modelling with UML, with semantics

Usage scenarios

• Class/object interactions
• design or document message exchange between objects
• express synchronous/asynchronous messages, signals and calls,

activation, timing constraints

• Use case scenarios
• illustrate a use case by concrete scenario
• useful in design/documentation of business processes (i.e. analysis

phase and reengineering)

• Test cases
• describe test cases on all abstraction levels

• Timing specification/documentation

• Interaction overview
• organize a large number of interactions in a more visual style
• defined as equivalent to using interaction operators

144Modelling with UML, with semantics

Syntactical variants

• Sequence diagram
• traditional sequence diagrams + interaction operators
• focuses on exchanging many messages in complex patterns among few

interaction partners

• Communication diagram
• “collaboration diagram” in UML 1.x
• focuses on exchanging few messages between (many) interaction

partners in complex configuration

• Timing diagram
• new in UML 2.0, oscilloscope-type representation, not necessarily metric

time
• focuses on (real) time and coordinated state change of interaction

partners over time

• Interaction overview diagram
• looks like restricted activity diagram, but isn’t
• arrange elementary interactions to highlight their interaction

145Modelling with UML, with semantics

Main concepts

Lifeline

Interaction
partner

call

asynchronous signal
replyOccurrenceSpecification

aka. EventOccurrence

146Modelling with UML, with semantics

Message types

termination Event
non-instantaneous

Message

lost & found Messages
(i.e.: very slow messages)

instantiation Event

147Modelling with UML, with semantics

Activation

activation bar

activation
suspended

nested activation

warp lines
(non-UML)

external
Event

Vorführender
Präsentationsnotizen
ExecutionOccurrenceSpecification

148Modelling with UML, with semantics

Usage: Use case scenarios

• Interaction participants are
actors and systems rather
than classes and objects.

• May be refined successively.

• Useful also for specifying
high-level non-functional
requirements such as
response times.

• All kinds of interaction
diagrams may be applied,
depending on the
circumstances.

149Modelling with UML, with semantics

Usage: Class interactions

• Interaction participants are
classes and objects rather than
actors and systems.

• Again, successive refinement
may be applied in different styles:
• break down processing of

messages
• break down structure of

interaction participants.

• All kinds of interaction diagrams
may be applied, depending on the
circumstances.

150Modelling with UML, with semantics

Usage: Test cases

• Like any other interaction, but with a different intention.

• Typically accompanied by a tabular description of purpose, expected parameters and
result (similar to use case description).

151Modelling with UML, with semantics

Usage: Timing specification

• For embedded and real-time systems,
it may be important to specify absolute
timings and state evolution over time.

• This is not readily expressed in
sequence diagrams, much less
communication diagrams.

• UML 2.0 introduces timing diagrams
for this purpose.

152Modelling with UML, with semantics

Abstraction in timing diagram

• An alternative syntax presents states not
on the vertical axis but as hexagons on
the lifeline.

• Timing diagrams present the
coordination of (the states of) several
objects over (real) time.

153Modelling with UML, with semantics

Usage: Interaction overview

also allowed: fork/join
(said to be equivalent to par, but …)

choice/merge
equivalent to alt/opt

sequence equivalent to seq

• Organize large number of interactions in a more visual style
• Defined as equivalent to using interaction operators

154Modelling with UML, with semantics

Complex interactions

Interaction
Operator

Interaction
Fragment

Interaction
Operand

• A complex interaction is like a functional expression:
• an InteractionOperator,
• one or several InteractionOperands (separated by dashed lines),
• (and sometimes also numbers or sets of signals).

155Modelling with UML, with semantics

Interaction operators (overview)

• strict
• operand-wise sequencing

• seq
• lifeline-wise sequencing

• loop
• repeated seq

• par
• interleaving of events

• region (aka. “critical”)
• suspending interleaving

• consider
• restrict model to specific messages
• i.e. allow anything else anywhere

• ignore
• dual to consider

• ref
• macro-expansion of fragment

• alt
• alternative execution

• opt
• optional execution
• syntactic sugar for alt

• break
• abort execution
• sometimes written as “brk”

• assert
• remove uncertainty in specification
• i.e. declare all traces as valid

• neg
• declare all traces as invalid

(→ three-valued semantics)

156Modelling with UML, with semantics

Main concepts (metamodel)

157Modelling with UML, with semantics

Semantics

• The meaning of an interaction is
• a set of valid traces, plus
• a set of invalid traces.

• Traces are made up of occurrences of
events such as
• sending/receiving a message,
• instantiating/terminating an object, or
• time/state change events.

• Two types of constraints determine the
valid traces:

1) send occurs before receive,
2) order on lifelines is definite.

a
b

c

d
e

f

This diagram contains the following
seven constraints:

1) a→d, e→b, f→c
2) a→b, b→c, d→e, e→f

The set of resulting traces is:
{ a.d.e.b.f.c, a.d.e.f.b.c }.

