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Run-to-Completion Step (1)

RTC(env, conf ) ≡
⎡event ← fetch()

step ← choose steps(conf, event)
if step = ∅ ∧ event ∈ deferred(conf )
then defer(event)
fi
for transition ∈ step do

conf ← handleTransition(env, conf, transition)
od
if isCall (event) ∧ event ∉ deferred(conf )
then acknowledge(event)
fi
conf ⎦
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Run-to-Completion Step (2)

steps(env, conf, event) ≡
⎡transitions ← enabled(env, conf, event)
{step | (guard, step) ∈ steps(conf, transitions) ∧ env guard } ⎦

steps(conf, transitions) ≡
⎡steps ← {(true, ∅)}
for transition ∈ transitions do

for (guard, step) ∈ steps(conf, transitions \ {transition}) do
if inConflict(conf, transition, step)
then if higherPriority(conf, transition, step)

then guard ← guard ∧ ¬guard(transition) fi
else step ← step ∪ {transition}

guard ← guard ∧ guard(transition) fi
steps ← steps ∪ {(guard, step)} od od

steps⎦
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Run-to-Completion Step (3)

handleTransition(conf, transition) ≡
⎡for state ∈ insideOut(exited(transition)) do

uncomplete(state)
for timer ∈ timers(state) do stopTimer(timer) od
execute(exit(state))
conf ← conf \ {state}

od
execute(effect(transition))
for state ∈ outsideIn(entered(transition)) do

execute(entry(state))
for timer ∈ timers(state) do startTimer(timer) od
conf ← conf ∪ {state}
complete(conf, state)

od
conf ⎦
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Semantic variation points

• Some semantic variation points have been mentioned before.
• delays in event pool
• handling of deferred events
• entering of composite states without default entry

• Which events are prioritized?
• completion events only
• all internal events (completion, time, change)

• Which (additional) timing assumptions?
• delays in communication
• time for run-to-completion step

• zero-time assumption
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State machine refinement

no refinement possible

not refined (may be omitted)

• State machines are behaviors and 
may thus be refined.
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Protocol state machines

precondition

postcondition
specified operation

ProtocolTransition

• Protocol state machines specify which behavioral features of a classifier can be called in 
which state and under which condition and what effects are expected.
• particularly useful for object life cycles and ports
• no effects on transitions, only effect descriptions
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Protocol state machines

Several operation specifications are combined conjunctively:

context C::op()
pre: inState(S1) and P1
post: Q1 and inState(S3)

context C::op()
pre: inState(S2) and P2
post: Q2 and inState(S4)

results in

context C::op()
pre: (inState(S1) and P1) or (inState(S2) and P2)
post: (inState@pre(S1) and P1@pre) implies (Q1 and inState(S3))
and (inState@pre(S2) and P2@pre) implies (Q2 and inState(S4))
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How things work together

• Static structure
• sets the scene for state machine behavior
• state machines refer to

• properties
• behavioral features (operations, receptions)
• signals

• Interactions
• may be used to exemplify the communication of state machines
• refer to event occurrences used in state machines

• OCL
• may be used to specify guards and pre-/post-conditions
• refers to actions of state machines (OclMessage)

• Protocols and components
• state machines may specify protocol roles
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Wrap up

• State machines model behaviour
• object and use case life cycles
• control automata
• protocols

• State machines consist of
• Regions and …
• … (Pseudo)States (with entry, exit, and do-activities) …
• connected by Transitions (with triggers, guards, and effects)

• State machines communicate via event pools.

• State machines are executed by run-to-completion steps.
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Unified Modeling Language 2

Interactions
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A first glimpse

sequence diagram

communication
diagram

timing diagram

all three are 
semantically 
equivalent
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History and predecessors

• Simple sequence diagrams
• 1990‘s

• Message Sequence Charts (MSCs) used in TelCo-industry
• several OO-methods use sequence diagrams

• Complex sequence diagrams
• 1996: Complex MSCs introduced in standard MSC96
• 1999: Life Sequence Charts (LSCs)

• Communication diagrams
• 1991: used in Booch method
• 1994: used in Cook/Daniels: Syntropy

• Timing diagrams
• traditionally used in electrical engineering
• 1991: used in Booch method
• 1993: used in early MSCs

• Interaction overview
• 1996: high-level MSCs (graphs of MSCs as notational alternative)
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Usage scenarios

• Class/object interactions
• design or document message exchange between objects
• express synchronous/asynchronous messages, signals and calls, 

activation, timing constraints

• Use case scenarios
• illustrate a use case by concrete scenario
• useful in design/documentation of business processes (i.e. analysis 

phase and reengineering)

• Test cases
• describe test cases on all abstraction levels

• Timing specification/documentation

• Interaction overview
• organize a large number of interactions in a more visual style
• defined as equivalent to using interaction operators
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Syntactical variants

• Sequence diagram
• traditional sequence diagrams + interaction operators
• focuses on exchanging many messages in complex patterns among few 

interaction partners

• Communication diagram
• “collaboration diagram” in UML 1.x
• focuses on exchanging few messages between (many) interaction 

partners in complex configuration

• Timing diagram
• new in UML 2.0, oscilloscope-type representation, not necessarily metric 

time
• focuses on (real) time and coordinated state change of interaction 

partners over time

• Interaction overview diagram
• looks like restricted activity diagram, but isn’t
• arrange elementary interactions to highlight their interaction
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Main concepts

Lifeline

Interaction
partner

call

asynchronous signal
replyOccurrenceSpecification

aka. EventOccurrence
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Message types

termination Event
non-instantaneous

Message

lost & found Messages
(i.e.: very slow messages)

instantiation Event
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Activation

activation bar

activation
suspended

nested activation

warp lines
(non-UML)

external
Event
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Usage: Use case scenarios

• Interaction participants are 
actors and systems rather 
than classes and objects.

• May be refined successively.

• Useful also for specifying 
high-level non-functional 
requirements such as 
response times.

• All kinds of interaction 
diagrams may be applied, 
depending on the 
circumstances.
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Usage: Class interactions

• Interaction participants are 
classes and objects rather than 
actors and systems.

• Again, successive refinement
may be applied in different styles:
• break down processing of 

messages
• break down structure of 

interaction participants.

• All kinds of interaction diagrams 
may be applied, depending on the 
circumstances.
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Usage: Test cases

• Like any other interaction, but with a different intention.

• Typically accompanied by a tabular description of purpose, expected parameters and 
result (similar to use case description).
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Usage: Timing specification

• For embedded and real-time systems, 
it may be important to specify absolute 
timings and state evolution over time.

• This is not readily expressed in 
sequence diagrams, much less 
communication diagrams.

• UML 2.0 introduces timing diagrams
for this purpose.


