
98Modelling with UML, with semantics

• … are redefinable (unless decorated by { leaf })
• in classes that specialize the context class

Features

visible to elements …

+ public that can access owning namespace
(by membership, import, or access)

protected with generalization to owning namespace

~ package in the same package as the owning namespace

- private in owning namespace only

Visibility kinds (no default)

• … belong to a namespace (e.g., class or package)

• … can be defined on instance or class level

isStatic
default value

99Modelling with UML, with semantics

Properties

{ ordered } { unique } Collection type

√ √ OrderedSet

√ × Sequence

× √ Set (default)

× × Bag

/ ({ derived }) can be computed from other information (default: false)
{ readOnly } can only be read, not written (default: false = unrestricted)
{ union } union of subset properties (implies derived)
{ subsets … } which property this property is a subset of

none reference

shared undefined (!)

composite value

Aggregation kinds (default: none)

100Modelling with UML, with semantics

Behavioral features

• … are realized by behaviors (e.g., code, state machine).
• { abstract } (virtual) behavioral features declare no behavior

• behavior must be provided by specializations
• Exceptions that may be thrown can be declared
• Limited concurrency control

• { active } classes define their own concurrency control

• in passive classes:

{ sequential } no concurrency management

{ guarded } only one execution, other invocations are blocked

{ concurrent } all invocations may proceed concurrently

Call concurrency kinds (no default)

active class (with own behavior which
starts on instance creation)

101Modelling with UML, with semantics

Operations (1)

• An operation specifies the name, return type, formal parameters, and constraints for
invoking an associated behaviour.
• «pre» / «post»

• precondition constrains system state on operation invocation
• postcondition constrains system state after operation is completed

• { query }: invocation has no side effects
• «body»: body condition describes return values

• { ordered, unique } as for properties, but for return values
• exceptions that may be thrown can be declared

in one way from caller

out one way from callee

inout both ways

return return from callee (at most 1)

Parameter direction kinds (default: in)

parameter name
parameter type
parameter multiplicity

102Modelling with UML, with semantics

Operations (2)

• Several semantic variation points for operations
• What happens, if a precondition is not satisfied on invocation?
• When inherited or redefined

• invariant, covariant, or contravariant specialization?
• How are preconditions combined?

• No predefined resolution principle for inherited or redefined operations
• “The mechanism by which the behavior to be invoked is determined from an operation and the

transmitted argument data is a semantic variation point.”
• a single-dispatch, object-oriented resolution principle is mentioned explicitly in the UML 2

specification

• Operation invocations may be synchronous or asynchronous.

103Modelling with UML, with semantics

Signals and receptions

• A signal is a specification of type of send request instances communicated between
objects.
• Signals are classifiers, and thus may carry arbitrary data.
• A signal triggers a reaction in the receiver in an asynchronous way and without a reply (no

blocking on sender).

• A reception is a declaration stating that a classifier is prepared to react to the receipt of
a signal.
• Receptions are behavioral features and thus are realized by behavior (e.g., a state machine).

Reception

104Modelling with UML, with semantics

Interfaces

• Interfaces declare a set of coherent public features and obligations.
• i.e., specify a contract for implementers (realizers)

client

provider

features to be offered

Several notations for client/provider relationship

lollipop
joint

105Modelling with UML, with semantics

Templates

template parameters
exposed parameterable elements

template binding

Template class
(ParameterableElement)

Bound class
(TemplateableElement)

subtype polymorphism vs. parametric polymorphism

106Modelling with UML, with semantics

Object diagram

Slot with
ValueSpecification

underlining and association end adornments are optional

InstanceSpecification InstanceValue

link

107Modelling with UML, with semantics

Instances specifications

UML metamodel

user model

108Modelling with UML, with semantics

Wrap up

• Classifiers and their Relationships describe the vocabulary of a system.

• Classifiers describe a set of instances with common Features.
• StructuralFeatures (Property’s)
• BehavioralFeatures (Operations, Receptions)

• Associations describe structural relationships between classes.
• Association ends are Property’s.

• Generalizations relate specific Classifiers to more general Classifiers.

• Packages group elements
• and provide a Namespace for grouped elements.

• InstanceSpecifications and links describe system snapshots.

