
152Modelling with UML, with semantics

Abstraction in timing diagram

• An alternative syntax presents states not
on the vertical axis but as hexagons on
the lifeline.

• Timing diagrams present the
coordination of (the states of) several
objects over (real) time.

153Modelling with UML, with semantics

Usage: Interaction overview

also allowed: fork/join
(said to be equivalent to par, but …)

choice/merge
equivalent to alt/opt

sequence equivalent to seq

• Organize large number of interactions in a more visual style
• Defined as equivalent to using interaction operators

154Modelling with UML, with semantics

Complex interactions

Interaction
Operator

Interaction
Fragment

Interaction
Operand

• A complex interaction is like a functional expression:
• an InteractionOperator,
• one or several InteractionOperands (separated by dashed lines),
• (and sometimes also numbers or sets of signals).

155Modelling with UML, with semantics

Interaction operators (overview)

• strict
• operand-wise sequencing

• seq
• lifeline-wise sequencing

• loop
• repeated seq

• par
• interleaving of events

• region (aka. “critical”)
• suspending interleaving

• consider
• restrict model to specific messages
• i.e. allow anything else anywhere

• ignore
• dual to consider

• ref
• macro-expansion of fragment

• alt
• alternative execution

• opt
• optional execution
• syntactic sugar for alt

• break
• abort execution
• sometimes written as “brk”

• assert
• remove uncertainty in specification
• i.e. declare all traces as valid

• neg
• declare all traces as invalid

(→ three-valued semantics)

156Modelling with UML, with semantics

Main concepts (metamodel)

157Modelling with UML, with semantics

Semantics

• The meaning of an interaction is
• a set of valid traces, plus
• a set of invalid traces.

• Traces are made up of occurrences of
events such as
• sending/receiving a message,
• instantiating/terminating an object, or
• time/state change events.

• Two types of constraints determine the
valid traces:

1) send occurs before receive,
2) order on lifelines is definite.

a
b

c

d
e

f

This diagram contains the following
seven constraints:

1) a→d, e→b, f→c
2) a→b, b→c, d→e, e→f

The set of resulting traces is:
{ a.d.e.b.f.c, a.d.e.f.b.c }.

158Modelling with UML, with semantics

Interaction operators seq & strict

• seq
• compose two interactions sequentially lifeline-wise (default!)

• strict
• compose two interactions sequentially diagram-wise

159Modelling with UML, with semantics

Interaction operator loop

• loop
• repeated application of seq

loop(P, min, max) = seq(P, loop(P, min-1, max-1))
loop(P, 0, max) = seq(opt(P), loop(P, 0, max-1))
loop(P, *) = seq(opt(P), loop(P, *))

for some interaction fragment P

160Modelling with UML, with semantics

Interaction operators: interleaving

• par
• shuffle arguments

• region
• execute argument atomically, i.e. disallow interleaving

161Modelling with UML, with semantics

Interaction operators alt, opt, brk: choice

• alt
• alternative complete execution of one of two interaction fragments

• opt
• optional complete execution of interaction fragment:

opt(P) = alt(P, nop)

• break
• execute interaction fragment partially, skip rest, and jump to surrounding fragment

162Modelling with UML, with semantics

Interaction operators: abstraction

• ignore, consider
• dual way of expressing:

• allow the ignorable messages (!) anywhere
• present only those messages that are to be considered
• 〚 ignore(P,Z) 〛 = shuffle(〚P〛, Z*)

163Modelling with UML, with semantics

Interaction operator ref & parameters

• ref
• refers to a fragment defined elsewhere (macro-expansion)
• Formal and actual parameters (bindings) are declared in the diagram head.

• Signals to the containing classifier appear as arrows form the diagram border.

declaration

call

164Modelling with UML, with semantics

Interaction operators: negation

• The semantics of neg and assert is unclear.
• In contrast to that the other operators, they refer not just to the positive traces, but to

invalid and inconclusive traces as well.

• neg
• declare all valid traces as invalid
• inconclusive traces: unknown

• assert
• remove uncertainty by declaring all inconclusive traces as invalid

165Modelling with UML, with semantics

Wrap up

• Complex interactions like high-level MSCs added.

• New diagram types:
• timing diagrams (like oscilloscope), and
• interaction overview (similar to restricted activity diagram)
• renamed collaboration diagram to communication diagram

• Completely new metamodel.

• Almost formal three-valued semantics of valid, invalid and inconclusive interleaving
traces of events.

• Some semantical problems are yet to be solved.

166Modelling with UML, with semantics

Profiles

Unified Modeling Language 2

167Modelling with UML, with semantics

Usage scenarios

• Metamodel customization for
• adapting terminology to a specific platform or domain
• adding (visual) notation
• adding and specializing semantics
• adding constraints
• transformation information

• Profiling
• packaging domain-specific

extensions
• “domain-specific language”

engineering

168Modelling with UML, with semantics

Stereotypes (1)

• Stereotypes define how an existing (UML) metaclass may be extended.

optional

• Stereotypes may be applied textually or graphically.

• Visual stereotypes may replace original notation.
• But the element name should appear below the icon…

extension

lower-case initial

169Modelling with UML, with semantics

Stereotypes (2)

• Stereotypes may define meta-properties.
• commonly known as “tagged values”

• Stereotypes can be defined to be required.
• Every instance of the extended metaclass has to be extended.
• If a required extension is clear from the context it need not be visualized.

170Modelling with UML, with semantics

Profiling

• Profiles package extensions.

171Modelling with UML, with semantics

Metamodel

• Based on infrastructure library constructs
• Class, Association, Property, Package, PackageImport

172Modelling with UML, with semantics

Metamodeling with Profiles

• Profile extension mechanism imposes restrictions on how the UML metamodel can be
modified.
• UML metamodel considered as “read only”.
• No intermediate metaclasses

• Stereotypes metaclasses below UML metaclasses.

173Modelling with UML, with semantics

Wrap up

• Metamodel extensions
• with stereotypes and meta-properties
• for restricting metamodel semantics
• for extending notation

• Packaging of extensions into profiles
• for declaring applicable extensions
• “domain-specific language” engineering

174Modelling with UML, with semantics

Object Constraint Language 2

175Modelling with UML, with semantics

A first glimpse

176Modelling with UML, with semantics

History and predecessors

• Predecessors
• Model-based specification languages, like

• Z, VDM, and their object-oriented variants; B
• Algebraic specification languages, like

• OBJ3, Maude, Larch

• Similar approaches in programming languages
• ESC, JML

• History
• developed by IBM as an easy-to-use formal annotation language
• used in UML metamodel specification since UML 1.1
• current version: OCL 2.3.1

• specification: formal/2012-01-01

177Modelling with UML, with semantics

Usage scenarios

• Constraints on implementations of a model
• invariants on classes
• pre-/post-conditions for operations

• cf. protocol state machines
• body of operations
• restrictions on associations, template parameters, …

• Formalization of side conditions
• derived attributes

• Guards
• in state machines, activity diagrams

• Queries
• query operations

• Model-driven architecture (MDA)/query-view-transformation (QVT)

178Modelling with UML, with semantics

Language characteristics

• Integration with UML
• access to classifiers, attributes, states, …
• navigation through attributes, associations, …
• limited reflective capabilities
• model extensions by derived attributes

• Side-effect free
• not an action language
• only possibly describing effects

• Statically typed
• inherits and extends type hierarchy from UML model

• Abstract and concrete syntax
• precise definition new in OCL 2

179Modelling with UML, with semantics

Simple types

• Predefined primitive types
• Boolean true, false
• Integer -17, 0, 3
• Real -17.89, 0.0, 3.14
• String “Hello”

• Types induced by UML model
• Classifier types, like

• Passenger no denotation of objects, only in context

• Enumeration types, like
• Status Status::Albatros, #Albatros

• Model element types
• OclModelElement, OclType, OclState

• Additional types
• OclInvalid invalid (OclUndefined)
• OclVoid null
• OclAny top type of primitives and classifiers

180Modelling with UML, with semantics

Parameterized types

• Collection types
• Set(T) sets
• OrderedSet(T) like Sequence without duplicates
• Bag(T) multi-sets
• Sequence(T) lists
• Collection(T) abstract

• Tuple types (records)
• Tuple(a1 : T1, …, an : Tn)

• Message type
• OclMessage for operations and signals

Examples
• Set{Set{ 1 }, Set{ 2, 3 }} : Set(Set(Integer))
• Bag{1, 2.0, 2, 3.0, 3.0, 3} : Bag(Real)
• Tuple{x = 5, y = false} : Tuple(x : Integer, y : Boolean)

181Modelling with UML, with semantics

Type hierarchy

• Type conformance (reflexive, transitive relation ≤)
• OclVoid ≤ T for all types T but OclInvalid
• OclInvalid ≤ T for all types T
• Integer ≤ Real
• T ≤ T’ ⇒ C(T) ≤ C(T’) for collection type C
• C(T) ≤ Collection(T) for collection type C
• generalization hierarchy from UML model
• B ≤ OclAny for all primitives and classifiers B

Counterexample
• ¬(Set(OclAny) ≤ OclAny)

• Casting
• v.oclAsType(T) if v : T’ and (T ≤ T’ or T’ ≤ T)
• upcast necessary for accessing overridden properties

182Modelling with UML, with semantics

Expressions

• Local variable bindings
let x = 1 in x+2

• Iteration
c->iterate(i : T; a : T’ = e’ | e)

source collection
iteration variable
(bound to current value in c)

accumulator with initial value e’
(gathers result, returned after iteration)

iteration expression
(using variables i and a)

Set{1, 2}->iterate(i : Integer; a : Integer = 0 | a+i) = 3

Example:

• Many operations on collections are reduced to iterate

183Modelling with UML, with semantics

• Operations on primitive types (written: v.op(…))
• operations without () are mixfix

• Operations on collection types (written: v->op(…))

Expressions: Standard library (1)

OclAny =, <>, oclIsTypeOf(T), oclIsKindOf(T), …
Boolean and, or, xor, implies, not
Integer +, -, *, /, div(i), mod(i), …
Real +, -, *, /, floor(), round(), …
String size(), concat(s), substring(l, u), …

Collection size(), includes(v), isEmpty(), …
Set union(s), including(v), flatten(), asBag(), …
OrderedSet append(s), first(), at(i), …
Bag union(b), including(v), flatten(), asSet(), …
Sequence append(s), first(), at(i), asOrderedSet(), …

