Abstraction in timing diagram

* An alternative syntax presents states not
on the vertical axis but as hexagons on
the lifeline.

* Timing diagrams present the
coordination of (the states of) several
objects over (real) time.

Modelling with UML, with semantics

server behavior /

[job processing |

-—

O

\

(oo o)
= D

[EH client behavior /' |

]
\ J

Protocol abstraction /

Server

< idle chv.queryX idle ><:omputation>< idle >

Client <

':‘call- ijnan ireceiveResuIl(jobNo)
! Service W \

busy job issued waiting X busy >
]]] ~
| | -
t=now <=t+2s <=t+10s

Protocol abstraction /

Server

Client

computafion
i 1]
receive quary

job issued

buey
waitimg

job processing

_<

>_

A
icall-
| Barvion

1
| fecaiveRasulfjobMo)

delegate job

p—

0 1

RS RN DRAE DR B S

T

[=r

152

Usage: Interaction overview

* Organize large number of interactions in a more visual style
* Defined as equivalent to using interaction operators

sequence equivalent to seq - -

choice/merge
equivalent to alt/opt

]! Check-In (automatic) /

¥

ref) jogin passenger

W

lret) submit luggage
J

il

ref) print boarding pass

v
®

also allowed: fork/join

(said to be equivalent to par, but ...)

Modelling with UML, with semantics

153

Complex interactions

A complex interaction is like a functional expression:
° an InteractionOperator,

one or several InteractionOperands (separated by dashed lines),
(and sometimes also numbers or sets of signals).

] Check-In (automatic) /O

Check-In-
X Machine
Interaction
~

Passenger
Operator ~ |~

Interaction\
Fragment ~

Interaction™ |
Operand

Modelling with UML, with semantics

154

Interaction operators (overview)

* strict

* operand-wise sequencing
* seq

* lifeline-wise sequencing
* loop

* repeated seq

® par
* interleaving of events

®* region (aka. “critical”)
* suspending interleaving

®* consider
* restrict model to specific messages
* i.e. allow anything else anywhere

®* ignore
* dual to consider

Modelling with UML, with semantics

ref
° macro-expansion of fragment

alt

* alternative execution
opt

* optional execution

* syntactic sugar for alt
break

* abort execution

* sometimes written as “brk”

assert
° remove uncertainty in specification
* j.e. declare all traces as valid
neg
* declare all traces as invalid
(— three-valued semantics)

155

Main concepts (metamodel)

Modelling with UML, with semantics

InteractionFragment -
Lifeline ——| Interaction CombinedFragment
interactionOperator:
InteractionOperator
Message : T
@ =
<<enumeration>> = = InteractionOperand
J 2
InteractionOperator g Z'E P |’_
seq, alt, opt, par, strict, E &
loop, break, region, “ =
neg, assert, ignore, consider
MessageEnd
PaN
EventOccurrence Gate
Specification

156

Semantics

®* The meaning of an interaction is

* a set of valid traces, plus BRI C/SProtocol 1 /
° asetof invalid traces. [Ciient | Server
callService] salf, parameter |
* Traces are made up of occurrences of a1 oo | d
events such as b) BN
* sending/receiving a message, cl f
* instantiating/terminating an object, or
* time/state change events. This diagram contains the following

seven constraints:

* Two types of constraints determine the 1) a—d, e—b, foc

valid traces: 2) a—b, b—c, d—e, e—f
1) send occurs before receive,
2) order on lifelines is definite. The set of resulting traces is:

{a.d.e.b.f.c, a.d.e.f.b.c}.

Modelling with UML, with semantics 157

Interaction operators seq & strict

* seq

* compose two interactions sequentially lifeline-wise (default!)

®* strict

* compose two interactions sequentially diagram-wise

P
A B
2 >
SND(a) RCV(a)
Q
A B
b

SND(b) —— RCV(b)

Modelling with UML, with semantics

strict)
ref) p
ref Q
seq
ref P
ref Q

SND(a)

RCV(a)

SND(b) —— RCV/(b)

SND(a) — RCV(a)

\ SND(b)>~ RCV

(b)

158

Interaction operator loop

* loop
* repeated application of seq
loop(P, min, max) = seq(P, loop(P, min-1, max-1))
loop(P, 0, max) = seq(opt(P), loop(P, 0, max-1))
loop(P, *) = seq(opt(P), loop(P, *))
for some interaction fragment P

ECIS-Pmtukol 1/ @) Check-In-

Machine

strict
strict A=

ref) submit luggage
ref

Modelling with UML, with semantics 159

Interaction operators: interleaving

* par
* shuffle arguments
®* region
* execute argument atomically, i.e. disallow interleaving
par)
ef /J P SND(a) RCV(a)
ref) Q SND(b) —— RCV(b)
par
ref P

Modelling with UML, with semantics

SND(a).RCV(a).
SND(a).SND(b).RCV(
SND(a).SND(b).RCV(b
SND(b).SND(a).RCV(a
(b)).RCV(
(b)).SND(

SND(b).RCV(b
RCV(a).RCV(b
R CV(a
R CV(b
SND(b).SND(a).RCV(b).RCV(
SND(b).RCV(b).SND(a (

V(a

)R
)R
)R
)R
)R
)RCV(a

)
)
)
)
)
)

SND(a).RCV(a).SND(b).RCV(b)
SND(a).SND(b).RCV(b).RCV(a)
SND(b).RCV(b).SND(a).RCV(a)

160

Interaction operators alt, opt, brk: choice

* alt
* alternative complete execution of one of two interaction fragments

* opt
* optional complete execution of interaction fragment:

opt(P) = alt(P, nop)

* Dbreak
* execute interaction fragment partially, skip rest, and jump to surrounding fragment

Modelling with UML, with semantics 161

Interaction operators: abstraction

®* ignore, consider

° dual way of expressing:
* allow the ignorable messages (!) anywhere
* present only those messages that are to be considered
e [ignore(P,Z)] =shuffle([P] ,Z*)

Sl68] C/S protocol 1 /

Client Server
]

ignore { start, nextMumber, store, ng, process, dg, done }

Sl88] C/S protocol 1 /

Client Server

1
consider { callService, receiveResult }

Modelling with UML, with semantics 162

Interaction operator ref & parameters

* ref
* refers to a fragment defined elsewhere (macro-expansion)

* Formal and actual parameters (bindings) are declared in the diagram head.

J callService(in service: String, in name: String, in cardNo: int)

/

DB-Client DB-Server
7 start{name, cardhio)] |
deCIaration 7 = callSenvica zelf, (4711, nama, mdN-::-ﬂ -
e jobNo
aul = slabes " status=racaiveResull] jobMo)
- | |
call o8] C/S protocol 1 /
Se - Controler DB-Client DB-Server
~ 1 1 |

‘ﬂ) callService(service="get status”, name="Storrle", - } .
Client.status = callService("get status®, "Storrle”, -) : “Albatros®

* Signals to the containing classifier appear as arrows form the diagram border.

Modelling with UML, with semantics

163

Interaction operators: negation

®* The semantics of neg and assert is unclear.

* In contrast to that the other operators, they refer not just to the positive traces, but to
invalid and inconclusive traces as well.

all traces

valid fraces

inconclusive traces

° neg
* declare all valid traces as invalid
* inconclusive traces: unknown

¢ assert
° remove uncertainty by declaring all inconclusive traces as invalid

Modelling with UML, with semantics 164

Wrap up

* Complex interactions like high-level MSCs added.

* New diagram types:
* timing diagrams (like oscilloscope), and
* interaction overview (similar to restricted activity diagram)
* renamed collaboration diagram to communication diagram

* Completely new metamodel.

* Almost formal three-valued semantics of valid, invalid and inconclusive interleaving
traces of events.

* Some semantical problems are yet to be solved.

Modelling with UML, with semantics 165

Unified Modeling Language 2

Profiles

«metaclass» «stereotype»
Interface Remote

Modelling with UML, with semantics

Serializable

«profile»
Java

serialld : String

[1]

«apply»

Flights

166

Usage scenarios

®* Metamodel customization for
* adapting terminology to a specific platform or domain
* adding (visual) notation
* adding and specializing semantics
* adding constraints
* transformation information

* Profiling
* packaging domain-specific 6] «profile» Java |
extensions
« . . ” «stereotype»
° dorpam-_spemﬂc language Interface = Y
engineering

I

«stereotype»
Remote

«stereotype»
Serializable

serialld : String

Modelling with UML, with semantics

167

Stereotypes (1)

* Stereotypes define how an existing (UML) metaclass may be extended.

optional — = =|= ~«metaclass» «stereotype»
Interface B I Remote

1.
extension

* Stereotypes may be applied textually or graphically.

Iower\-case initial

A

\ -
Linterface, «interface» Al
remote» .
TravelHandling

TravelHandling oA

TravelHandling

* Visual stereotypes may replace original notation.
* But the element name should appear below the icon... Database

Modelling with UML, with semantics 168

Stereotypes (2)

* Stereotypes may define meta-properties.
* commonly known as “tagged values”
* Stereotypes can be defined to be required.
* Every instance of the extended metaclass has to be extended.
* |f a required extension is clear from the context it need not be visualized.

Class
{ required } «creator» «creator»
«stereotype» Passenger [~ author = “storrle”
Creator date = “05/08/17”

author[1] : String
date[1] : String

Modelling with UML, with semantics 169

Profiling

* Profiles package extensions.

m «profile» Java [

Interface g

«stereotype»
Javalnterface

i

«stereotype» «stereotype»
Remote Serializable

serialld : String

«profile» «apply»
<_

Java [N T T] Flights

Modelling with UML, with semantics 170

Metamodel

®* Based on infrastructure library constructs
* Class, Association, Property, Package, Packagelmport

Package Packagelmport
A
*], appliedProfile
Profile
Application

Class

metaclass

*

Association

[

1

Profile

*J’ importedProfile

[

Modelling with UML, with semantics

ownedSterotype

>| Stereotype |<“’pe

extension

Extension

i

1

ExtensionEnd

J,

Property

171

Metamodeling with Profiles

* Profile extension mechanism imposes restrictions on how the UML metamodel can be
modified.

* UML metamodel considered as “read only”.
* No intermediate metaclasses

* Stereotypes metaclasses below UML metaclasses.

Modelling with UML, with semantics 172

Wrap up

* Metamodel extensions
* with stereotypes and meta-properties
* for restricting metamodel semantics
* for extending notation

* Packaging of extensions into profiles

* for declaring applicable extensions
* “domain-specific language” engineering

Modelling with UML, with semantics

173

Object Constraint Language 2

Modelling with UML, with semantics 174

A first glimpse

EJ Booking/

status
{ currentFlights : Sequence(Flight)

inv: ma.statusMiles = 10000 AN
implies status = Status:Albatros Booking
: kind :TntI
: i
Passenger passenger . flight | Flight
name : Name * *[date : Date
creditCard[0..1] miles :int
milesCard[0..1] Bre: ma->hotlEmptyl D

E
_'.-l'-
-

creditMiles(b : Booking)---~"""
consumeMiles(b : Booking)« .

cancelMiles()s .
0..1\ymk el

MilesAccount S~

number

flightMiles

statusMiles

creditMiles(b : Booking)
post: let fm = ma.flightMiles,
sm = ma.statusMiles
in fm = fm@pre + b.flight.miles and
sm = sm@pre + fm@pre * b.kind

pre: ma->notEmpty() and
ma.flightMiles >= b.flight.miles
consumeMiles(b : Booking)

post: ma.ﬂightMiIes — ma.ﬂightMiles@pre - b.flight.miles

pre: ma->notEmpty()
cancelMiles()
post: ma.flightMiles <= ma.flightMiles@pre

Modelling with UML, with semantics

175

History and predecessors

®* Predecessors

* Model-based specification languages, like
* Z, VDM, and their object-oriented variants; B

* Algebraic specification languages, like
* OBJ3, Maude, Larch

* Similar approaches in programming languages
* ESC, JML

* History
* developed by IBM as an easy-to-use formal annotation language
* used in UML metamodel specification since UML 1.1

* current version: OCL 2.3.1
* specification: formal/2012-01-01

Modelling with UML, with semantics

176

Usage scenarios

* Constraints on implementations of a model
° invariants on classes

° pre-/post-conditions for operations
* cf. protocol state machines

* body of operations

* restrictions on associations, template parameters, ...
* Formalization of side conditions

* derived attributes

* Guards
* in state machines, activity diagrams
* Queries

° query operations
®* Model-driven architecture (MDA)/query-view-transformation (QVT)

Modelling with UML, with semantics 177

Language characteristics

* Integration with UML
* access to classifiers, attributes, states, ...
° navigation through attributes, associations, ...
* limited reflective capabilities
* model extensions by derived attributes
* Side-effect free
° not an action language
* only possibly describing effects
* Statically typed
° inherits and extends type hierarchy from UML model
* Abstract and concrete syntax
* precise definition new in OCL 2

Modelling with UML, with semantics

178

Simple types

Predefined primitive types

* Boolean true, false

* Integer -17, 0, 3

* Real -17.89, 0.0, 3.14
°* String “Hello”

* Types induced by UML model
* Classifier types, like

* Passenger no denotation of objects, only in context
* Enumeration types, like
* Status Status: :Albatros, #Albatros

* Model element types
* OclModelElement, OclType, OclState

* Additional types

° OcllInvalid invalid (OclUndefined)
° OclVoid null
°* OclAny top type of primitives and classifiers

Modelling with UML, with semantics 179

Parameterized types

* Collection types

° Set(D) sets

°* OrderedSet(T) like Sequence without duplicates
* Bag(T) multi-sets

* Sequence(T) lists

° Collection(T) abstract

®* Tuple types (records)
° Tuple(a; - Ty, .., &, = T
* Message type
°* OclMessage for operations and signals

Examples
° Set{Set{ 1 }, Set{ 2, 3 }} : Set(Set(lInteger))
° Bag{l, 2.0, 2, 3.0, 3.0, 3} : Bag(Real)
° Tuple{x =5, y = false} - Tuple(x : Integer, y : Boolean)

Modelling with UML, with semantics 180

Type hierarchy

* Type conformance (reflexive, transitive relation <)

OclVoid <T for all types T but OclInvalid
Oclinvalid<T for all types T

Integer < Real

T<T = C(T) <C(T) for collection type C

C(T) <Collection(T) for collection type C

generalization hierarchy from UML model
B <OclAny for all primitives and classifiers B

Counterexample

—(Set(0OclAny) < 0clAny)

* Casting

v.oclAsType(T) ifv:T and(T<T orT <T)
upcast necessary for accessing overridden properties

Modelling with UML, with semantics

181

Expressions

® Local variable bindings
let Xx =1 In X+2

* lteration
c->1terate(i:-T;a:T =¢e]e)
/] 7/ ‘\ T~a
source collection e \ iteration expression
iteration variable \\ (using variables i and a)

(bound to current value in c) \
\
accumulator with initial value e’
(gathers result, returned after iteration)
Example:
Set{l, 2}->i1terate(1 : Integer; a : Integer = 0 | at1) = 3

®* Many operations on collections are reduced to 1terate

Modelling with UML, with semantics 182

Expressions

. Standard library (1)

* Operations on primitive types (written: v.op(...))
* operations without () are mixfix

OclAny =, <>, oclIsTypeOf(T), ocl1sKindOFf(T), ...
Boolean and, or, xor, implies, not

Integer +, -, %, /,div(), mod(i), ...

Real +, -, *, /, floor(), round(), ...

String size(), concat(s), substring(, u), ...

* Operations on collection types (written: v—=>0p(...))

Collection

size(), includes(v), 1sEmpty(), ...

Set union(s), including(v), flatten(), asBag(), ...
OrderedSet append(s), First(), at(i), ...

Bag uniton(b), including(v), flatten(), asSet(), ...
Sequence append(s), First(), at(i), asOrderedSet(), ...

Modelling with UML, wit

h semantics

183

