Unified Modeling Language 2

State machines

EE FlightHandling / passengerCheckin

startCheckin

whenisAssignedicederil/
Leals = calulipre+1 |

(Boarding B

stanOdi)

eject card | calls = cabhpre-1)

choose seat

lelse]

closerBghs
15 e to skt e
all chexckedin passengens boarded |

pring boarding prss

BoardingPass | | BoardingPass

Modelling with UML, with semantics 109

History and predecessors

* 1950’s: Finite State Machines
* Huffmann, Mealy, Moore

* 1987: Harel Statecharts
* conditions
* hierarchical (and/or) states
* history states

* 1990’s: Objectcharts
° adaptation to object orientation

* 1994: ROOM Charts
* run-to-completion (RTC) step

Modelling with UML, with semantics

110

Usage scenarios

EE FlightHandling / [————
wsart heckin

* Object life cycle
* Behaviour of objects according to business rules
° in particular for active classes

passenger hat
ot chexihed in | < checked in |

1 Accept
ardingPass | | BoardengPass
&

* Use case life cycle
* Integration of use case scenarios
* Alternative: activity diagrams

®* Control automata
°* Embedded systems

* Protocol specification

EMICIient {protocol}/ [truse |

* Communication interfaces e

[calls = calls@pre-+1]

[calls=1]
receiveResultionder, e) /
[calls = calls®pre-1]

Modelling with UML, with semantics 111

States and transitions

* State machines model behaviour
° using states interconnected ...
° with transitions triggered ...
° by event occurrences.

trigger [guard] / effect
5) %)

initial Pseudosta{e trigger (CallEvent) gugrd (Constraint)
|
EE Bqoking/ ! e
. ”
\ change() [kind <> #Economy]
l 0 tartOff()
G{eservec]} I el {BDDkEd_J = >@tarted0@
cdncell() : cancel() handle() /
/ | passenger.c(editMiles{self}
/I : /
: /
/ | / \
4 | o V4] \Y
simple State Transition effect (CallAction) FinalState

Modelling with UML, with semantics 112

Relation to class diagrams

®* State machines are defined in the context of a BehavioredClassifier.

* Context———~—~==—" Booking

defines which
* events can occur

* features are
available

Operation

corresponding CallEvent 7

CallAction = - —

called Operationy

Modelling with UML, with semantics

kind
pay()
A cancel()

/| startOff()
J |change()

handle()

change() [kind <> #Economy]
pay() () startOff()
Reserved |} > Booked | StartedOff
ca,ncelr:} cancel() handle() /
L, _ passenger.creditMiles(self
-— == >®
- =] .
—_——— 1 booking
:
|
Passenger |
Ng passenger : flight |Flight

name : Name

\\ * * I'miles:int

creditMiles(b : Booking)

113

Triggers and events (1)

deferred
event

TimeEvent _
(relative)

Boardinc_:_;/
'\’

[

= ==
= =
= =
= ==

BoardingControl | boardingPass_(ReadBoardingPass)

Ready J entry / check validity
7 exit / read passenger id
| closeFlight / defer y

[CheckBoardingPass)

entry / start query

do / blink

c:lnseFnght / defer
queried

')

ﬁcceptBoarding Pasﬂ rﬁejectBDa rding Pasﬂ

entry / eject entry / eject
do / release turnstile closeFlight / defer

J

[passenger has
checked in]

[passenger has
not checked in]

N

closeFlight / defer

after{10s)

when(turnstile sensor="turn")
! block turnstile

/ block turnstile

- SighalEvent

completion
" event

(no explicit
trigger)

- ChangeEvent

Modelling with UML, with semantics

114

Triggers and events (2)

* CallEvent
* receipt of a (a)synchronous Operation call
* triggering after Behavior of Operation executed

* SignalEvent
* receipt of an asynchronous Signal instance
* reaction declared by a Reception for the Signal
* TimeEvent
° absolute reference to a time point (at t)
* relative reference to trigger becoming active (after t)
* presumably meaning relative to state entry
* ChangeEvent

* raised each time condition becomes true
* may be raised at some point after condition changes to true
* could be revoked if condition changes to false

Modelling with UML, with semantics

115

Triggers and events (3)

* Completion event
* raised when all internal activities of a state are finished
* do activity, subregion
* no metamodel element for completion events

* dispatched before all other events in the event pool

* Deferred events

* events that cannot be handled in a state but should be kept in the event pool
* reconsidered when state is changed
* no predefined deferring policy

* Internal transitions s 5 B
* ... are executed without leaving and Q‘igger [guard]/ eﬁ'ecd

entering their containing state
* normally, on transition execution states are left and entered

Modelling with UML, with semantics 116

Behaviours

Boardinc_:_;/
W

[Buardingtontml] boardingPass_(ReadBoardingPass)

Ready J entry / check validity exit Behavior
™ exit /read passengerid ¢ = = = = = - - - - -
closeFlight / defer (on exiting a state)
(CheckBoardingPass) do activity Behavior
3“‘;{}{_5?'“’1“”? (concurrently while
o/blink === ——=——=—==—=—= -
closeFlight / defer !n state, may be
interr
queried terrupted)

[passenger has \f [passenger has
checked in](W not checked in]
ﬁcceptBoardingPasﬂ rﬁejectBoardingPasﬂ

entry / eject tmrwejm — _J. — —|- entry Behavior

do / release turnstile closeFlight / defer (on entering a state)
closeFlight / defer

after{10s) when(turnstile sensor="turn")
! block turnstile { block turnstile

Modelling with UML, with semantics 117

How state machines communicate

event pool

event pool
A :B
i
v
L=t . B
~— |
|
during rwork starts new RTC-step
run-to-completion (RTC) networ

signals: asynchronous (no waiting)
calls: asynchronous or synchronous (waiting for RTC of callee)

No assumptions are made on timing between
event occurrence, event dispatching, and event consumption.

Event occurrences for which no trigger exists may be discarded
(if they are not deferred).

Modelling with UML, with semantics 118

Hierarchical states (1)

* Hierarchical states allow to encapsulate behaviour and facilitate reuse.
* However, they are rarely used this way.

* UML 2.0 provides concepts supporting this usage.
° entry and exit points

F|Ig htHa ndllng/ passengerCheckln
jstart(:he-::kln
~%(Preparation |)(Checkin
closeCheckin passengerlLeave
i r Boardin
@e(Closing](L J_o
closeFlight -
[5 min.to start & S~
all checked-in passengers boarded] = ~ _
ﬁ_‘

-~

composite State

Transition triggering is prioritized inside-out, i.e., transitions deeper in the hierarchy are considered
first.
Modelling with UML, with semantics 119

Hierarchical states (2)

Fllg htHandIing/ passengerCheckin
startCheckin
0%(Preparation j 2{ ChecklIn fp _
loseCheck passengerlLeave detailed
closeCheckin | ngereay "(non-orthogonal)
47— \f-\\ - | composite State

-—

(Boardin

(oardmgContmlReaﬁdBoardmgF’as default entry
s

GheckBoardlngF‘as - Region
[passenger has [passengé’qu
not checked |n] ::hecked inl] |~ substates
y
closeFlight /
[5 min.to start & HE"J‘E"':—t ACCEPt
all checked-in passengers boarded] BoardlngF‘a 5SS BoardlngPass

H Closing k
passengerBoard

Modelling with UML, with semantics 120

Orthogonal regions

®* Simple State: containing no Region

* Composite State: containing at least one Region
* simple composite State: exactly one
* orthogonal composite State: at least two

(Client/Server

/ callService{parameter)
calls +=1

1)

Clientldle
[calls =1]
receiveResult(e) ~

/ calls -= 1 ~

______________________ ~~_ orthogonal Regions,

~ callService(parameter) ~ both active if
Serverldle

/ queue.ng(parameter) -~ . .
< Client/Server active
queue.dqg(parameter) eResul .7
/ execute(parameter) / receiveResult(e)

orthogonal states are “concurrent” as a single event may trigger a transition in each orthogonal region
“simultaneously”

Modelling with UML, with semantics 121

.

Forks and joins

all Regions are left

simultaneously
(if FinalStates are reached)

all Regions must be Y
entered simultaneously F —_)
*—> A —> B \

\
\
\
1 join Pseudostate

I (restrictions dual to forks)

\

B

fork Pseudostate

(one incoming, at least two outgoing Transitions;
outgoing Transitions must target States in different Regions of an orthogonal State)

122

Modelling with UML, with semantics

Entry and exit points (1)

* Entry and exit points (Pseudostates)
* provide better encapsulation of composite states
* help avoid “unstructured” transitions

_ exit point (on border of state machine

diagram or composite state)

Vl&¥e Checkin/ R canceled
choose seat
> insert card | | eject card > q
[card not) Seat
readable] Chosen

—

[else]

@a rdAcce pte@

readCard /

preparePassengerData
entry — .5 [Passenger)
point other “_ Accepted J

identification

[no booking
for check-in]

l confirm
Ghecked Ij

)<>9 choose seat

[else]

| Eject card >

| print boarding paS_=.>

Modelling with UML, with semantics

123

