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Interactions
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A first glimpse

sequence diagram

communication
diagram

timing diagram

all three are 
semantically 
equivalent
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History and predecessors

• Simple sequence diagrams
• 1990‘s

• Message Sequence Charts (MSCs) used in TelCo-industry
• several OO-methods use sequence diagrams

• Complex sequence diagrams
• 1996: Complex MSCs introduced in standard MSC96
• 1999: Life Sequence Charts (LSCs)

• Communication diagrams
• 1991: used in Booch method
• 1994: used in Cook/Daniels: Syntropy

• Timing diagrams
• traditionally used in electrical engineering
• 1991: used in Booch method
• 1993: used in early MSCs

• Interaction overview
• 1996: high-level MSCs (graphs of MSCs as notational alternative)

Vorführender
Präsentationsnotizen
SD93 in 2730: Rainer Schlör, Werner Damm: Specification and Verification of System Level Hardware designs using timing diagrams. Proc Eur Conf Design Automation, 1993
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Usage scenarios

• Class/object interactions
• design or document message exchange between objects
• express synchronous/asynchronous messages, signals and calls, 

activation, timing constraints

• Use case scenarios
• illustrate a use case by concrete scenario
• useful in design/documentation of business processes (i.e. analysis 

phase and reengineering)

• Test cases
• describe test cases on all abstraction levels

• Timing specification/documentation

• Interaction overview
• organize a large number of interactions in a more visual style
• defined as equivalent to using interaction operators
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Syntactical variants

• Sequence diagram
• traditional sequence diagrams + interaction operators
• focuses on exchanging many messages in complex patterns among few 

interaction partners

• Communication diagram
• “collaboration diagram” in UML 1.x
• focuses on exchanging few messages between (many) interaction 

partners in complex configuration

• Timing diagram
• new in UML 2.0, oscilloscope-type representation, not necessarily metric 

time
• focuses on (real) time and coordinated state change of interaction 

partners over time

• Interaction overview diagram
• looks like restricted activity diagram, but isn’t
• arrange elementary interactions to highlight their interaction
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Main concepts

Lifeline

Interaction
partner

call

asynchronous signal
replyOccurrenceSpecification

aka. EventOccurrence
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Message types

termination Event
non-instantaneous

Message

lost & found Messages
(i.e.: very slow messages)

instantiation Event
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Activation

activation bar

activation
suspended

nested activation

warp lines
(non-UML)

external
Event

Vorführender
Präsentationsnotizen
ExecutionOccurrenceSpecification
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Usage: Use case scenarios

• Interaction participants are 
actors and systems rather 
than classes and objects.

• May be refined successively.

• Useful also for specifying 
high-level non-functional 
requirements such as 
response times.

• All kinds of interaction 
diagrams may be applied, 
depending on the 
circumstances.
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Usage: Class interactions

• Interaction participants are 
classes and objects rather than 
actors and systems.

• Again, successive refinement
may be applied in different styles:
• break down processing of 

messages
• break down structure of 

interaction participants.

• All kinds of interaction diagrams 
may be applied, depending on the 
circumstances.



150Modelling with UML, with semantics

Usage: Test cases

• Like any other interaction, but with a different intention.

• Typically accompanied by a tabular description of purpose, expected parameters and 
result (similar to use case description).
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Usage: Timing specification

• For embedded and real-time systems, 
it may be important to specify absolute 
timings and state evolution over time.

• This is not readily expressed in 
sequence diagrams, much less 
communication diagrams.

• UML 2.0 introduces timing diagrams
for this purpose.
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Abstraction in timing diagram

• An alternative syntax presents states not 
on the vertical axis but as hexagons on 
the lifeline.

• Timing diagrams present the 
coordination of (the states of) several 
objects over (real) time.
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Usage: Interaction overview

also allowed: fork/join
(said to be equivalent to par, but …)

choice/merge
equivalent to alt/opt

sequence equivalent to seq

• Organize large number of interactions in a more visual style
• Defined as equivalent to using interaction operators
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Complex interactions

Interaction
Operator

Interaction
Fragment

Interaction
Operand

• A complex interaction is like a functional expression:
• an InteractionOperator, 
• one or several InteractionOperands (separated by dashed lines),
• (and sometimes also numbers or sets of signals).
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Interaction operators (overview)

• strict
• operand-wise sequencing

• seq
• lifeline-wise sequencing

• loop
• repeated seq

• par
• interleaving of events

• region (aka. “critical”)
• suspending interleaving

• consider 
• restrict model to specific messages
• i.e. allow anything else anywhere

• ignore
• dual to consider

• ref
• macro-expansion of fragment

• alt
• alternative execution

• opt
• optional execution
• syntactic sugar for alt

• break
• abort execution
• sometimes written as “brk”

• assert
• remove uncertainty in specification
• i.e. declare all traces as valid

• neg
• declare all traces as invalid

( → three-valued semantics)
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Main concepts (metamodel)
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Semantics

• The meaning of an interaction is
• a set of valid traces, plus
• a set of invalid traces.

• Traces are made up of occurrences of 
events such as
• sending/receiving a message,
• instantiating/terminating an object, or
• time/state change events.

• Two types of constraints determine the 
valid traces:

1) send occurs before receive, 
2) order on lifelines is definite.

a
b

c

d
e

f

This diagram contains the following 
seven constraints:

1) a→d,  e→b,  f→c
2) a→b,  b→c,  d→e,  e→f

The set of resulting traces is:
{ a.d.e.b.f.c, a.d.e.f.b.c }.


