3/2 Colimits

Mihai Codescu and Till Mossakowski

Otto-von-Guericke University of Magdeburg

17.12.2014, Coinvent meeting, Magdeburg

- ▲ 臣 ▶ -

э

・ 同・ ・ ヨ・

A *diagram* is a set of objects and a set of arrows between them.

A *cocone* for a diagram puts the objects in it together while taking into account how they are related in the diagram.

A colimit is a minimal cocone (unique up to isomorphism).

Theorem

Set is co-complete.

Colimit of an arbitrary diagram in Set:

- disjoint union of all sets in the diagram
- factored by the equivalence generated by the pairs $(x, f_i(x))$, with *i* an arrow in the diagram
- structural morphisms are factorizations

Colimits in Set: example

・ロト ・日下・ ・日下

문 🛌 문

3/2 Colimits

Fact: the category of sets and partial functions is isomorphic to the category of pointed sets:

$$X \xrightarrow{h_{\perp}} Y$$

/⊒ > < ∃ >

- ∢ ⊒ →

Fact: the category of sets and partial functions is isomorphic to the category of pointed sets:

Colimits in Pfn: colimits in the category of pointed sets

• D2.1, footnote 14

・ロト ・日下・ ・日下

글▶ 글

Assumption: all diagrams are strict.

Definition

Given $D : \mathcal{J} \to (C, \sqsubseteq)$, a lax cocone is $(O, \{c_X : D(X) \to O\}_{X \in |\mathcal{J}|})$ such that $D(f); c_Y \sqsubseteq c_X$ for each $f : X \to Y \in \mathcal{J}$

A > 4

Definition

Given $D : \mathcal{J} \to (C, \sqsubseteq)$, a 3/2-colimit is a lax cocone $(O, \{c_X : D(X) \to O\}_{X \in |\mathcal{J}|})$ for D such that for every lax cocone $(O', \{d_X : D(X) \to O'\}_{X \in |\mathcal{J}|})$ for D, the set of all $\lambda : O \to O'$ such that $c_X; \lambda \sqsubseteq d_X$ has a maximum element on \sqsubseteq .

Theorem (D2.1)

Given $D : \mathcal{J} \to (Pfn, \sqsubseteq)$ and a lax cocone $c = (O, \{c_X : D(X) \to O\}_{X \in |\mathcal{J}|})$ for D. c is 3/2-colimit iff c is jointly epimorphic, i.e. if for each node X $c_X; h_1 = c_X; h_2$, then $h_1 = h_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (D2.1)

Given $D : \mathcal{J} \to (Pfn, \sqsubseteq)$ and a lax cocone $c = (O, \{c_X : D(X) \to O\}_{X \in |\mathcal{J}|})$ for D. c is 3/2-colimit iff c is jointly epimorphic, i.e. if for each node X $c_X; h_1 = c_X; h_2$, then $h_1 = h_2$.

Corollary

Every ordinary colimit in Pfn is a 3/2 colimit.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (D2.1)

Given $D : \mathcal{J} \to (Pfn, \sqsubseteq)$ and a lax cocone $c = (O, \{c_X : D(X) \to O\}_{X \in |\mathcal{J}|})$ for D. c is 3/2-colimit iff c is jointly epimorphic, i.e. if for each node X $c_X; h_1 = c_X; h_2$, then $h_1 = h_2$.

Corollary

Every ordinary colimit in Pfn is a 3/2 colimit.

Corollary

3/2 colimits are stable under post-composition with epis.

▲御▶ ▲理▶ ▲理▶

An ordinary colimit is a 3/2 colimit:

A ►

This is another 3/2 colimit for the same diagram:

< □ > <

This is not a 3/2-colimit because it's not jointly epi:

合 ▶ ◀

This is not even a lax cocone:

Ordering on 3/2 colimits

Definition

Given
$$D: \mathcal{J} \to (Pfn, \sqsubseteq)$$
 and two 3/2 colimits
 $c_1 = (O_1, \{c_X^1 : D(X) \to O_1\}_{X \in |\mathcal{J}|})$ and
 $c_2 = (O_2, \{c_X^2 : D(X) \to O_2\}_{X \in |\mathcal{J}|})$ for $D, c_1 \sqsubseteq c_2$ if there exists
 $e: O_2 \to O_1$ such that e is epi and $c_2; e = c_1$.

Rule 1: for every $D(f) : D(x) \mapsto D(y)$, add to D(y) the elements of D(x) mapped by D(f) to \bot and modify D(f) to be the identity on these elements.

Rule 2: for every $D(x_1) \xrightarrow{D(f_1)} D(y) \xleftarrow{D(f_2)} D(x_2)$, remove from D(y) the images of $D(f_1)$ and $D(f_2)$ and add to it distinct copies of them (generalizes to the *n*-ary case):

Constructing maximum 3/2 colimits

Rule 2: for every $D(x_1) \xrightarrow{D(f_1)} D(y) \xleftarrow{D(f_2)} D(x_2)$, remove from D(y) the images of $D(f_1)$ and $D(f_2)$ and add to it distinct copies of them (generalizes to the *n*-ary case):

- construct the maximum 3/2 colimit c
- by composing it with an epi e, we get a 3/2 colimit
- e can identify elements
- ullet e can 'delete' elements by mapping them to \bot

CASL with partial signature morphisms

- signatures: sorts, partial functions, predicates. No total functions!
- morphisms: partial maps taking sorts to sorts, functions to functions, predicates to predicates
- sentence translation:
 - replace missing symbols with undefined or false
 - $x \le y \lor x + y = 3 + z$ is mapped along a morphism that undefines \le and + to *false* $\lor x + y = \bot$
- model reduction:
 - use empty carrier/predicate/function for undefined symbols
 - the reduct of a model M along a morphism that undefines \leq and + inteprets \leq as the predicate that never holds and + as the partial function that is defined nowhere

・ 同 ト ・ ヨ ト ・ ヨ ト