
131Modelling with UML, with semantics

Run-to-Completion Step (1)

RTC(env, conf ) ≡
⎡event ← fetch()

step ← choose steps(conf, event)
if step = ∅ ∧ event ∈ deferred(conf )
then defer(event)
fi
for transition ∈ step do

conf ← handleTransition(env, conf, transition)
od
if isCall (event) ∧ event ∉ deferred(conf )
then acknowledge(event)
fi
conf ⎦



132Modelling with UML, with semantics

Run-to-Completion Step (2)

steps(env, conf, event) ≡
⎡transitions ← enabled(env, conf, event)
{step | (guard, step) ∈ steps(conf, transitions) ∧ env guard } ⎦

steps(conf, transitions) ≡
⎡steps ← {(true, ∅)}
for transition ∈ transitions do

for (guard, step) ∈ steps(conf, transitions \ {transition}) do
if inConflict(conf, transition, step)
then if higherPriority(conf, transition, step)

then guard ← guard ∧ ¬guard(transition) fi
else step ← step ∪ {transition}

guard ← guard ∧ guard(transition) fi
steps ← steps ∪ {(guard, step)} od od

steps⎦



133Modelling with UML, with semantics

Run-to-Completion Step (3)

handleTransition(conf, transition) ≡
⎡for state ∈ insideOut(exited(transition)) do

uncomplete(state)
for timer ∈ timers(state) do stopTimer(timer) od
execute(exit(state))
conf ← conf \ {state}

od
execute(effect(transition))
for state ∈ outsideIn(entered(transition)) do

execute(entry(state))
for timer ∈ timers(state) do startTimer(timer) od
conf ← conf ∪ {state}
complete(conf, state)

od
conf ⎦



134Modelling with UML, with semantics

Semantic variation points

• Some semantic variation points have been mentioned before.
• delays in event pool
• handling of deferred events
• entering of composite states without default entry

• Which events are prioritized?
• completion events only
• all internal events (completion, time, change)

• Which (additional) timing assumptions?
• delays in communication
• time for run-to-completion step

• zero-time assumption



135Modelling with UML, with semantics

State machine refinement

no refinement possible

not refined (may be omitted)

• State machines are behaviors and 
may thus be refined.



136Modelling with UML, with semantics

Protocol state machines

precondition

postcondition
specified operation

ProtocolTransition

• Protocol state machines specify which behavioral features of a classifier can be called in 
which state and under which condition and what effects are expected.
• particularly useful for object life cycles and ports
• no effects on transitions, only effect descriptions



137Modelling with UML, with semantics

Protocol state machines

Several operation specifications are combined conjunctively:

context C::op()
pre: inState(S1) and P1
post: Q1 and inState(S3)

context C::op()
pre: inState(S2) and P2
post: Q2 and inState(S4)

results in

context C::op()
pre: (inState(S1) and P1) or (inState(S2) and P2)
post: (inState@pre(S1) and P1@pre) implies (Q1 and inState(S3))
and (inState@pre(S2) and P2@pre) implies (Q2 and inState(S4))



138Modelling with UML, with semantics

How things work together

• Static structure
• sets the scene for state machine behavior
• state machines refer to

• properties
• behavioral features (operations, receptions)
• signals

• Interactions
• may be used to exemplify the communication of state machines
• refer to event occurrences used in state machines

• OCL
• may be used to specify guards and pre-/post-conditions
• refers to actions of state machines (OclMessage)

• Protocols and components
• state machines may specify protocol roles



139Modelling with UML, with semantics

Wrap up

• State machines model behaviour
• object and use case life cycles
• control automata
• protocols

• State machines consist of
• Regions and …
• … (Pseudo)States (with entry, exit, and do-activities) …
• connected by Transitions (with triggers, guards, and effects)

• State machines communicate via event pools.

• State machines are executed by run-to-completion steps.



140Modelling with UML, with semantics

Unified Modeling Language 2

Interactions



141Modelling with UML, with semantics

A first glimpse

sequence diagram

communication
diagram

timing diagram

all three are 
semantically 
equivalent



142Modelling with UML, with semantics

History and predecessors

• Simple sequence diagrams
• 1990‘s

• Message Sequence Charts (MSCs) used in TelCo-industry
• several OO-methods use sequence diagrams

• Complex sequence diagrams
• 1996: Complex MSCs introduced in standard MSC96
• 1999: Life Sequence Charts (LSCs)

• Communication diagrams
• 1991: used in Booch method
• 1994: used in Cook/Daniels: Syntropy

• Timing diagrams
• traditionally used in electrical engineering
• 1991: used in Booch method
• 1993: used in early MSCs

• Interaction overview
• 1996: high-level MSCs (graphs of MSCs as notational alternative)



143Modelling with UML, with semantics

Usage scenarios

• Class/object interactions
• design or document message exchange between objects
• express synchronous/asynchronous messages, signals and calls, 

activation, timing constraints

• Use case scenarios
• illustrate a use case by concrete scenario
• useful in design/documentation of business processes (i.e. analysis 

phase and reengineering)

• Test cases
• describe test cases on all abstraction levels

• Timing specification/documentation

• Interaction overview
• organize a large number of interactions in a more visual style
• defined as equivalent to using interaction operators



144Modelling with UML, with semantics

Syntactical variants

• Sequence diagram
• traditional sequence diagrams + interaction operators
• focuses on exchanging many messages in complex patterns among few 

interaction partners

• Communication diagram
• “collaboration diagram” in UML 1.x
• focuses on exchanging few messages between (many) interaction 

partners in complex configuration

• Timing diagram
• new in UML 2.0, oscilloscope-type representation, not necessarily metric 

time
• focuses on (real) time and coordinated state change of interaction 

partners over time

• Interaction overview diagram
• looks like restricted activity diagram, but isn’t
• arrange elementary interactions to highlight their interaction



145Modelling with UML, with semantics

Main concepts

Lifeline

Interaction
partner

call

asynchronous signal
replyOccurrenceSpecification

aka. EventOccurrence



146Modelling with UML, with semantics

Message types

termination Event
non-instantaneous

Message

lost & found Messages
(i.e.: very slow messages)

instantiation Event



147Modelling with UML, with semantics

Activation

activation bar

activation
suspended

nested activation

warp lines
(non-UML)

external
Event



148Modelling with UML, with semantics

Usage: Use case scenarios

• Interaction participants are 
actors and systems rather 
than classes and objects.

• May be refined successively.

• Useful also for specifying 
high-level non-functional 
requirements such as 
response times.

• All kinds of interaction 
diagrams may be applied, 
depending on the 
circumstances.



149Modelling with UML, with semantics

Usage: Class interactions

• Interaction participants are 
classes and objects rather than 
actors and systems.

• Again, successive refinement
may be applied in different styles:
• break down processing of 

messages
• break down structure of 

interaction participants.

• All kinds of interaction diagrams 
may be applied, depending on the 
circumstances.



150Modelling with UML, with semantics

Usage: Test cases

• Like any other interaction, but with a different intention.

• Typically accompanied by a tabular description of purpose, expected parameters and 
result (similar to use case description).



151Modelling with UML, with semantics

Usage: Timing specification

• For embedded and real-time systems, 
it may be important to specify absolute 
timings and state evolution over time.

• This is not readily expressed in 
sequence diagrams, much less 
communication diagrams.

• UML 2.0 introduces timing diagrams
for this purpose.


