Parallelizing
the
Growing Self-Organizing Maps
algorithm using
Software Transactional Memory

Growing Self-Organizing Maps

Is a clustering algorithm.

Growing Self-Organizing Maps

So for example this is what the input looks like:

1.0

0.8

0.6

0.4

0.2

0. %

L eer =T
%o o #e 2% S e
L] s ® g° *» s .
L e LA ® t. '.. 8 '.-. ;
Fo 5 e :.' o °
- ° - ®
B '. . "’.- » ": el ° {. . _|
‘J""‘ ® v s TECe * . o * 2% e 0 o ® ° 1.".. °
L] - L . ..- - L] L ° o® o a] - -] ® 2 &
P o ® e’ e o5t e ®9% = " - * a8 5 .o ®
a @ [L™ ..z ‘, L] a® - 0'- & -..‘f"' -: [] s @ °
e } e» s a o oo o °0°, ¥ s %0 ° o e _
s, o . ® -.-'..HI e :.' ® " ‘.' W . ’..'}. :.l o . .
| e e '.. .'.'.‘.: ":v"‘o.- - e @ -"“.'.“:.0.:. & ? |
Y * % - o e a®
RPN 4 @ o ® e °
e® & ° ae . on %
”v. ® : ™ b
e "% & crLt ..."l
- - & }. aln og - -‘. - .-. - .' ° .. .
o .- @ .": s o ° oo .:.'!.. -..1 ‘...0..; :~ . °
T ST W Rt JE R R S A2 kT cove®
- - oo - @ -. - a P ’.. -
r e 5 @ ® e o, ° o® s = "® ® ee e % e g -
.. - .. - : ...‘ !‘... .‘..- LY - ..‘l.. e ° -

LS ": f:.d'.!. oPise ° o . ‘::.': LI % _o°
o L] e o9 joe @ = 3 I. - s e |
"- . o o % M ."

° % , W te o E - e
8 - o, ¥ ™ e o .

.. - 2y °° "

L - -
.ﬁ' .c ® -.'..'.-
Ik By [a -='j 1
0 0.2 0.4 0.6 0.8 1.0

Growing Self-Organizing Maps

And this is the output you would get:

1.0

0.8

0.6 |

0.4

0.2

D'%.D 0.2 0.4 0.6 0.8

Organizing Maps

Growing Self

Bonus: output is a planar graph.

Organizing Maps

Growing Self

So how to you generate this output?

Organizing Maps

Growing Self

For each input point point p ...

X

Organizing Maps

Growing Self

<

you find the closest node n,, in the output graph ...

n, closer to p.

Organizing Maps

and pull every node ' in a neighborhood of

Growing Self

Growing Self-Organizing Maps
Growth:

o start with a minimal number of nodes,

keep track of the accumulated error for each node,

check whether it exceeds a certain threshold,

propagate the error to neighbours for internal nodes,

create new neighbours for boundary nodes.

Growing Self-Organizing Maps
Parallelization:

+ this thing is slow (~ O(n?)),

« need to exploit parallelization potential,

« special case considered here: Multiprocessor/Multicore
systems,

 not GPUs,

« no distributed computing.

Organizing Maps

Growing Self

No problem:
1.0

Organizing Maps

Growing Self

Problem:

Organizing Maps

Growing Self

Problem:

0.8

0.6

0.4

0.2

1.0

Growing Self-Organizing Maps

Problem:

« need a way to synchronize parallel tasks.

Traditional solution:

« locks, semaphores, critical sections,
« get complex quickly,
« don't compose,

« error prone (deadlocks, livelocks, resource starvation,
priority inversion)

Organizing Maps

Growing Self

(do you see the solution?):

Deadlock example

Growing Self-Organizing Maps
Deadlock example (do you see the solution?)

Or: use a different concurrency abstraction, namely
Software Transactional Memory.

Software Transactional Memory

IS @ concurrency abstraction that:

« brings transaction semantics known from databases to
software/programming,

e was proposed in the 95s,

« can be implemented VERY differently,
IS easier to reason about than locking,
« keeps a shared memory model,

« doesn't use user level locks,

» is still an area of research.

Software Transactional Memory

Swapping the values of two variables:

swap a b = atomically (do
value a <- readTVar a
value b <- readTVar b
writeTVar b value a
writeTVar a value b)

Software Transactional Memory
also has limits:

 transactions mean restarts,

- restarts disallow side effects,

« restarts can have surprising performance characteristics.

Haskell's implementation:

« controls side effects through the type system,
« doesn't use locking,

e uses an optimistic approach.

Applying STM to GSOM

means figuring out:

« thread granularity,
« transaction granularity,

e invariants between transactions.

Applying STM to GSOM

Thread granularity:

« one point p per thread.

Transaction granularity:

. figure out n,, in one transaction (T}),

- move n, and its neighbors closer to p in another (T%).

Applying STM to GSOM

Transaction invariant:

* My, has minimum distance to p at the end of 177 and at
the beginning of 1'2,

- is ensured by keeping track of (p, n,) pairs in a lookup
table ¢,

« checking £ whenever a node 1 is modified and updating
t if necessary,

« modifications happen only during 1°2,

« transaction semantics guarantee correctness.

Results:

Around 20% speedup for 2 dimensions, 2 threads and 2
cores.
Why so slow?

« most expensive transaction is 11,

« T'1 is highly likely to be restarted,

 restarts kill performance gains.

Results:

Even worse for higher dimensions (i.e. around 200):

e running time degenerates to being unusable.

But for this scenario a different parallelization strategy
would be more appropriate:

« parallelize distance measure calculations (possibly on
GPUs).

Thank you for your patience!

