3/2 Colimits

Mihai Codescu and Till Mossakowski

Otto-von-Guericke University of Magdeburg
17.12.2014, Coinvent meeting, Magdeburg

Diagrams and colimits

A diagram is a set of objects and a set of arrows between them.

Diagrams and colimits

A cocone for a diagram puts the objects in it together while taking into account how they are related in the diagram.

Diagrams and colimits

A colimit is a minimal cocone (unique up to isomorphism).

Colimits in Set

Theorem

Set is co-complete.

Colimit of an arbitrary diagram in Set:

- disjoint union of all sets in the diagram
- factored by the equivalence generated by the pairs $\left(x, f_{i}(x)\right)$, with i an arrow in the diagram
- structural morphisms are factorizations

Colimits in Set: example

Colimits in Set: example

$$
\begin{gathered}
\qquad\{a, b\} \\
\{a, b\} \longrightarrow\{(1, a),(2, a),(3, a),(2, b),(3, b)\} \\
\downarrow \\
\{\langle(1, a),(2, a),(3, a)\rangle,\langle(2, b)\rangle,\langle(3, b)\rangle\} \\
\cong \\
\left\{a, b_{1}, b_{2}\right\} \\
\cong \\
\{a, 2: b, 3: b\} \\
\cong \\
\left\{a, g n_{-} b 2, g n _b 3\right\}
\end{gathered}
$$

Colimits in Pfn

Fact: the category of sets and partial functions is isomorphic to the category of pointed sets:

Colimits in Pfn

Fact: the category of sets and partial functions is isomorphic to the category of pointed sets:

Colimits in Pfn: colimits in the category of pointed sets

Example in Hets

- D2.1, footnote 14

Assumption: all diagrams are strict.

Definition
 Given $D: \mathcal{J} \rightarrow(C, \sqsubseteq)$, a lax cocone is $\left(O,\left\{c_{X}: D(X) \rightarrow O\right\}_{X \in|\mathcal{J}|}\right)$ such that $D(f) ; c_{Y} \sqsubseteq c_{X}$ for each $f: X \rightarrow Y \in \mathcal{J}$

3/2 colimits

Definition

Given $D: \mathcal{J} \rightarrow(C, \sqsubseteq)$, a 3/2-colimit is a lax cocone $\left(O,\left\{c_{X}: D(X) \rightarrow O\right\}_{X \in|\mathcal{J}|}\right)$ for D such that for every lax cocone $\left(O^{\prime},\left\{d_{X}: D(X) \rightarrow O^{\prime}\right\}_{X \in|\mathcal{J}|}\right)$ for D, the set of all $\lambda: O \rightarrow O^{\prime}$ such that $c_{X} ; \lambda \sqsubseteq d_{X}$ has a maximum element on \sqsubseteq.

Theorem (D2.1)

Given $D: \mathcal{J} \rightarrow(P f n, \sqsubseteq)$ and a lax cocone
$c=\left(O,\left\{c_{X}: D(X) \rightarrow O\right\}_{X \in|\mathcal{J}|}\right)$ for D.
c is $3 / 2$-colimit iff c is jointly epimorphic, i.e. if for each node X $c_{X} ; h_{1}=c_{X} ; h_{2}$, then $h_{1}=h_{2}$.

Theorem (D2.1)

Given $D: \mathcal{J} \rightarrow(P f n, \sqsubseteq)$ and a lax cocone
$c=\left(O,\left\{c_{X}: D(X) \rightarrow O\right\}_{X \in|\mathcal{J}|}\right)$ for D.
c is 3/2-colimit iff c is jointly epimorphic, i.e. if for each node X $c_{X} ; h_{1}=c_{X} ; h_{2}$, then $h_{1}=h_{2}$.

Corollary

Every ordinary colimit in Pfn is a 3/2 colimit.

Theorem (D2.1)

Given $D: \mathcal{J} \rightarrow(P f n, \sqsubseteq)$ and a lax cocone
$c=\left(O,\left\{c_{X}: D(X) \rightarrow O\right\}_{X \in|\mathcal{J}|}\right)$ for D.
c is 3/2-colimit iff c is jointly epimorphic, i.e. if for each node X $c_{X} ; h_{1}=c_{X} ; h_{2}$, then $h_{1}=h_{2}$.

Corollary

Every ordinary colimit in Pfn is a 3/2 colimit.

Corollary

3/2 colimits are stable under post-composition with epis.

Examples

An ordinary colimit is a $3 / 2$ colimit:

Examples

This is another $3 / 2$ colimit for the same diagram:

Examples

This is not a 3/2-colimit because it's not jointly epi:

Examples

This is not even a lax cocone:

Ordering on $3 / 2$ colimits

Definition

Given $D: \mathcal{J} \rightarrow(P f n, \sqsubseteq)$ and two $3 / 2$ colimits
$c_{1}=\left(O_{1},\left\{c_{X}^{1}: D(X) \rightarrow O_{1}\right\}_{X \in|\mathcal{J}|}\right)$ and
$c_{2}=\left(O_{2},\left\{c_{X}^{2}: D(X) \rightarrow O_{2}\right\}_{X \in|\mathcal{J}|}\right)$ for $D, c_{1} \sqsubseteq c_{2}$ if there exists $e: O_{2} \rightarrow O_{1}$ such that e is epi and $c_{2} ; e=c_{1}$.

Constructing maximum $3 / 2$ colimits

Rule 1: for every $D(f): D(x) \mapsto D(y)$, add to $D(y)$ the elements of $D(x)$ mapped by $D(f)$ to \perp and modify $D(f)$ to be the identity on these elements.

Constructing maximum $3 / 2$ colimits

Rule 2: for every $D\left(x_{1}\right) \xrightarrow{D\left(f_{1}\right)} D(y) \stackrel{D\left(f_{2}\right)}{\leftarrow} D\left(x_{2}\right)$, remove from $D(y)$ the images of $D\left(f_{1}\right)$ and $D\left(f_{2}\right)$ and add to it distinct copies of them (generalizes to the n-ary case):

Constructing maximum $3 / 2$ colimits

Rule 2: for every $D\left(x_{1}\right) \xrightarrow{D\left(f_{1}\right)} D(y) \stackrel{D\left(f_{2}\right)}{\leftarrow} D\left(x_{2}\right)$, remove from $D(y)$ the images of $D\left(f_{1}\right)$ and $D\left(f_{2}\right)$ and add to it distinct copies of them (generalizes to the n-ary case):

Generating $3 / 2$ colimits

- construct the maximum $3 / 2$ colimit c
- by composing it with an epi e, we get a $3 / 2$ colimit
- e can identify elements
- e can 'delete' elements by mapping them to \perp

CASL with partial signature morphisms

- signatures: sorts, partial functions, predicates. No total functions!
- morphisms: partial maps taking sorts to sorts, functions to functions, predicates to predicates
- sentence translation:
- replace missing symbols with undefined or false
- $x \leq y \vee x+y=3+z$ is mapped along a morphism that undefines \leq and + to false $\vee x+y=\perp$
- model reduction:
- use empty carrier/predicate/function for undefined symbols
- the reduct of a model M along a morphism that undefines \leq and + inteprets \leq as the predicate that never holds and + as the partial function that is defined nowhere

