Features

®* ... belong to a namespace (e.g., class or package)
TravelStage Visibility kinds (no default)
Handling

+ delay : Minutes

visible to elements ...

+ boardingGate : 5tring

+ | public that can access owning namespace
(by membership, import, or access)

| protected with generalization to owning namespace
Connection _ _
~ | package in the same package as the owning namespace
addOnelcp : ConnectionPart)
T - private in owning namespace only
ConnectionPart .
* ... are redefinable (unless decorated by { leaf })
- addOne(c : Connection) - . T
{redefines addOne} [~ * in classes that specialize the context class
®* ... can be defined on instance or class level TravelStage

Modelling with UML, with semantics

isStatic — ~

maxDuration :int = 10==

—default value

98

Properties

Aggregation kinds (default: none) { ordered } { unique } Collection type
\ \ OrderedSet
none reference
\ x Sequence

shared <>— undefined (!) y Set (defaull)
e efau

X

composite ’— value
X X Bag

«interface>>

Travel [------ ™ TravelHandling
¢+ ¢
0..1
+out +return /tSh
{ordered, unique, {ordered, unique, {union}
subsets tsh} subsets tsh} 1.%

- 0.” «interface>
TravelStage |------- > TravelStage

Handling

/ ({ derived }) can be computed from other information (default: false)

{ readOnly } can only be read, not written (default: false = unrestricted)
{ union } union of subset properties (implies derived)

{ subsets ... } which property this property is a subset of

Modelling with UML, with semantics 99

Behavioral features

®* ... are realized by behaviors (e.g., code, state machine).
* {abstract } (virtual) behavioral features declare no behavior
* behavior must be provided by specializations
* Exceptions that may be thrown can be declared

* Limited concurrency control
* {active } classes define their own concurrency control

BoardingControl |- — — active class (with own behavior which
starts on instance creation)

* in passive classes:
Call concurrency kinds (no default)

{ sequential } no concurrency management
{ guarded } only one execution, other invocations are blocked
{ concurrent } all invocations may proceed concurrently

Modelling with UML, with semantics

100

Operations (1)

* An operation specifies the name, return type, formal parameters, and constraints for

invoking an associated behaviour.
° «pre» [«post»

* precondition constrains system state on operation invocation
* postcondition constrains system state after operation is completed

* {query }: invocation has no side effects
* «body»: body condition describes return values

* {ordered, unique } as for properties, but for return values

° exceptions that may be thrown can be declared

Parameter direction kinds (default: in)

in one way from caller

out one way from callee

inout both ways

return return from callee (at most 1)

Modelling with UML, with semantics

Connection

+ add(cps : Connection Parts[q..*]}

7 7 7/
¢’ 7 /
parameter name L7 /

parameter type 7 /7
/7
parameter multiplicity »

101

Operations (2)

®* Several semantic variation points for operations
* What happens, if a precondition is not satisfied on invocation?

* When inherited or redefined
* invariant, covariant, or contravariant specialization?
* How are preconditions combined?

®* No predefined resolution principle for inherited or redefined operations

* “The mechanism by which the behavior to be invoked is determined from an operation and the
transmitted argument data is a semantic variation point.”

* a single-dispatch, object-oriented resolution principle is mentioned explicitly in the UML 2
specification

* QOperation invocations may be synchronous or asynchronous.

Modelling with UML, with semantics 102

Signals and receptions

* Asignal is a specification of type of send request instances communicated between
objects.

* Signals are classifiers, and thus may carry arbitrary data.

* A signal triggers a reaction in the receiver in an asynchronous way and without a reply (no
blocking on sender).

* Avreception is a declaration stating that a classifier is prepared to react to the receipt of
a signal.

* Receptions are behavioral features and thus are realized by behavior (e.g., a state machine).

«signal> BoardingControl
Cardlnserted 9

«signal>> Cardinserted -{|— —Reception

Modelling with UML, with semantics 103

Interfaces

* Interfaces declare a set of coherent public features and obligations.
° i.e., specify a contract for implementers (realizers)

«interface:>
TravelHandling
+/ delay : Minutes ' = = — o _
+numOfBag:int=0 * = = — — = features to be offered

+ delay() {query} * |

Several notations for client/provider relationship

i
client C C =
: : C
Vi I
«interface» B B oint ,J\ B
g lollipop O B J ?
: i A
! A
provider A A

Modelling with UML, with semantics 104

Templates

subtype polymorphism vs.

parametric polymorphism

Travel MeansOfTransport
A I\
— JourneyByAir — Plane
— TrainJourney — Train
— CoachTour — Bus

exposed parameterable elements

- -

MeansOfTransport
A
— Plane
_;T MeansOfTransport'
— Train Travel === 777""7"777777"
— Bus
! » O :Object, n:int '— — template parameters

Template class | LISt N

(ParameterableElement)

contents : O [n] {sequence}

i

«bind>> (O -> Flight, n=20) :

FlightList

Modelling with UML, with semantics

A template binding
| «bind>> (O -> Passenger, n=300)

PassengerList

Bound class
(TemplateableElement)

105

Object diagram

InstanceSpecification InstalnceVaIue
c42 :Connection t42 : Travel raw4711 : TravelHandling
conn - travel
from="MUC" < I dep=2003-09-23 < numOfBag=2
to="AKL" [arr=2003-09-24
dep=07:45 link class="economy"
arr=06:30 (+24)
status="planned"
¢ K 2 K 2
cp1 :ConnPart ts1 : TravelStage tsh1 : TravelStageHandling
- - conn travel)
from="MUC < dep=2003-09-23 (¢ —— gate="D12" = — — — - - Slot with
to="LHR" arr=2003-09-23 e .
fINr="LH4754" ValueSpecification
cp2 : ConnPart ts2 : TravelStage tsh2 : TravelStageHandling
conn travel
fr0m="LHR“ < — dep=2003'09'23 < —_— gate="A55"
to="LA" arr=2003-09-23
fINr="NZ4550V"
cp3 :ConnPart ts3 : TravelStage tsh3 : TravelStageHandling
N conn travel
from="LA < dep=2003-09-23 gate="C3"
to="AKL" : arr=2003-09-24
fINF="NZ2V" “

underlining and association end adornments are optional

Modelling with UML, with semantics 106

Instances specifications

UML metamodel

M,
type . .
Class /P InstanceSpecification
N AN
«instanceOf>» «instanceOf>» E
M : :

! BoardingPass b :BoardingPass
surname : String surname = "stoerrle"
firstName : String firstName = "harald"
address : String address ="mr"
from - Strin from ="AKL"
to :String {_<js_n§p_sr_19t_>i__ to ="MUC"
carrier : String carrier = "ANZ"
flightNr : String flightNr ="NZ02"
boardingTime: Time boardingTime= 15:55
seat : String seat ="45(C"
class :Char class ="V
numOfBag :Int numOfBag =2

user model

Modelling with UML, with semantics 107

Wrap up

* Classifiers and their Relationships describe the vocabulary of a system.

* Classifiers describe a set of instances with common Features.
* StructuralFeatures (Property’s)
* BehavioralFeatures (Operations, Receptions)

®* Associations describe structural relationships between classes.
* Association ends are Property’s.

®* Generalizations relate specific Classifiers to more general Classifiers.

* Packages group elements
* and provide a Namespace for grouped elements.

* InstanceSpecifications and links describe system snapshots.

Modelling with UML, with semantics 108

