
Parallelizing
the

Growing Self-Organizing Maps
algorithm using

Software Transactional Memory

Growing Self-Organizing Maps
Is a clustering algorithm.

Growing Self-Organizing Maps
So for example this is what the input looks like:

Growing Self-Organizing Maps
And this is the output you would get:

Growing Self-Organizing Maps
Bonus: output is a planar graph.

Growing Self-Organizing Maps
So how to you generate this output?

Growing Self-Organizing Maps
For each input point point ...p

Growing Self-Organizing Maps
you find the closest node in the output graph ...np

Growing Self-Organizing Maps
and pull every node in a neighborhood of closer to .n′ np p

Growing Self-Organizing Maps
Growth:

start with a minimal number of nodes,

keep track of the accumulated error for each node,

check whether it exceeds a certain threshold,

propagate the error to neighbours for internal nodes,

create new neighbours for boundary nodes.

Growing Self-Organizing Maps
Parallelization:

this thing is slow (~),

need to exploit parallelization potential,

special case considered here: Multiprocessor/Multicore
systems,

not GPUs,

no distributed computing.

O()n2

Growing Self-Organizing Maps
No problem:

Growing Self-Organizing Maps
Problem:

Growing Self-Organizing Maps
Problem:

Growing Self-Organizing Maps
Problem:

need a way to synchronize parallel tasks.

Traditional solution:

locks, semaphores, critical sections,

get complex quickly,

don't compose,

error prone (deadlocks, livelocks, resource starvation,
priority inversion)

Growing Self-Organizing Maps
Deadlock example (do you see the solution?):

Growing Self-Organizing Maps
Deadlock example (do you see the solution?)

Or: use a different concurrency abstraction, namely
Software Transactional Memory.

Software Transactional Memory
is a concurrency abstraction that:

brings transaction semantics known from databases to
software/programming,

was proposed in the 95s,

can be implemented VERY differently,

is easier to reason about than locking,

keeps a shared memory model,

doesn't use user level locks,

is still an area of research.

Software Transactional Memory
Swapping the values of two variables:

 swap a b = atomically (do
 value_a <- readTVar a
 value_b <- readTVar b
 writeTVar b value_a
 writeTVar a value_b)

Software Transactional Memory
also has limits:

transactions mean restarts,

restarts disallow side effects,

restarts can have surprising performance characteristics.

Haskell's implementation:

controls side effects through the type system,

doesn't use locking,

uses an optimistic approach.

Applying STM to GSOM
means figuring out:

thread granularity,

transaction granularity,

invariants between transactions.

Applying STM to GSOM
Thread granularity:

one point per thread.

Transaction granularity:

figure out in one transaction ,

move and its neighbors closer to in another .

p

np ()T1

np p ()T2

Applying STM to GSOM
Transaction invariant:

 has minimum distance to at the end of and at
the beginning of ,

is ensured by keeping track of pairs in a lookup
table ,

checking whenever a node is modified and updating
 if necessary,

modifications happen only during ,

transaction semantics guarantee correctness.

np p T1
T 2

(p,)np

t

t n
t

T 2

Results:
Around 20% speedup for 2 dimensions, 2 threads and 2
cores.
Why so slow?

most expensive transaction is ,

 is highly likely to be restarted,

restarts kill performance gains.

T 1

T 1

Results:
Even worse for higher dimensions (i.e. around 200):

running time degenerates to being unusable.

But for this scenario a different parallelization strategy
would be more appropriate:

parallelize distance measure calculations (possibly on
GPUs).

Thank you for your patience!

