Run-to-Completion Step (1)

RTC(env, conf) =
| event « Fetch()
step «<— choose steps(conf, event)
if step = I A event e deferred(conf)
then defer(event)
fi
for transition € step do
conf «— handleTransition(env, conf, transition)
od
if isCall (event) A event ¢ deferred(conf)
then acknowledge(event)
fi
conf |

Modelling with UML, with semantics 131

Run-to-Completion Step (2)

steps(env, conf, event) =
| transitions <« enabled(env, conf, event)
{step | (guard, step) e steps(conf, transitions) A env &= guard } |

steps(conf, transitions) =
[steps « {(true, @)}
for transition e transitions do
for (guard, step) € steps(conf, transitions \ {transition}) do
if inConflict(conf, transition, step)
then if higherPriority(conf, transition, step)
then guard <« guard A ~guard(transition) fi
else step « step v {transition}
guard <« guard A guard(transition) fi
steps « steps v {(guard, step)} od od
steps |

Modelling with UML, with semantics 132

Run-to-Completion Step (3)

handleTransition(conf, transition) =

| for state e insideOut(exited(transition)) do
uncomp lete(state)
for timer e timers(state) do stopT imer(timer) od
execute(exit(state))
conf «— conf \ {state}

od

execute(effect(transition))

for state e outsideln(entered(transition)) do
execute(entry(state))
for timer e timers(state) do startTimer(timer) od
conf «— conf U {state}
comp lete(conf, state)

od

conf |

Modelling with UML, with semantics 133

Semantic variation points

* Some semantic variation points have been mentioned before.
* delays in event pool
* handling of deferred events
* entering of composite states without default entry

* Which events are prioritized?
* completion events only
* allinternal events (completion, time, change)

* Which (additional) timing assumptions?
* delays in communication

* time for run-to-completion step
* zero-time assumption

Modelling with UML, with semantics 134

State machine refinement

®* State machines are behaviors and

may thus be refined.

[extended} p_

[Control]-::1—[Control
ﬂﬂ

Eﬁl Control /

m Waiting J

cardlnserted
/ loadCard() after(1s)

[Ca rd F_Iea d y)

{ if check successful
then green light read
else red light

o Lfinal}

(CheckData

: 7
no refinement possible

Modelling with UML, with semantics

not refined (may be /omlitted)

7

Control { extended }f //'

- /
A Y B A,
(>[Ready }---- >[Waiting |
""" T T cardlnserted‘ T
. blocked /! IOadCard{} : aft{:_‘r“ 5}
3 |
§ R
S (Acceptedj [Card Ready
E = [check :
= |.B successful]) read
E T / free(); green light :
ey I "%
_:f CheckData 1
' {final } J

135

Protocol state machines

* Protocol state machines specify which behavioral features of a classifier can be called in
which state and under which condition and what effects are expected.

* particularly useful for object life cycles and ports
* no effects on transitions, only effect descriptions

Client {protocol} / [true]
when(isAssigned(order))/
l [calls = calls@pre+1]

) connect() /
(Idle J‘; >r Connected

disconnect() / N

e / _ |- —precondition
y, [calls>1]= = = = _ — |- —specified operation
/ receiveResult(order,e) / = "
/ [calls = calls@pre-1] — — — — |- —postcondition

ProtocolTransition

Modelling with UML, with semantics 136

Protocol state machines

Several operation specifications are combined conjunctively:

context C::op(Q)

pre: inState(S;) and P, S5) [P 1op0 /[0] X
post: Q; and iInState(S;) C 1) >C 3 j

context C::op(Q)

pre: inState(S,) and P,) [P]1op() /1O] S
2
post: Q, and inState(S,) C J (S)

results in

context C::op()

pre: (inState(S;) and P;) or (inState(S,) and P,)

post: (inState@pre(S;) and P,@pre) implies (Q; and InState(S;))
and (inState@pre(S,) and P,@pre) implies (Q, and inState(S,))

Modelling with UML, with semantics 137

How things work together

* Static structure
* sets the scene for state machine behavior
* state machines refer to
* properties
* behavioral features (operations, receptions)
* signals
* |Interactions
°* may be used to exemplify the communication of state machines
* refer to event occurrences used in state machines

* OCL

° may be used to specify guards and pre-/post-conditions
* refers to actions of state machines (OclMessage)

®* Protocols and components
* state machines may specify protocol roles

Modelling with UML, with semantics

138

Wrap up

* State machines model behaviour
* object and use case life cycles
° control automata
* protocols

* State machines consist of
°* Regions and ...
* ... (Pseudo)States (with entry, exit, and do-activities) ...
* connected by Transitions (with triggers, guards, and effects)

* State machines communicate via event pools.

* State machines are executed by run-to-completion steps.

Modelling with UML, with semantics 139

Unified Modeling Language 2

Interactions

]
=

ot o] ae et

stack]
. [n2 Py i
m Yy [[
ol g wartund
"“h_-,g‘-e%
.......... . i ki
s

Modelling with UML, with semantics

140

A first glimpse

sequence diagram

communication
diagram

timing diagram

o] C/S-Protocol 1 /

| Client Server

callSarvice! salf, parametar | -
] joblNo _
o receaRasull] jobho |
C/S-Protocol 1 /
—

Client I

1: callService| salf, parameter | I Server

S receiveResult{ jobNo) 2 jobo

) C/S-Protocol 1 /

cormputation

Server racaive quany
idhe

waiting

Client job issued

busy

I L
Tta”_ iljuan \memﬁamll{;:bh}m
Em.-ica[
ulIII%IIIIEIIIIJ;‘IIIIAIIIIéIIIIé Ts]

Modelling with UML, with semantics

all three are
semantically
equivalent

141

History and predecessors

* Simple sequence diagrams
°* 1990°'s
* Message Sequence Charts (MSCs) used in TelCo-industry
* several OO-methods use sequence diagrams

* Complex sequence diagrams
* 1996: Complex MSCs introduced in standard MSC96
* 1999: Life Sequence Charts (LSCs)

®* Communication diagrams
* 1991: used in Booch method
* 1994: used in Cook/Daniels: Syntropy

* Timing diagrams
* traditionally used in electrical engineering
* 1991: used in Booch method
* 1993: used in early MSCs

* Interaction overview
* 1996: high-level MSCs (graphs of MSCs as notational alternative)

Modelling with UML, with semantics 142

Usage scenarios

Class/object interactions
* design or document message exchange between objects

* express synchronous/asynchronous messages, signals and calls,
activation, timing constraints

Use case scenarios
* illustrate a use case by concrete scenario

* useful in design/documentation of business processes (i.e. analysis
phase and reengineering)

Test cases
* describe test cases on all abstraction levels

Timing specification/documentation

Interaction overview

° organize a large number of interactions in a more visual style
* defined as equivalent to using interaction operators

Modelling with UML, with semantics

-'Pungir.n eaf Flug sabuckt

" Kaffar, Mailmborte, Buchungdoraraia

Do raashcke daadch: mird rical ergarznman, dar
Fiomt sagiar wird an dan Sovalar varasaan

" Pamsag er und Taila sais dazscs snd ef des
g angaraidas
b ra

L] [. D e |

143

Syntactical variants

* Sequence diagram G e
* traditional sequence diagrams + interaction operators

* focuses on exchanging many messages in complex patterns among few
interaction partners

®* Communication diagram %-:%
* “collaboration diagram” in UML 1.x ",
* focuses on exchanging few messages between (many) interaction =

partners in complex configuration

* Timing diagram
°* new in UML 2.0, oscilloscope-type representation, not necessarily metric e

::::::

time N B R A | i

* focuses on (real) time and coordinated state change of interaction
partners over time

* Interaction overview diagram : et
* looks like restricted activity diagram, but isn’t -
° arrange elementary interactions to highlight their interaction = .ﬂ.f;..“.

Modelling with UML, with semantics 144

Main concepts

o] C/S-Protocol 1 /
Interaction— — - — — _ _ _ _ Client Server
rtner
pa e - callService! salf, parametar) >
)) i —— —-— P .r:lbr'k:l\ \
Lifeline — U ST~
l’ \ \l N
ol recaiveResull] jobNo) [\ S
- - 1 1 \ N
- - - ‘\ I, ' \ \ <
- - \/, 1 \‘ ~ ”
OccurrenceSpecification I reply ca

I
aka. EventOccurrence asynchronous signal

Modelling with UML, with semantics 145

Message types

instantiation E}/ent lost & found Messages
\ (i.e.: very slow messages)
1 ™
S0 Message types 1 / "
! I\
A 1 C 11 D
[——-— L I Voo !
e B e >
charTolnt(a') > | - = __hl
<o)k ST e ———
| / |“"f—)'_'__-\—"_—.r—.|
/ "
/ non-instantaneous
termination Event Message

Modelling with UML, with semantics 146

Activation

external

CfS-ProtocoI 2/

Event S o Client Server

_:': callService(self, parameter)

L = ——— >

activation bar =1 jobNo = nextNumber()

activation — 1
suspended

jobParameter.store(jobNo, parameter, client)

A

waitingClients.ng(client)

2
&
A

;Ipendingﬁequests,nq{jnbﬂﬂ} A

result = execute(jobParameters.dq())

(non-UML)
(tlngchents dq()

warp lines = |~ /-I\: receiveResult(jobNo, result) lj\l
T

N
nested activation

Modelling with UML, with semantics 147

Usage: Use case scenarios

* Interaction participants are
actors and systems rather
than classes and objects.

* May be refined successively.

* Useful also for specifying

{00l Check-In at terminal /

high-level non-functional
requirements such as
response times.

* All kinds of interaction
diagrams may be applied,
depending on the
circumstances.

O Check-In-
Machine
Passenger
I
insert card -
<=2s Z| initialisation, load data
P S greeting with name__
Check-In atterminal / O e
Machine
Passenger
insert card -
ref analyse card
alt [credit card] check data with
. . ZI bookings database
P greeting with name_ |
etk greeting with name [« read name
. ntutuiteiet ittty check data with
< bookings database

Modelling with UML, with semantics

148

Usage: Class interactions

* Interaction participants are
classes and objects rather than
actors and systems.

* Again, successive refinement
may be applied in different styles:

* break down processing of
messages

° break down structure of
interaction participants.

* All kinds of interaction diagrams
may be applied, depending on the
circumstances.

Modelling with UML, with semantics

B C/S-Protocol 1 /

Client

call Sarvicel sall. parameatar |

receivaRasuly HdMr)

e

CfS-ProtocoI 2/

start()

Client

Server

> callService(self, parameter)

N
(—_l jobNo = nextNumber()

:I jobParameter.store(jobNo, parameter, client)

:l waitingClients.ng(client)

;|pendingRequests.nq{joch} %

T

I:I result = execute(jobParameters.dq())

receiveResult(jobNo, result)

done

Zl waitingClients.dq()

149

Usage: Test cases

Like any other interaction, but with a different intention.

idﬂl‘ir{i,ﬂ,‘ﬂ_6|ﬁ_4 ™™ Check In (automatic) too much luggage

teest goal
If a passenger has too many pieces of luggage and tries to check in

using the check in machine, he should be referred to the check in
counter.

precondilion
passenger is booked on respective flight

argumenls
luggage, bonus mile card, booking data

reslt
passenger is referred to counter

postcandilion
luggage Is not checked in, passenger is checked in

remarks, open questions
none

Modelling with UML, with semantics

Typically accompanied by a tabular description of purpose, expected parameters and
result (similar to use case description).

150

Usage: Timing specification

* Forembedded and real-time systems,
it may be important to specify absolute
timings and state evolution over time.

* This is not readily expressed in
sequence diagrams, much less
communication diagrams.

* UML 2.0 introduces timing diagrams
for this purpose.

Modelling with UML, with semantics

server behavior /

[job processing |

-—

(&<

\

e=(oene an)
= oompasion

[EX client behavior / |

]

J

t=now callService(self, parameter)

<=Jg

<={+10s <

BB C/S protocol /
e D

Y ..\

receiveResult(jobNo)

BEN C/S protocol /

Server

Client

computation
idle
receive query

job issued

busy
waiting

L !

1
’?i:all- :jnhNn , receiveResult(jobNo)
1Service V !

S P P AP VAR SRR W

151

