Modularity of Ontologies in an Arbitrary Institution

Yazmin Angelica Ibañez¹ Till Mossakowski² Don Sannella³ Andrzej Tarlecki⁴

¹University of Bremen

²Faculty of Computer Science, Otto-von-Guericke University of Magdeburg

³Laboratory for Foundations of Computer Science, University of Edinburgh

⁴Institute of Informatics, University of Warsaw

February 18, 2015

Size of ontologies $\operatorname{SNOWMED}\,\operatorname{CT}^1$ or GALEN^2 is huge

 \Rightarrow reuse only those parts that cover all the knowledge about that subset of relevant terms.

This leads to the module extraction problem:

given a subset Σ of the signature of an ontology \mathcal{O} , find a (minimal) subset of that ontology that is "relevant" for the terms in Σ .

¹http://ihtsdo.org/snomed-ct/

²http://www.opengalen.org/

Modules in OWL

Example

Male	$\equiv Human \sqcap \neg Female,$	Father	⊑ Human,
Human	$\sqsubseteq \forall has_child.Human,$	Father	$\equiv Male \sqcap \exists has_child.\top$

Terms of interest: $\Sigma = \{Male, Human, Female, has_child\}$. Let $\mathcal{M} = grey shaded axioms$. Then

 \mathcal{M} is a Σ -module of \mathcal{O} , i.e. \mathcal{O} has the same Σ -consequences as \mathcal{M} .

E.g., Male $\sqcap \exists has_child. \top \sqsubseteq Human$ follows from \mathcal{O} , but also from \mathcal{M} .

The same in first-order logic

 $\begin{array}{l} \forall x. \mathsf{Male}(x) & \leftrightarrow \mathsf{Human}(x) \land \neg \mathsf{Female}(x), \\ \forall x. \mathsf{Human}(x) & \rightarrow \forall y. \mathsf{has_child}(x, y) \rightarrow \mathsf{Human}(y) \\ \forall x. \mathsf{Father}(x) & \rightarrow \mathsf{Human}(x), \\ \forall x. \mathsf{Father}(x) & \leftrightarrow \mathsf{Male}(x) \land \exists y. \mathsf{has_child}(x, y) \end{pmatrix} \quad (\blacksquare) \quad ($

Yazmin Angelica Ibañez, Till Mossakowski, E

Modularity of Ontologies

- Generalise the notion of module (extraction) to an arbitrary logical system
- Provide a semantics for module extraction in DOL

Institutions (Goguen/Burstall 1984)

Definition

An institution consists of

• a category Sign of signatures,

• a sentence functor **Sen**: **Sign** $\longrightarrow \mathbb{S}et$

• for $\sigma \colon \Sigma \longrightarrow \Sigma'$, we have $\operatorname{Sen}(\sigma) \colon \operatorname{Sen}(\Sigma) \longrightarrow \operatorname{Sen}(\Sigma')$,

• a model functor $\mathbf{Mod}: \mathbf{Sign}^{op} \longrightarrow \mathbb{C}at$

• for $\sigma \colon \Sigma \longrightarrow \Sigma'$, we have $Mod(\sigma) \colon Mod(\Sigma') \longrightarrow$,

• a satisfaction relation $\models_{\Sigma} \subseteq |Mod(\Sigma)| \times Sen(\Sigma)$, such that the following satisfaction condition holds:

$$M' \models_{\Sigma'} \mathbf{Sen}(\sigma)(\varphi)$$
 if and only if $\mathbf{Mod}(\sigma)(M)' \models_{\Sigma} \varphi$

or shortly

$$M'\models_{\Sigma'} \sigma(arphi)$$
 if and only if $M'|_{\sigma}\models_{\Sigma} arphi$

Institutions: formalisation of notion of logical system

Yazmin Angelica Ibañez, Till Mossakowski, D

Modularity of Ontologies

February 18, 2015 6 / 24

Sample institutions

- propositional logic
- description logics, OWL
- first-order, higher-order logic, polymorphic logics
- logics of partial functions
- modal logic, epistemic logic, deontic logic, logics of knowledge and belief, agent logics
- μ -calculus, dynamic logic
- spatial logics, temporal logics, process logics, object logics
- intuitionistic logic
- linear logic, non-monotone logics, fuzzy logics
- paraconsistent logic, database query languages

Inclusive Categories

Definition

An inclusive category is a category with a broad subcategory^{*a*} which is a partially ordered class with a least element (denoted \emptyset), non-empty products (denoted \cap) and finite coproducts (denoted \cup), such that for each pair of objects *A*, *B*, the following is a pushout in the category:

^aThat is, with the same objects as the original category.

For any objects A and B of an inclusive category, we write $A \subseteq B$ if there is an inclusion from A to B; the unique such inclusion will then be denoted by $\iota_{A\subseteq B} \colon A \hookrightarrow B$, or simply $A \hookrightarrow B$.

An institution $I = (Sign, Sen, Mod, \models)$ is inclusive if

- Sign is an inclusive category,
- Sen is inclusive and preserves intersections,^a and
- each model category is inclusive, and reduct functors are inclusive.^b

Moreover, we asume that reducts w.r.t. signature inclusions are surjective on objects.

^aThat is, for any family of signatures $\mathbb{S} \subseteq |Sign|$, $Sen(\bigcap \mathbb{S}) = \bigcap_{\Sigma \in \mathbb{S}} Sen(\Sigma)$. ^bThat is, we have a model functor Mod: $Sign^{op} \to \mathbb{I}\mathbb{C}at$, where $\mathbb{I}\mathbb{C}at$ is the (quasi)category of inclusive categories and inclusive functors. In inclusive institutions, if $\Sigma_1 \subseteq \Sigma_2$ via an inclusion $\iota \colon \Sigma_1 \hookrightarrow \Sigma_2$ and $M \in \mathbf{Mod}(\Sigma_2)$, we write $M|_{\Sigma_1}$ for $M|_{\iota}$.

 $Sen(\iota)$: $Sen(\Sigma_1) \rightarrow Sen(\Sigma_2)$ is the usual set-theoretic inclusion, hence its application may be omitted.

(Weakly) Union-exact Institutions

Definition

An inclusive institution *I* is called (weakly) union-exact, if all intersection-union signature pushouts in **Sign** are (weakly) amalgamable. More specifically, the latter means that for any pushout

in **Sign**, any pair $(M_1, M_2) \in Mod(\Sigma_1) \times Mod(\Sigma_2)$ that is compatible in the sense that M_1 and M_2 reduce to the same $(\Sigma_1 \cap \Sigma_2)$ -model can be amalgamated to a unique (or weakly amalgamated to a not necessarily unique) $(\Sigma_1 \cup \Sigma_2)$ -model: there exists a (unique) $M \in Mod(\Sigma_1 \cup \Sigma_2)$ that reduces to M_1 and M_2 , respectively.

3

(日) (周) (三) (三)

A presentation in an institution $I = (Sign, Sen, Mod, \models)$ is a pair

 $P=(\Sigma,\Phi),$

where $\Sigma \in |\mathbf{Sign}|$ is a signature and $\Phi \subseteq \mathbf{Sen}(\Sigma)$ is a set of Σ -sentences.

 Σ is also denoted as Sig(P), Φ as Ax(P). We extend the model functor to presentations and write $\mathbf{Mod}(\Sigma, \Phi)$ (or sometimes $\mathbf{Mod}(\Phi)$ if the signature is clear) for the full subcategory of $\mathbf{Mod}(\Sigma)$ that consists of the models of (Σ, Φ) , i.e., $|\mathbf{Mod}(\Sigma, \Phi)| = \{M \in |\mathbf{Mod}(\Sigma)| \mid M \models_{\Sigma} \Phi\}.$

An ontology \mathcal{O} in a logic given as the institution I is just a set of sentences

For each ontology \mathcal{O} , its signature $Sig(\mathcal{O})$ is the least signature over which all the sentences in \mathcal{O} .

Note: the standard institutional concept to consider ontologies as presentations does not work for the definition of module below.

Consider ontologies $\mathcal{O}' \subseteq \mathcal{O}$ and a signature $\Sigma \in |\mathbf{Sign}|$.

() \mathcal{O} is a model Σ -conservative extension (Σ -mCE) of \mathcal{O}' , if

for every $(Sig(\mathcal{O}') \cup \Sigma)$ -model \mathcal{I}' of \mathcal{O}' , there exists a $(Sig(\mathcal{O}) \cup \Sigma)$ -model \mathcal{I} of \mathcal{O} such that $\mathcal{I}'|_{\Sigma} = \mathcal{I}|_{\Sigma}$.

O is a consequence Σ-conservative extension (Σ-cCE) of O', if for every Σ-sentence α, we have

$$\mathcal{O} \models \alpha \text{ iff } \mathcal{O}' \models \alpha.$$

Model-theoretic Inseparability

For an ontology ${\mathcal O}$ and a signature $\Sigma,$ we define

 $\mathcal{O}\uparrow \Sigma = (\mathsf{Sig}(\mathcal{O}) \cup \Sigma, \mathsf{Ax}(\mathcal{O})).$

Definition

Let \mathcal{O}_1 and \mathcal{O}_2 be ontologies and Σ a signature. Then \mathcal{O}_1 and \mathcal{O}_2 are model Σ -inseparable, written $\mathcal{O}_1 \equiv_{\Sigma}^m \mathcal{O}_2$ if,

 $\{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \in |\text{Mod}(\mathcal{O}_1 {\uparrow} \Sigma)|\} = \{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \in |\text{Mod}(\mathcal{O}_2 {\uparrow} \Sigma)|\}$

Note that in the literature, a simpler condition is usually used:

$$\{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{O}_1\} = \{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{O}_2\}$$

However, this is wrong! Consider:

$$\{C \sqsubseteq C\} \equiv_{\{C,C'\}}^m \{C' \sqsubseteq C'\}$$

 \mathcal{O}_1 and \mathcal{O}_2 are consequence Σ -inseparable, written $\mathcal{O}_1 \equiv_{\Sigma}^s \mathcal{O}_2$, if for all Σ -sentences φ

$$\mathcal{O}_1 \models \varphi \text{ iff } \mathcal{O}_2 \models \varphi$$

Proposition

Model-theoretic inseparability implies consequence inseparability, but not vice versa.

Definition (Kontchakov/Wolter/Zakharyaschev 2011)

An inseparability relation $S = \langle \equiv_{\Sigma}^{S} \rangle_{\Sigma \in |Sign|}$ is a family of equivalence relations. It is monotone if

• for any signatures $\Sigma' \subseteq \Sigma$, $\equiv_{\Sigma}^{S} \subseteq \equiv_{\Sigma'}^{S}$ Intuition:

the inseparability relation gets finer when the signature gets larger

◎ if $\mathcal{O}_1 \subseteq \mathcal{O}_2 \subseteq \mathcal{O}_3$ and $\mathcal{O}_1 \equiv_{\Sigma}^{S} \mathcal{O}_3$ then $\mathcal{O}_1 \equiv_{\Sigma}^{S} \mathcal{O}_2$ and $\mathcal{O}_2 \equiv_{\Sigma}^{S} \mathcal{O}_3$ Intuition:

since larger ontologies capture more of "the knowledge of interest", we also require that any ontology squeezed between an ontology and its inseparable extension is inseparable from both of them.

Proposition

$$\langle \equiv_{\Sigma}^{m} \rangle_{\Sigma \in |Sign|}$$
 and $\langle \equiv_{\Sigma}^{s} \rangle_{\Sigma \in |Sign|}$ are monotone.

< ロト < 同ト < ヨト < ヨト

Robustness

Definition

An inseparability relation $\mathcal{S} = \langle \equiv^{\mathcal{S}}_{\Sigma} \rangle_{\Sigma \in |Sign|}$ is

• robust under signature extensions, if for all ontologies \mathcal{O}_1 and \mathcal{O}_2 and all signatures Σ , Σ' with $\Sigma' \cap (\text{Sig}(\mathcal{O}_1) \cup \text{Sig}(\mathcal{O}_2)) \subseteq \Sigma$

$$\mathcal{O}_1 \equiv_{\Sigma} \mathcal{O}_2 \text{ implies } \mathcal{O}_1 \equiv_{\Sigma'} \mathcal{O}_2$$

robust under replacement if for all ontologies O, O₁ and O₂ and all signatures Σ with Sig(O) ⊆ Σ, we have

$$\mathcal{O}_1 \equiv_{\Sigma} \mathcal{O}_2 \text{ implies } \mathcal{O}_1 \cup \mathcal{O} \equiv_{\Sigma} \mathcal{O}_2 \cup \mathcal{O}$$

• robust under joins, if for all ontologies \mathcal{O}_1 and \mathcal{O}_2 and all signatures Σ with $Sig(\mathcal{O}_1) \cap Sig(\mathcal{O}_2) \subseteq \Sigma$, we have for i = 1, 2

$$\mathcal{O}_1 \equiv_{\Sigma} \mathcal{O}_2$$
 implies $\mathcal{O}_i \equiv_{\Sigma} \mathcal{O}_1 \cup \mathcal{O}_2$

Theorem

Model inseparability is robust under replacement.

In a union-exact inclusive institution, model inseparability is also robust under signature extensions and joins.

Ontology Modules

Definition (Kontchakov/Wolter/Zakharyaschev 2011)

Let ${\mathcal O}$ be an ontology, ${\mathcal M}\subseteq {\mathcal O}$ and Σ a signature. We call ${\mathcal M}$

- a (plain) Σ -S-module of \mathcal{O} induced by \mathcal{S} if $\mathcal{M} \equiv_{\Sigma}^{\mathcal{S}} \mathcal{O}$;
- a self-contained Σ -S-module of \mathcal{O} induced by \mathcal{S} if $\mathcal{M} \equiv^{\mathcal{S}}_{\Sigma \cup Sig(\mathcal{M})} \mathcal{O}$;
- a depleting Σ -*S*-module of \mathcal{O} induced by \mathcal{S} if $\mathcal{O} \setminus \mathcal{M} \equiv_{\Sigma \cup Sig(\mathcal{M})}^{\mathcal{S}} \emptyset$.

Proposition

For any ontology \mathcal{O} , $\mathcal{M} \subseteq \mathcal{O}$ and signature Σ , \mathcal{M} is a Σ -m-module of \mathcal{O} if and only if \mathcal{O} is a model Σ -conservative extension of \mathcal{M} .

Proposition

 $\mathcal{M} \text{ self-contained } \Sigma\text{-}m\text{-}m\text{-}m\text{-}dule \text{ of } \mathcal{O} \Rightarrow \mathcal{M} \text{ (plain) } \Sigma\text{-}m\text{-}m\text{-}dule \text{ of } \mathcal{O}.$

 $\mathcal{M} \text{ depleting } \Sigma\text{-}m\text{-}m\text{-}m\text{-}dule \text{ of } \mathcal{O} \Rightarrow \mathcal{M} \text{ self-contained } \Sigma\text{-}m\text{-}m\text{-}dule \text{ of } \mathcal{O}.$

Robustness for Modules

Robustness under signature restrictions.

A module of an ontology w.r.t. a signature Σ is also a module of this ontology w.r.t. any subsignature of $\Sigma.$

Intuition: We do not need to import a different module when we restrict the set of terms that we are interested in.

Robustness under signature extensions.

A module of an ontology \mathcal{O} w.r.t. a signature Σ is also a module of \mathcal{O} w.r.t. any $\Sigma' \supseteq \Sigma$, if $\Sigma' \cap Sig(\mathcal{O}) \subseteq \Sigma$.

Intuition: we do not need to import a different module when extending the set of relevant terms with terms not from O.

Robustness under replacement.

If \mathcal{M} is a module of \mathcal{O} w.r.t. Σ , then the result of importing \mathcal{M} into another ontology \mathcal{O}' is a module of the result of importing \mathcal{O} into \mathcal{O}' :

 $\mathcal{M} \text{ is } \Sigma \text{-module of } \mathcal{O} \Rightarrow \mathcal{O}' \cup \mathcal{M} \text{ is } \Sigma \text{-module of } \mathcal{O}' \cup \mathcal{O}$

 This is called module coverage in the literature: importing a module does

 not affect its property of being a module.

 Yazmin Angelica Ibañez, Till Mossakowski, C

Modularity of Ontologies

 February 18, 2015
 21 / 24

Proportios	Module Notions			
Toperties	plain	self-contained	depleting	
inseparability	$\mathcal{O}\equiv^m_\Sigma\mathcal{M}$	$\mathcal{O}\equiv^m_{\Sigma\cup {\sf Sig}(\mathcal{M})}\mathcal{M}$	$\mathcal{O}\setminus\mathcal{M}\equiv^m_{\Sigma\cup {\sf Sig}(\mathcal{M})}\emptyset$	
mCE (dCE)	\checkmark	\checkmark	\checkmark	
self-contained	×	\checkmark	\checkmark	
depleting	×	×	\checkmark	
robustness under signature restrictions	\checkmark	\checkmark	\checkmark	
robustness under signature extensions	$\Sigma' \cap Sig(\mathcal{O}) \subseteq \Sigma$ plus weak union-exactness	$\Sigma' \cap Sig(\mathcal{O}) \subseteq \Sigma$ plus weak union-exactness	$\Sigma' \cap Sig(\mathcal{O}) \subseteq \Sigma$ plus weak union-exactness	
robustness under replacement	$Sig(\mathcal{O}')\subseteq \Sigma$	$\overline{Sig(\mathcal{O}')\capSig(\mathcal{O})} \subseteq \Sigma\cupSig(\mathcal{M})$	$Sig(\mathcal{O}') \cap Sig(\mathcal{O}) \ \subseteq \Sigma \cup Sig(\mathcal{M})$	

Yazmin Angelica Ibañez, Till Mossakowski, D

Theorem (Kontchakov/Wolter/Zakharyaschev 2011)

Let \mathcal{O} be an ontology and Σ be a signature. Then there is a minimum depleting Σ -m-module of \mathcal{O} (indeed, a minimum depleting Σ -S-module for any monotone inseparability relation S robust under replacement.)

```
input \mathcal{T}, \Sigma

\mathcal{M} := \emptyset;

\mathcal{W} := \emptyset;

while (\mathcal{T} \setminus \mathcal{M}) \neq \mathcal{W} do

choose \alpha \in (\mathcal{T} \setminus \mathcal{M}) \setminus \mathcal{W}

\mathcal{W} := \mathcal{W} \cup \{\alpha\};

if \mathcal{W} \not\equiv_{\Sigma \cup sig(\mathcal{M})} \emptyset then

\mathcal{M} := \mathcal{M} \cup \{\alpha\};

\mathcal{W} := \emptyset

endif

end while

output \mathcal{M}
```

By contrast, minimum plain or self-contained modules not always exist. \Rightarrow use minimum depleting Σ -module for DOL semantics.

Yazmin Angelica Ibañez, Till Mossakowski, D

Modularity of Ontologies

Conclusions

- Generalised various module notions and theorems to an arbitrary institution
- corrected a small error in the definition of model inseparability
- found a semantics for module extraction in DOL: the minimum depleting Σ-module

Future work

- efficient computability of modules
- generalise various notions of locality to an arbitrary institution