
46Modelling with UML, with semantics

Meta-Modelling

47Modelling with UML, with semantics

Model vs. System

René Magritte. La trahison des images. 1928–29.

48Modelling with UML, with semantics

Model of a model ― The correspondence continuum

• Example
• A photo of a landscape is a model of the landscape.
• A photocopy of the photo is model of a model of the landscape.
• A digitalization of the photocopy is a model of the model of the model of the

landscape.
• etc.

Meaning is rarely a simple mapping from a symbol to an object; instead it often
involves a continuum of (semantic) correspondences from symbol to (symbol
to)* object. [Barry Smith. The correspondence continuum. 1987]

49Modelling with UML, with semantics

Basic entities of MDE and MDSD

System ModelrepOf

System: a group of interacting, interrelated,
or interdependent elements forming a

complex whole.

Model: an abstract representation of a
system created for a specific purpose.

50Modelling with UML, with semantics

A very popular model: Geographical maps

The System

Models

France in 1453
The French cheese

map

Railroad map
in western France

ModelrepOfSystem

Percentage
of termite infestation

in France.

Presidential
elections in

France

http://geography.about.com/library/blank/france.jpg

51Modelling with UML, with semantics

Limited substitutability principle

• The purpose of a model is always to be able to answer some specific sets of questions
in place of the system, exactly in the same way the system itself would have answered
similar questions.

• A model represents certain specific aspects of a system and only these aspects, for a
specific purpose.

System

+ ask()
repOf

Model

+ ask()

52Modelling with UML, with semantics

Lewis Carroll and the 1:1 map

“That’s another thing we’ve learned from your Nation” said Mein Herr, “map-making. But
we’ve carried it much further than you. What do you consider the largest map that would be
really useful?”

“About six inches to the mile.”

“Only six inches!” exclaimed Mein Herr. “We very soon got to six yards to the mile. Then we
tried a hundred yards to the mile. And then came the grandest idea of all! We actually made
a map of the country, on the scale of a mile to the mile!”

”Have you used it much?” I enquired.

“It has never been spread out, yet” said Mein Herr: “the farmers objected: they said it
would cover the whole country, and shut out the sunlight! So we now use the country itself,
as its own map, and I assure you it does nearly as well.“

Lewis Carroll. Sylvie and Bruno concluded.

53Modelling with UML, with semantics

Lewis Carroll and the blank map

He had bought a large map representing the sea,
Without the least vestige of land:
And the crew were much pleased when they found it to be
A map they could all understand.
“What's the good of Mercator's North Poles and Equators,
Tropics, Zones, and Meridian Lines?”
So the Bellman would cry: and the crew would reply
“They are merely conventional signs!
Other maps are such shapes, with their islands and capes!
But we've got our brave Captain to thank:”
(So the crew would protest) “that he's bought us the best—
A perfect and absolute blank!”

Lewis Carroll. The Hunting Of The Snark ― An Agony in Eight Fits.

54Modelling with UML, with semantics

Every map has a legend (implicit or explicit)

The legend

Same visual notation,
different context,
different meaning

is the metamodel

55Modelling with UML, with semantics

Maps without legends are meaningless

Percentage of places infested
by termites in France

First round of political
election in France in 2002

56Modelling with UML, with semantics

The legend is a meta-model

System

+ ask()
repOf

Model

+ ask()

Meta-model
+ terminology
+ assertions conformsTo

57Modelling with UML, with semantics

The model of a model is not a meta-model

Area of
Seattle

repOf Tourist map:
1/50 000

of the area Seattle

Tourist map:
1/100 000

of the area Seattle

/repOf
repOf

58Modelling with UML, with semantics

Meta-models act as filters

The metamodel

A modelA system

Mary
Table 237
Chair 34
Paul
Victor
Emily

Furniture

Table Chair

Person

Attendant Presenter

sitsOn

59Modelling with UML, with semantics

Meta-models as simple ontologies

• Meta-models are precise abstraction filters.
• Each meta-model defines a domain-specific language.
• Each meta-model is used to specify which particular “aspect” of a system should be

considered to constitute the model.

• The correspondence between a system and a model is precisely and computationally
defined by a meta-model.

A metamodel defines a
consensual agreement on
how elements of a system
should be selected to
produce a given model.

An ontology is an explicit
specification of a shared
conceptualization.

conformsTo

60Modelling with UML, with semantics

Multiple views and coordinated DSLs

• 1:1 map vs. blank map
• Limited substitutability principle
• A model has no meaning when separated from its meta-model.

Carpenter’s
view

Mason’s
view

Plumber’s
view

Architect’s
view

Landlord’s
view

Renter’s
view

Interior
Designer’s

view

Tax
Collector’s

view
Electrician’s

view

ModelrepOfSystem

61Modelling with UML, with semantics

Multiple views and aspects of a software system

System functions
from the user view

Physical components
of an application

Representation
of behavior
in term of states

Class static structure
and relations between these classes

Schemas of component
installation
on hardware devices Representation

of operation behavior
in terms of actions

Representation of
objects and their
temporal interactions

Representation of objects,
of their mutual links and
potential interactions

Objects and basic relations between
these objects

62Modelling with UML, with semantics

Meta-models

• A meta-model is just another model.
• Model of a set of models

• Meta-models are specifications.
• Models are valid if no false statements according to meta-model (e.g. well-formed)
• Meta-models typically represent domain-specific models (real-time systems, safety critical

systems, e-business)
• The domain of meta-modelling is language definition.

• A meta-model is a model of some part of a language
• Which part depends on how the meta-model is to be used
• Parts: syntax, semantics, views/diagrams, ...

• Meta-meta-model
• Model of meta-models
• Reflexive meta-models expressed using itself

63Modelling with UML, with semantics

A “lattice” of meta-models

A modelThe system

A collection of several hundreds
of small meta-models (DSLs)
with high abstraction power.

64Modelling with UML, with semantics

The basic assumptions of MDE and MDSD

• Models as first class entities
• Conformance and Representation as kernel relations central to MDE

• MDSD as a special case of MDE

Model

isRepresentedBy

MetaModel

System

conformsTo

65Modelling with UML, with semantics

Meta-modelling hierarchy or the meta-modelling stack

The MOF (some kind of "representation ontology")

The UML metamodel and other MMs

Some UML Models and other Ms

Various usages of these models

66Modelling with UML, with semantics

Abstract Syntax Systems Compared

MOF

The UML
meta-Model

A Specific
UML Model

EBNF

Pascal Language
Grammar

A specific
Pascal Program

A XML
document

A XML DTD
or Schema

A XML
document

A XML DTD
or Schema

Technology #2
(MOF + OCL)

Technology #3
(XML Meta-Language)

KIF
Theories

Representation
Ontologies

Technology #4
(Ontology engineering)

Technology #1
(formal grammars

attribute grammars, etc.)

+Description
Logics

+Conceptual
Graphs
+etc.+Xpath, XSLT

+RDF, OIL, DAML
+etc.

M3

M2

M1

67Modelling with UML, with semantics

Three-level hierarchy: Example ― Petri-nets

Metametamodel

Metamodel

Model

Node
Place

Place
P1

Place
P2

Node
Trans

Node
Node

Node
Link

Link
arcPT

Link
arcTP

Trans
T1

arcPT arcTP

Link
inCom

Link
outGo

outGo

outGo

inCom

inCom

Link
meta

outGo

inCom

inCom outGo

outGo inCom

conformsTo

conformsTo

conformsTo

meta

repOf

System

P2

P1

T1

Classical
representation

M1

M2

M3

68Modelling with UML, with semantics

<petrinet>
<place name=“P1”/>
<place name=“P2”/>
<transition name=“T1”/>
<arcPT source=“P1” target=“T1”/>
<arcTP source=“T1” target=“P2/>

</petrinet>

Metametamodel:
XML Schema for
XML Schema

Metamodel:
a Petri Net
XML Schema

Model: an XML
document

conformsTo

conformsTo

meta

repOf

System

…
<xs:element name=“place">

<xs:complexType>
<xs:attribute name=“name“

type=“xs:string"/>
</xs:complexType>

</xs:element>
…

…
<xs:element name=“element">

<xs:complexType>
<xs:attribute name=“name“

type=“xs:string"/>
…

</xs:complexType>
</xs:element>

…
conformsTo

P2

P1

T1

Classical
representation

M1

M2

M3

69Modelling with UML, with semantics

petrinet {
place P1;
place P2;
transition T1;
arcPT P1 -> T1;
arcTP T1 -> P2;

}

Metametamodel:
EBNF grammar
of EBNF

Metamodel:
a Petri Net
Grammar

Model: a
string

conformsTo

conformsTo

meta

repOf

System

petrinet := “petrinet” “{”
place* transition*
arcPT* arcTP* “}”;

place := “place” IDENT “;”;
transition := “transition” IDENT “;”;
arcPT := “arcPT” IDENT “->” IDENT;
arcTP := “arcTP” IDENT “->” IDENT;

productionRule := IDENT “:=” seq “;”;
seq := alternative seq?;
alternative := rep (“|”alternative)?;
rep := atom (“?” | “*”)?;
atom := terminal | “(” seq “)”;
terminal := STRING | IDENT;

conformsTo

P2

P1

T1

Classical
representation

M1

M2

M3

70Modelling with UML, with semantics

Technological Space

Basic entities of MDE and MDSD

System ModelrepOf

System: a group of interacting, interrelated,
or interdependent elements forming a

complex whole.

Model: an abstract representation of a
system created for a specific purpose.

Technological Space: a model management
framework usually based on some algebraic structures

(trees, graphs, hypergraphs, etc.).

Meta-Model

conformsTo

71Modelling with UML, with semantics

The notion of Technological Space (TS)

• A Technological Space corresponds to:
• A uniform representation system

• Syntactic trees
• XML trees
• Sowa graphs
• UML graphs
• MOF graphs

• A working context
• A set of concepts
• A set of methods
• A shared knowledge and know-how
• etc.

• It is usually related to a given community
with an established expertise, know-how and
research problems.

• It has a set of associated tools and practices,
etc.
• Protégé, Rational Rose, …

Corba
C++

WWW

XML
documentware

etc.

RDBMS

Ontologies

Java

Graph Theory

MDA
Modelware

OODBMS

Description
logic

Prolog

Semantic Web

Grammarware

72Modelling with UML, with semantics

Main Technological Spaces

TS’s may be
connected
via bridges

Program

Grammar

Data

Schema

Model

Meta-Model

Document

Schema

Ontology

Top Level O.

Syntax XML

MDA

DBMS Ontology
engineering

Unified Modeling Language 2

74Modelling with UML, with semantics

History and Predecessors

• The UML is the “lingua franca” of software
engineering.

• It subsumes, integrates and consolidates
most predecessors.

• Through the network effect, UML has a much
broader spread and much better support
(tools, books, trainings etc.) than other
notations.

• The transition from UML 1.x to UML 2.0 has
• resolved a great number of issues;
• introduced many new concepts and notations

(often feebly defined);
• overhauled and improved the internal structure

completely.
• While UML 2 still has many problems, it is

much better than what we ever had before.

current version (“the standard”) UML 2.4.1
formal/2011-08-06 of August ’11

75Modelling with UML, with semantics

Usage Scenarios

• UML has not been designed for specific, limited usages.

• There is currently no consensus on the rôle of the UML:
• Some see UML only as tool for sketching class diagrams representing Java programs.
• Some believe that UML is “the prototype of the next generation of programming languages”.

• UML is a really a system of languages (“notations”, “diagram types”) each of which may
be used in a number of different situations.

• UML is applicable for a multitude of purposes and during all phases of the software
lifecycle – to varying degrees.

76Modelling with UML, with semantics

Usage Scenarios

77Modelling with UML, with semantics

Diagram types in UML 2

UML is a coherent system of languages rather than a single language.
Each language has its particular focus.

78Modelling with UML, with semantics

Internal Structure: Overview

• The UML is structured using a metamodeling approach with four layers.
• The M2-layer is called metamodel.

• The metamodel is again structured into rings, one of which is called superstructure, this
is the place where concepts are defined (“the metamodel” proper).

• The Superstructure is structured into a tree of packages in turn.

79Modelling with UML, with semantics

Internal Structure: Layers

80Modelling with UML, with semantics

Internal Structure: Layers

:

81Modelling with UML, with semantics

Internal Structure: Rings

82Modelling with UML, with semantics

Internal Structure: Packages

83Modelling with UML, with semantics

UML is not (only) object oriented

• A popular misconception about UML is that it is “object oriented” by heart – whatever
that means.

• It is true that
• UML defines concepts like class and generalization;
• UML is defined using (mainly) a set of class models;
• UML 2 rediscovers the idea of behaviour embodied in objects.

• However, UML 2
• also encompasses many other concepts of non- or pre-OO origin (Activities, StateMachines,

Interactions, CompositeStructure, …);
• may be used in development projects completely independent of their implementation

languages (Java, Cobol, Assembler, …);
• is not tied to any language or language paradigm, neither by accident nor purpose.

84Modelling with UML, with semantics

Unified Modeling Language 2

Classes and packages

85Modelling with UML, with semantics

History and predecessors

• Structured analysis and design
• Entity-Relationship (ER) diagrams (Chen 1976)

• Semantic nets
• Conceptual structures in AI (Sowa 1984)

• Object-oriented analysis and design
• Shlaer/Mellor (1988)
• Coad/Yourdon (1990)
• Wirfs-Brock/Wilkerson/Wiener (1990)
• OMT (Rumbaugh 1991)
• Booch (1991)
• OOSE (Jacobson 1992)

86Modelling with UML, with semantics

Usage scenarios

Analysis Design Implementation
Concept √ ×

Type √ √
Set of objects √ √
Code × √

• Classes and their relationships describe the vocabulary of a system.
• Analysis: Ontology, taxonomy, data dictionary, …
• Design: Static structure, patterns, …
• Implementation: Code containers, database tables, …

• Classes may be used with different meaning in different software development phases.
• meaning of generalizations varies with meaning of classes

87Modelling with UML, with semantics

• Structural features (are typed elements)
• properties

• commonly known as attributes
• describe the structure or state of class instances
• may have multiplicities (e.g. 1, 0..1, 0..*, *, 2..5)

• Behavioral features (have formal parameters)
• operations

• services which may be called
• need not be backed by a method, but may be implemented

otherwise

Classes

• Classes describe a set of instances with common features (and semantics).
• Classes induce types (representing a set of values).
• Classes are namespaces (containing named elements).

88Modelling with UML, with semantics

Associations

• Associations describe sets of tuples whose values refer to typed instances.
• In particular, structural relationship between classes
• Instances of associations are called links.

• Association ends are properties.
• correspond to properties of the opposite class (default

multiplicity is 0..1)
• Association ends may be navigable.

• in contrast to general properties

navigable not navigable
association end

association namereading
direction

ternary associationqualified end (fh per date)

89Modelling with UML, with semantics

Association classes

• Association classes combine classes with associations.
• not only connect a set of classifiers but also define a set of features that belong to the

relationship itself and not to any of the classifiers

equals association name

• each instance of Booking has one passenger and one flight
• each link of Booking is one instance of Booking

90Modelling with UML, with semantics

Data types and enumerations

• Data types are types whose instances are identified by their value.
• Instances of classes have an identity.
• may show structural and behavioural features

• Enumerations are special data types.
• instances defined by enumeration literals

• denoted by Enumeration::EnumerationLiteral or #EnumerationLiteral
• may show structural and behavioural features

compartments for attributes
and operations suppressed

enumeration literals

91Modelling with UML, with semantics

Inheritance (1)

• Generalizations relate specific classes to more general classes.
• instances of specific class also instances of the general class
• features of general class also implicitly specified for specific class

• implies substitutability (in the sense of Liskov & Wing)
• must be specified on specific class separately by { substitutable }

• Generalizations also apply to
associations.
• as both are Classifiers

{ abstract } class
(no direct instances,
only specializations

may have instances)

if decorated with { root }: no superclass

if decorated with { leaf }: no subclass

92Modelling with UML, with semantics

• Generalization sets detail the relation between a general and more specific classifiers.
• { complete } (opposite: { incomplete })

• all instances of general classifier are instances of one of the specific classifiers in the generalization set
• { disjoint } (opposite: { overlapping })

• no instance of general classifier belongs to more than one specific classifier in the generalization set
• default: { disjoint, incomplete }

• several generalization sets may be applied to a classifier
• useful for taxonomies

Inheritance (2)

name of generalization set

93Modelling with UML, with semantics

Constraints

• Constraints restrict the semantics of model elements.
• constraints may apply to one or more elements
• no prescribed language

• OCL is used in the UML 2 specification
• also natural language may be used

user defined constraint

UML predefined constraint
(owner is either a person or a company)

94Modelling with UML, with semantics

• Packages group elements.
• Packages provide a namespace for its grouped elements.
• Elements in a package may be

• public (+, visible from outside; default)
• private (-, not visible from outside)

• Access to public elements by qualified names
• e.g., Flights::MilesAccount

Packages (1)

Notational variants

95Modelling with UML, with semantics

• Package imports simplify qualified names.

Packages (2)

private ElementImport public ElementImport

public PackageImport renaming private ElementImport

Package Element Visibility

A X private separate private element import
(otherwise public overrides private)

A Q public all remaining visible elements of B

B X public public import

B Q public default visibility

B R private private import, renaming

96Modelling with UML, with semantics

• Package mergings combine concepts incrementally.
• … but use with care

Packages (3)

• The receiving package
defines the increment.

• The receiving package is
simultaneously the
resulting package.

• Merging is achieved by
(lengthy) transformation
rules (not defined for
behaviour).

• Package merging is used
extensively in the UML 2
specification.

97Modelling with UML, with semantics

Metamodel

