Institutions for UML State Machines

Martin Glauer

December 10, 2014

UML State Machines

UML

- Unified Modelling Language
- Standard managed by the Object Management Group (OMG)
- Structural and behavioural modelling

UML State Machines

- Behavioural modelling
- Similar to finite automatons (but way more powerful)
- Hard to check (e.g. consistency)

UML State Machines - States and Transitions

States

Manly labelled boxes

Transitions

- Source/Target
- Trigger: Event that must be first in event pool
- Guard: Condition that must be satisfied
- Effect: Actions caused by transition

UML State Machines - States and Transitions

States

Manly labelled boxes

Transitions

- Source/Target
- Trigger: Event that must be first in event pool
- Guard: Condition that must be satisfied
- Effect: Actions caused by transition

Institutions

- Sign Category of signatures
- sen : Sign → Set Sentences given a signature Σ, translates sentences along a morphism
- Mod : Sign^{op} → cat category of models given an signature Σ, translates models countering a morphism
- ▶ $\models_{\Sigma} \subseteq |Mod(\Sigma)| \times sen(\Sigma)$ satisfaction relation
- Satisfaction condition:

 $M' \models_{\Sigma'} Sen(\sigma)(\gamma)$ iff $Mod(\sigma)(M) \models_{\Sigma} \gamma$

Institution of Actions

- $H = (A_H, M_H, V_H)$
 - A_H Set of actions
 - *M_H* Set of messages
 - V_H Set of variables

Config. Transition: $\Omega \subseteq |\Omega| \times (A_H \times \wp(M_H)) \times |\Omega|$

$$\blacktriangleright |\Omega| = (V_H \to \mathsf{Val})$$

• $\omega \xrightarrow[\Omega]{\alpha} \omega'$: Transition from config ω to ω' on action a whilst messages \overline{m} are emitted

• e.g.
$$\{i \mapsto 0, j \mapsto 0, ...\} \xrightarrow{i \leftarrow i+1, \ \emptyset} \{i \mapsto 1, j \mapsto 0, ...\}$$

Signature - Machines

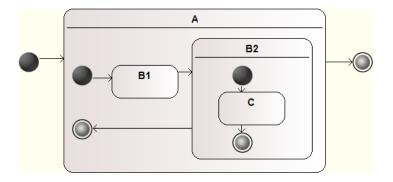
- $\Sigma = (E_{\Sigma}, F_{\Sigma}, S_{\Sigma})$
 - E_Σ Set of events
 - F_{Σ} Set of completion events
 - S_{Σ} Set of states

State Machine Signature

- ▶ Where do we start? Where can we go?
- ▶ $I_{\Theta} \in \wp(V_H o V_{A}) imes S_{\Sigma}$ initial configuration

$$\begin{array}{l} \bullet \quad (\omega, p :: \overline{p}, s) \xrightarrow{\overline{m} \setminus E_{\Sigma}} (\omega', \overline{p} \lhd ((\overline{m} \cap E_{\Sigma}) \cup \overline{f}), s') \\ \bullet \quad \text{if } \exists s \xrightarrow{p[g]/a, \overline{f}} s' \text{ such that } \omega \models g \text{ and } \omega \xrightarrow{a, \overline{m}} \omega' \end{array}$$

▶ if there is no such transition: drop event *p* from event pool

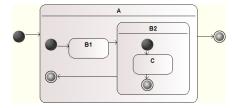


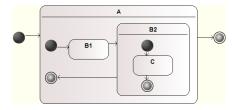
State Machine Signature - Hier. States

- ▶ Where do we start? Where can we go?
- ► $I_{\Theta} \in \wp(V_H o V_{al}) imes [S_{\Sigma}]$ initial configuration

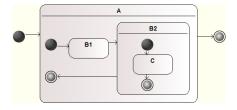
$$(\omega, p :: \overline{p}, s :: L) \xrightarrow{\overline{m} \setminus E_{\Sigma}} (\omega', \overline{p} \triangleleft ((\overline{m} \cap E_{\Sigma}) \cup \overline{f}), L')$$

▶ if there is no such transition: drop event *p* from event pool

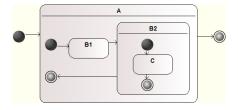




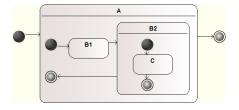
▶ $[B1, A] \rightarrow$



▶ $[B1, A] \rightarrow [C, B2, A] \rightarrow$

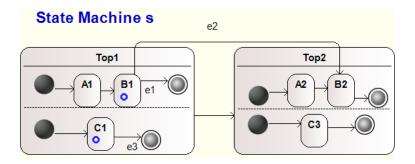


▶ $[B1, A] \rightarrow [C, B2, A] \rightarrow [B2, A] \rightarrow$



▶ $[B1, A] \rightarrow [C, B2, A] \rightarrow [B2, A] \rightarrow [A] \rightarrow []$

State Machines - Forks



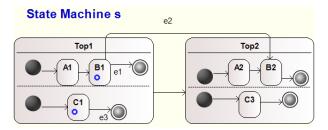
State Machine Signature - Forks

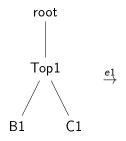
Where do we start? Where can we go? ► $I_{\Theta} \in \wp(V_H \to \text{Val}) \times Tree(S_{\Sigma})$ - initial configuration $\blacktriangleright (\omega, p :: \overline{p}, T) \xrightarrow{\overline{m} \setminus E_{\Sigma}} (\omega', \overline{p} \triangleleft ((\overline{m} \cap E_{\Sigma}) \cup \overline{f}), T')$ • if $\exists s \in leaves(T) : s \xrightarrow{p[g]/a, \overline{f}} s'$ such that $\omega \models g$ and $\omega \xrightarrow{a,\overline{m}} \omega' \text{ and } T \xrightarrow{s,s'} T'$ • $T \xrightarrow{s,s'} T'$ expresses that T' originates from T by: if s is no final state: s is replaced by ForwardTree(s') ▶ if s' is a final state: s is dropped

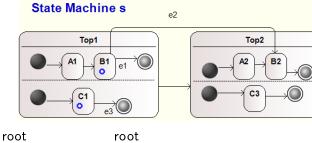
▶ if there is no such transition: drop event *p* from event pool

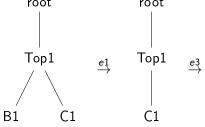
ForwardTree

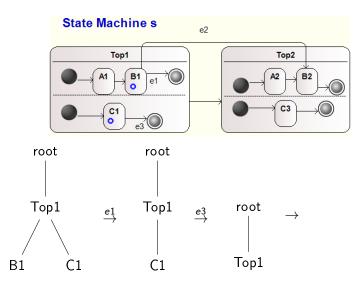
```
ForwardTree(s):
if s is simple State:
    return Tree(s)
else: #s is composite state
    T = Tree(s)
    T.children =
    [ForwardTree(c) for c in subregions(s)]
    return T
```

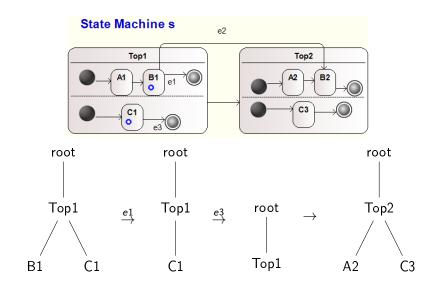



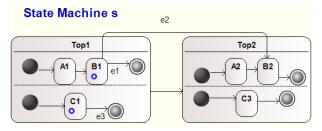


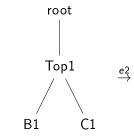


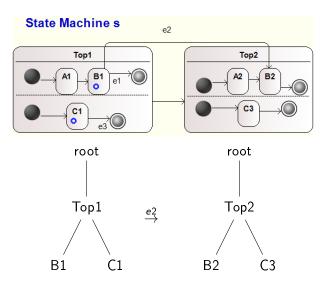












State Machine Signature - Forks

- Where do we start? Where can we go?
- ▶ $I_{\Theta} \in \wp(V_H o V_{Pal}) imes \mathit{Tree}(S_{\Sigma})$ initial configuration
- $\blacktriangleright (\omega, p :: \overline{p}, T) \xrightarrow{\overline{m} \setminus E_{\Sigma}} (\omega', \overline{p} \lhd ((\overline{m} \cup E_{\Sigma}) \cup \overline{f}), T')$
 - if $\exists s \in T : s \xrightarrow{p[g]/a, \overline{f}} s'$ such that $\omega \models g$ and $\omega \xrightarrow[\Omega]{\alpha, \overline{m}} \omega'$ and $T \xrightarrow[s, s']{\gamma} T'$
 - $T \xrightarrow{s,s'} T'$ expresses that T' originates from T by:
 - if s is no final state: The subtree of Ica(s, s') containing s is replaced by the tree containing s'
 - if s' is a final state: s is dropped
 - \blacktriangleright if there is no such transition: drop event p from event pool

Conclusion

- State Machines can be formalised as institutions
- Description of composite states by trees
- "Path to target" hard to describe
- There are other pseudo states (e.g. histories)

Institutions for UML State Machines

Martin Glauer

December 10, 2014

