
225Modelling with UML, with semantics

Eclipse Modeling Framework

226Modelling with UML, with semantics

Eclipse Modeling Framework (EMF)

• Modelling ― more than just documentation
• Just about every program manipulates some data model

• It might be defined using Java, UML, XML Schemas, or some other definition language
• EMF aims to extract this intrinsic “model” and generate some of the implementation

code
• Can be a tremendous productivity gain

• EMF is one implementation of MOF (though it has differences)
• EMF ≈ EMOF

http://www.eclipse.org/emf/

http://www.eclipse.org/emf/

227Modelling with UML, with semantics

EMF

• EMF is a modelling framework and code generation facility for building tools and
other applications based on a structured data model.

• From a model specification described in XMI, EMF provides
• tools and runtime support to produce a set of Java classes for the model,
• adapter classes that enable viewing and command-based editing of the model,
• and a basic editor.

• Models can be specified using
• Annotated Java
• XML documents
• Modelling tools like Rational Rose, MagicDraw, …
• …

• EMF provides the foundation for interoperability with other EMF-based tools and
applications.

228Modelling with UML, with semantics

I
M
P
O
R
T

GENERATE

Ecore
Model

UML

XML
Schema

Java
model

Java
edit

Generator features:
Customizable JSP-like
templates (JET)
Command-line or
integrated with Eclipse
JDT
Fully supports
regeneration and
merge

Java
editor* * requires Eclipse to

run

Java
model

EMF architecture: Model import and generation

229Modelling with UML, with semantics

EMF ― Fundamental Pieces

• EMF
• The core EMF framework includes a meta-model (Ecore)

• for describing models
• runtime support for the models including change notification,
• persistence support with default XMI serialization,
• reflective API for manipulating EMF objects generically.

• EMF.Edit
• Generic reusable classes for building editors for EMF models.

• EMF.Codegen
• Capable of generating everything needed to build a complete editor for an EMF model.
• Includes a GUI from which generation options can be specified, and generators can be

invoked.

230Modelling with UML, with semantics

EMF in the meta-modelling architecture

Java code for manipulation
and default serialization of

EMF models
EMF codegen

Ecore (Java classes)MOF

UML, CWM, ...

M3
(Metametamodel)

M2
(Metamodel)

M1
(Model)

OMG EMF

EMF model

instanceOf

EMF model

instanceOf

EMF

EMF

EMF.CodegenEMF.Edit

EMF.Edit

conformsTo

231Modelling with UML, with semantics

• Ecore is EMF’s model of models (meta-model)
• Persistent representation is XMI
• Can be seen as an implementation of UML Core::Basic

EMF architecture: Ecore

232Modelling with UML, with semantics

Ecore: Overview

used for
meta-modelling

233Modelling with UML, with semantics

Ecore: Inheritance hierarchy

234Modelling with UML, with semantics

Ecore: Associations

235Modelling with UML, with semantics

Ecore: Generics

236Modelling with UML, with semantics

EMF model definition (1)

• Specification of an application’s data
• Object attributes
• Relationships (associations) between objects
• Operations available on each object
• Simple constraints (e.g., multiplicity) on objects and relationships

237Modelling with UML, with semantics

import java.io.*;
import java.util.*;
import org.eclipse.emf.ecore.*;
import org.eclipse.emf.common.util.URI;
import org.eclipse.emf.ecore.resource.*;
import org.eclipse.emf.ecore.resource.impl.*;
import org.eclipse.emf.ecore.xmi.impl.EcoreResourceFactoryImpl;

public class EMFTest {
public static void main(String[] args) {

EcoreFactory ecoreFactory = EcoreFactory.eINSTANCE;

factory for Ecore meta-models

EMF model definition: Programming (1)

238Modelling with UML, with semantics

EPackage aPackage = ecoreFactory.createEPackage();
aPackage.setName("somePackage");
aPackage.setNsPrefix("pkg");
aPackage.setNsURI("urn:www.pst.ifi.lmu.de/knapp/pkg");

EClass aClass = ecoreFactory.createEClass();
aClass.setName("SomeClass");
aPackage.getEClassifiers().add(aClass);

EAttribute anAttribute = ecoreFactory.createEAttribute();
anAttribute.setName("someAttribute");
anAttribute.setEType(ecoreFactory.getEcorePackage().

getEString());
aClass.getEStructuralFeatures().add(anAttribute);

EReference aReference = ecoreFactory.createEReference();
aReference.setName("someReference");
aReference.setEType(aClass);
aClass.getEStructuralFeatures().add(aReference);

namespace settings

EMF model definition: Programming (2)

239Modelling with UML, with semantics

try {
Resource.Factory.Registry.INSTANCE.
getExtensionToFactoryMap().put("ecore",

new EcoreResourceFactoryImpl());
ResourceSet resourceSet = new ResourceSetImpl();
Resource resource = resourceSet.
createResource(URI.createFileURI("test.ecore"));

resource.getContents().add(aPackage);

StringWriter stringWriter = new StringWriter();
URIConverter.WriteableOutputStream outputStream =
new URIConverter.WriteableOutputStream(stringWriter, "UTF-8");

Map<String, String> options = new HashMap<String, String>();
resource.save(outputStream, options);
System.out.println(stringWriter.toString());

} catch (IOException ioe) {
ioe.printStackTrace(); }

}
}

for saving as Ecore meta-model

options for resources
(compress, encrypt, save only when
modified, progress monitor, &c.)

EMF model definition: Programming (3)

240Modelling with UML, with semantics

EMF model definition (2)

• Unifying Java, XML, and UML technologies

• All three forms provide the same information
• Different visualization/representation
• The application’s “model” of the structure

• EMF models can be defined in (at least) four ways:
1. ECore diagram
2. Java interfaces
3. UML Class Diagram
4. XML Schema

• EMF can generate the others as well as the implementation code

241Modelling with UML, with semantics

EMF model definition: ECore diagrams

242Modelling with UML, with semantics

/** @model */
public interface PurchaseOrder {
/** @model */ String getShipTo();
/** @model */ String getBillTo();
/** @model containment="true" opposite="order" */
List<Item> getItems();

}

/** @model */
public interface Item {
/** @model opposite="items" */
PurchaseOrder getOrder();
/** @model */ String getProductName();
/** @model */ int getQuantity();
/** @model */ float getPrice();

}

EMF model definition: Annotated Java interfaces

• Setter methods for attributes generated

243Modelling with UML, with semantics

EMF model definition: UML class diagrams

• From Rational Software Architect, Eclipse UML 2, &c.

244Modelling with UML, with semantics

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.org/purchase"
xmlns:tns="http://www.example.org/purchase">

<complexType name="PurchaseOrder">
<sequence>
<element name="shipTo" type="string"/>
<element name="billTo" type="string"/>
<element name="items" type="tns:Item"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="id" type="ID"/>

</complexType>
<complexType name="Item">
<sequence>
<element name="order" type="IDREF" minOccurs="1" maxOccurs="1"/>
<element name="productName" type="string"/>
<element name="quantity" type="int"/>
<element name="price" type="float"/>

</sequence>
</complexType>

</schema>

EMF model definition: XML Schema

245Modelling with UML, with semantics

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="purchase"
nsURI="http://www.example.org/purchase" nsPrefix="purchase">
<eClassifiers xsi:type="ecore:EClass" name="Item">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="order"
lowerBound="1" eType="ecore:EDataType

http://www.eclipse.org/emf/2003/XMLType#//IDREF"/>
<eStructuralFeatures xsi:type="ecore:EAttribute"

name="productName" lowerBound="1"
eType="ecore:EDataType

http://www.eclipse.org/emf/2003/XMLType#//String"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="quantity"

lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2003/XMLType#//Int"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="price"
lowerBound="1" eType="ecore:EDataType

http://www.eclipse.org/emf/2003/XMLType#//Float"/>
</eClassifiers>

EMF architecture: Ecore/XMI (1)

246Modelling with UML, with semantics

<eClassifiers xsi:type="ecore:EClass" name="PurchaseOrder">
<eStructuralFeatures xsi:type="ecore:EAttribute" name="shipTo"

lowerBound="1" eType="ecore:EDataType
http://www.eclipse.org/emf/2003/XMLType#//String"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="billTo"
lowerBound="1" eType="ecore:EDataType

http://www.eclipse.org/emf/2003/XMLType#//String"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="items"

upperBound="-1" eType="#//Item" containment="true"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="id"

eType="ecore:EDataType
http://www.eclipse.org/emf/2003/XMLType#//ID" iD="true"/>

</eClassifiers>
</ecore:EPackage>

• Alternative serialisation format is EMOF/XMI

EMF architecture: Ecore/XMI (2)

247Modelling with UML, with semantics

/** @model */
public interface Item extends EObject {
/** @model opposite="items" */ PurchaseOrder getOrder();
/** @generated */ void setOrder(PurchaseOrder value);
/** @model */ String getProductName();
/** @generated */ void setProductName(String value);
/** @model */ int getQuantity();
/** @generated */ void setQuantity(int value);
/** @model */ float getPrice();
/** @generated */ void setPrice(float value);

}

EMF.Codegen: Interface completion

• No regeneration of implementations when changing @generated to @generated NOT

248Modelling with UML, with semantics

public PurchaseOrder getOrder() {
if (eContainerFeatureID != PurchasePackage.ITEM__ORDER)

return null;
return (PurchaseOrder)eContainer();

}

EMF.Codegen: Implementation of associations (1)

• Proper handling of binary associations
• changes on either side of an association propagated to the other

• Special handling of composite associations
• only a single container, stored in eContainerFeatureID

249Modelling with UML, with semantics

public void setOrder(PurchaseOrder newOrder) {
if (newOrder != eInternalContainer() ||

(eContainerFeatureID != PurchasePackage.ITEM__ORDER &&
newOrder != null)) {

if (EcoreUtil.isAncestor(this, newOrder))
throw new IllegalArgumentException("Recursive containment " +
"not allowed for " + toString());

NotificationChain msgs = null;
if (eInternalContainer() != null)
msgs = eBasicRemoveFromContainer(msgs);

if (newOrder != null)
msgs = ((InternalEObject)newOrder).eInverseAdd(this,
PurchasePackage.PURCHASE_ORDER__ITEMS,
PurchaseOrder.class, msgs);

msgs = basicSetOrder(newOrder, msgs);
if (msgs != null) msgs.dispatch();

}
else
if (eNotificationRequired())
eNotify(new ENotificationImpl(this, Notification.SET,
PurchasePackage.ITEM__ORDER, newOrder, newOrder));

}

EMF.Codegen: Implementation of associations (2)

consistent update for
binary associations

single container

250Modelling with UML, with semantics

EMF: Creating models with generated code

PurchaseFactory purchaseFactory = PurchaseFactory.eINSTANCE;

PurchaseOrder order1 = purchaseFactory.createPurchaseOrder();
order1.setBillTo("X");
order1.setShipTo("Y");
Item item1 = purchaseFactory.createItem();
item1.setProductName("A");
item1.setQuantity(2);
item1.setPrice(10.0f);
item1.setOrder(order1);
Item item2 = purchaseFactory.createItem();
item2.setProductName("B");
item2.setQuantity(3);
item2.setPrice(100.0f);
item2.setOrder(order1);

factory for purchase models

251Modelling with UML, with semantics

EMF: Saving models

ResourceSet resourceSet = new ResourceSetImpl();
resourceSet.getResourceFactoryRegistry().
getExtensionToFactoryMap().put("xmi", new XMIResourceFactoryImpl());

URI fileURI = URI.createFileURI(new File("orders.xmi").getAbsolutePath());
Resource resource = resourceSet.createResource(fileURI);

resource.getContents().add(order1);

try {
resource.save(System.out, Collections.EMPTY_MAP);
resource.save(Collections.EMPTY_MAP);

}
catch (IOException ioe) {
ioe.printStackTrace();

}

mind containment
not resource.getContents().add(item1);

252Modelling with UML, with semantics

EMF: Ecore/XMI from generated code

<?xml version="1.0" encoding="ASCII"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:purchaseJava="http:///purchaseJava.ecore">
<purchaseJava:PurchaseOrder shipTo="Y" billTo="X">
<items productName="A" quantity="2" price="10.0"/>
<items productName="B" quantity="3" price="100.0"/>

</purchaseJava:PurchaseOrder>
</xmi:XMI>

containment

253Modelling with UML, with semantics

EMF: Querying with OCL (1)

import org.eclipse.ocl.ecore.OCL;
import org.eclipse.ocl.ParserException;
import org.eclipse.ocl.OCLInput;
import org.eclipse.ocl.ecore.Constraint;

OCL purchaseOCL = OCL.newInstance();
try {
purchaseOCL.parse(new OCLInput("package purchaseJava " +

"context Item " +
"inv: price < 100.0 " +
"endpackage"));

for (Constraint constraint : purchaseOCL.getConstraints()) {
System.out.println(purchaseOCL.check(item2, constraint));

}
}
catch (ParserException e) {
e.printStackTrace();

}

254Modelling with UML, with semantics

EMF: Querying with OCL (2)

import org.eclipse.ocl.ecore.OCL;
import org.eclipse.ocl.ParserException;
import org.eclipse.ocl.expressions.OCLExpression;
import org.eclipse.ocl.helper.OCLHelper;

OCL purchaseOCL = OCL.newInstance();
OCLHelper<EClassifier, ?, ?, ?> purchaseOCLHelper =
purchaseOCL.createOCLHelper();

purchaseOCLHelper.setContext(PurchaseJavaPackage.Literals.ITEM);
try {
OCLExpression<EClassifier> priceExpression =
purchaseOCLHelper.createQuery("price");

System.out.println(purchaseOCL.evaluate(item1, priceExpression));
}
catch (ParserException e) {
e.printStackTrace();

}

parametric in classifier, operation, property, and constraint representation
of the meta-model

convenient for embedded OCL constraints

255Modelling with UML, with semantics

EMF: Querying with OCL (3)

import org.eclipse.emf.query.conditions.eobjects.EObjectCondition;
import org.eclipse.emf.query.ocl.conditions.BooleanOCLCondition;
import org.eclipse.emf.query.statements.FROM;
import org.eclipse.emf.query.statements.SELECT;
import org.eclipse.emf.query.statements.WHERE;
import org.eclipse.emf.query.statements.IQueryResult;

try {
EObjectCondition itemsOK =
new BooleanOCLCondition<EClassifier, EClass, EObject>(

purchaseOCL.getEnvironment(),
"self.quantity < 2", PurchaseJavaPackage.Literals.ITEM);

IQueryResult result = new SELECT(
new FROM(resource.getContents()),
new WHERE(itemsOK)).execute();

for (Object next : result) {
System.out.println("Quantity too little in " +

((Item) next).getProductName());
}

} catch (ParserException pe) {
pe.printStackTrace();

}

context

parametric in classifier, class, and element of the meta-model

256Modelling with UML, with semantics

EMF: Querying UML models with OCL

import org.eclipse.uml2.uml.UMLFactory;

UMLFactory umlFactory = UMLFactory.eINSTANCE;
org.eclipse.uml2.uml.Activity activity = umlFactory.createActivity();
activity.setName("test");
OCL umlOCL = OCL.newInstance();
try {
umlOCL.parse(new OCLInput("package uml " +

"context Activity " +
"inv: name <> '' " +

"endpackage"));
for (Constraint constraint : umlOCL.getConstraints()) {
System.out.println(umlOCL.check(activity, constraint));

}
} catch (ParserException e) {
e.printStackTrace();

}

257Modelling with UML, with semantics

Xtext

258Modelling with UML, with semantics

Xtext

• Grammar language for describing domain-specific languages textually
• Based on LL(*)-parser generator ANTLR
• Generation of Eclipse-integrated editor (with validator, content assist, outline, formatting, …)

• Tightly integrated with EMF
• Ecore meta-model inference from grammar

• Model querying (and transformation) with Xtend
• Model-to-text transformation with Xpand
• Integration into EMFT’s Modeling Workflow Engine (MWE)

• Dependency injection using Google’s Guice

• Originally developed in the openArchitectureWare project (2006)
• Since 2008 integrated in the Textual Modeling Framework (TMF) of EMF

• Current version (July 2011): Xtext 2.0

http://www.eclipse.org/Xtext

http://www.eclipse.org/Xtext/

259Modelling with UML, with semantics

DSL example: Secret compartments (1)

“I have vague but persistent childhood memories of watching cheesy adventure films on TV.
Often, these films would be set in some old castle and feature secret compartments or
passages. In order to find them, heroes would need to pull the candle holder at the top of
stairs and tap the wall twice.
Let’s imagine a company that decides to build security systems based on this idea. They
come in, set up some kind of wireless network, and install little devices that send four-
character messages when interesting things happen. For example, a sensor attached to a
drawer would send the message D2OP when the drawer is opened. We also have little
control devices that respond to four-character command messages—so a device can
unlock a door when it hears the message D1UL.
At the center of all this is some controller software that listens to event messages, figures
out what to do, and sends command messages. The company bought a job lot of Java-
enabled toasters during the dot-com crash and is using them as the controllers. So
whenever a customer buys a gothic security system, they come in and fit the building with
lots of devices and a toaster with a control program written in Java.
For this example, I’ll focus on this control program. Each customer has individual needs, but
once you look at a good sampling, you will soon see common patterns.”

260Modelling with UML, with semantics

DSL example: Secret compartments (2)

“Miss Grant closes her bedroom door,
opens a drawer, and turns on a light to
access a secret compartment. Miss Shaw
turns on a tap, then opens either of her
two compartments by turning on correct
light. Miss Smith has a secret
compartment inside a locked closet inside
her office. She has to close a door, take a
picture off the wall, turn her desk light on
three times, open the top drawer of her
filing cabinet—and then the closet is
unlocked. If she forgets to turn the desk
light off before she opens the inner
compartment, an alarm will sound.”

Martin Fowler. Domain-specific Languages, 2010.

261Modelling with UML, with semantics

DSL example: Secret compartments (3)

events
doorClosed D1CL drawOpened D2OP lightOn L1ON doorOpened D1OP panelClosed PNCL end

resetEvents
doorOpened end

commands
unlockPanel PNUL lockPanel PNLK lockDoor D1LK unlockDoor D1UL end

state idle
actions { unlockDoor lockPanel }
doorClosed => active end

state active
drawOpened => waitingForLight
lightOn => waitingForDraw end

state waitingForLight
lightOn => unlockedPanel end

state waitingForDraw
drawOpened => unlockedPanel end

state unlockedPanel
actions { unlockPanel lockDoor }
panelClosed => idle end

262Modelling with UML, with semantics

Secret compartments in Xtext: Grammar (1)

grammar org.eclipse.xtext.example.fowlerdsl.Statemachine
with org.eclipse.xtext.common.Terminals

generate statemachine "http://www.eclipse.org/xtext/example/fowlerdsl/Statemachine"

Statemachine :
{Statemachine}
('events'

events+=Event+
'end')?
('resetEvents'

resetEvents+=[Event]+
'end')?
('commands'

commands+=Command+
'end')?
states+=State*

;

action generating an Ecore object

name and nsURI of EPackage

cross-reference

263Modelling with UML, with semantics

Secret compartments in Xtext: Grammar (2)

Event:
name=ID code=ID

;

Command:
name=ID code=ID

;

State:
'state' name=ID
('actions' '{' actions+=[Command]+ '}')?
transitions+=Transition*
'end'

;

Transition:
event=[Event] '=>' state=[State]

;

identifier token from terminals

264Modelling with UML, with semantics

Secret compartments: Code generation with Xtend/Xpand (1)

package org.eclipse.xtext.example.fowlerdsl.generator

import org.eclipse.emf.ecore.resource.Resource
import org.eclipse.xtext.generator.IGenerator
import org.eclipse.xtext.generator.IFileSystemAccess
import org.eclipse.xtext.example.fowlerdsl.statemachine.Statemachine
import org.eclipse.xtext.example.fowlerdsl.statemachine.Event
import org.eclipse.xtext.example.fowlerdsl.statemachine.Command
import org.eclipse.xtext.example.fowlerdsl.statemachine.State

class StatemachineGenerator implements IGenerator {
override void doGenerate(Resource resource, IFileSystemAccess fsa) {
fsa.generateFile(resource.className+".java",

toJavaCode(resource.contents.head as Statemachine))
}

def className(Resource res) {
var name = res.URI.lastSegment
return name.substring(0, name.indexOf('.'))

}

265Modelling with UML, with semantics

Secret compartments: Code generation with Xtend/Xpand (2)

def toJavaCode(Statemachine sm) '''
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class «sm.eResource.className» {
public static void main(String[] args) {
new «sm.eResource.className»().run();

}

«FOR c : sm.commands»
«c.declareCommand»

«ENDFOR»

protected void run() {
boolean executeActions = true;
String currentState = "«sm.states.head.name»";
String lastEvent = null;
while (true) {
«FOR state : sm.states»
«state.generateCode»

«ENDFOR»

266Modelling with UML, with semantics

Secret compartments: Code generation with Xtend/Xpand (3)

«FOR resetEvent : sm.resetEvents»
if ("«resetEvent.name»".equals(lastEvent)) {
System.out.println("Resetting state machine.");
currentState = "«sm.states.head.name»";
executeActions = true;

}
«ENDFOR»

}
}

private String receiveEvent() {
System.out.flush();
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
try {
return br.readLine();

} catch (IOException ioe) {
System.out.println("Problem reading input");
return "";

}
}

}
'''

267Modelling with UML, with semantics

Secret compartments: Code generation with Xtend/Xpand (4)

def declareCommand(Command command) ''‚
protected void do«command.name.toFirstUpper»() {
System.out.println("Executing command «command.name» («command.code»)");

}
'''

def generateCode(State state) ''‚
if (currentState.equals("«state.name»")) {
if (executeActions) {
«FOR c : state.actions» do«c.name.toFirstUpper»(); «ENDFOR»
executeActions = false;

}
System.out.println("Your are now in state '«state.name»'. Possible events are

[«state.transitions.map(t | t.event.name).join(', ')»].");
lastEvent = receiveEvent();
«FOR t : state.transitions»
if ("«t.event.name»".equals(lastEvent)) {
currentState = "«t.state.name»";
executeActions = true;

}
«ENDFOR»

}
'''

}

268Modelling with UML, with semantics

Secret compartments: Modelling workflow (1)

module org.eclipse.xtext.example.fowlerdsl.GenerateStatemachine

import org.eclipse.emf.mwe.utils.*
import org.eclipse.xtext.generator.*
import org.eclipse.xtext.ui.generator.*

var grammarURI = "classpath:/org/eclipse/xtext/example/fowlerdsl/Statemachine.xtext"
var file.extensions = "statemachine"
var projectName = "org.eclipse.xtext.example.fowlerdsl"
var runtimeProject = "../${projectName}"

Workflow {
bean = StandaloneSetup {
scanClassPath = true
platformUri = "${runtimeProject}/.."

}
component = DirectoryCleaner {
directory = "${runtimeProject}/src-gen"

}
component = DirectoryCleaner {
directory = "${runtimeProject}.ui/src-gen"

}

269Modelling with UML, with semantics

Secret compartments: Modelling workflow (2)

component = Generator {
pathRtProject = runtimeProject
pathUiProject = "${runtimeProject}.ui"
pathTestProject = "${runtimeProject}.tests"
projectNameRt = projectName
projectNameUi = "${projectName}.ui"
language = {
uri = grammarURI
fileExtensions = file.extensions
fragment = grammarAccess.GrammarAccessFragment { }
fragment = ecore.EcoreGeneratorFragment { }
fragment = serializer.SerializerFragment { }
fragment = resourceFactory.ResourceFactoryFragment {
fileExtensions = file.extensions

}
fragment = parser.antlr.XtextAntlrGeneratorFragment { }
fragment = validation.JavaValidatorFragment {
composedCheck = "org.eclipse.xtext.validation.ImportUriValidator"
composedCheck = "org.eclipse.xtext.validation.NamesAreUniqueValidator"

}
fragment = scoping.ImportNamespacesScopingFragment { }
fragment = exporting.QualifiedNamesFragment { }
fragment = builder.BuilderIntegrationFragment { }

270Modelling with UML, with semantics

Secret compartments: Modelling workflow (3)

fragment = generator.GeneratorFragment {
generateMwe = true
generateJavaMain = true

}
fragment = formatting.FormatterFragment {}
fragment = labeling.LabelProviderFragment {}
fragment = outline.OutlineTreeProviderFragment {}
fragment = outline.QuickOutlineFragment {}
fragment = quickfix.QuickfixProviderFragment {}
fragment = contentAssist.JavaBasedContentAssistFragment {}
fragment = parser.antlr.XtextAntlrUiGeneratorFragment {}
fragment = junit.Junit4Fragment {}
fragment = types.TypesGeneratorFragment {}
fragment = xbase.XbaseGeneratorFragment {}
fragment = templates.CodetemplatesGeneratorFragment {}
fragment = refactoring.RefactorElementNameFragment {}
fragment = compare.CompareFragment {
fileExtensions = file.extensions

}
}

}
}

271Modelling with UML, with semantics

Model Transformations

272Modelling with UML, with semantics

What is a transformation?

• A transformation is the automatic generation of a target model from a source model,
according to a transformation definition.

• A transformation definition is a set of transformation rules that together describe how
a model in the source language can be transformed into a model in the target language.

• A transformation rule is a description of how one or more constructs in the source
language can be transformed into one or more constructs in the target language.
• Unambiguous specifications of the way that (part of) one model can be used to create (part of)

another model

• Preferred characteristics of transformations
• semantics-preserving

273Modelling with UML, with semantics

Model-to-model vs. Model-to-code

• Model-to-model transformations
• Transformations may be between

different languages. In particular,
between different languages defined by
MOF

• Model-to-text transformations
• Special kind of model to model

transformations
• MDA TS to Grammar TS

Transformation
Rules

Meta-model
ModelModelModel

Meta-modelModel

Transformer

Transformer

Generated Code

Code
Generation
Templates

Manually
Written
Code

optional

op
tio

na
l,

ca
n

be
 re

pe
at

ed

274Modelling with UML, with semantics

Transformations as models

• Treating everything as a model leads not only to conceptual simplicity and regular
architecture, but also to implementation efficiency.

• An implementation of a transformation language can be composed of a transformation
virtual machine plus a metamodel-driven compiler.

• The transformation VM allows uniform access to model and metamodel elements.

Ma Mt Mb

Transformation
Virtual Machine

MMa MMt MMb

275Modelling with UML, with semantics

Model transformation

• Each model conforms to a metamodel.
• A transformation builds a target model (Mb) from a source model (Ma).
• A transformation is a model (Mt, here) conforming to a metamodel (MMt).

276Modelling with UML, with semantics

Characterisation of model transformations (1)

• Endogenous vs. exogenous
• Endogenous transformations are transformations between models expressed in the same

metamodel. Endogenous transformations are also called rephrasing
• Optimisation, refactoring, simplification, and normalization of models.

• Transformations between models expressed using different meta-models are referred to as
exogenous transformations or translations

• Synthesis of a higher-level specification into a lower-level one, reverse engineering, and migration from
a program written in one language to another

• Horizontal vs. vertical
• Horizontal transformations are transformations where the source and target models reside at

the same abstraction level
• Refactoring (an endogenous transformation) and migration (an exogenous transformation)

• Vertical transformations are transformation where the source and target models reside at
different abstraction levels

• Rrefinement, where a specification is gradually refined into a full-fledged implementation

277Modelling with UML, with semantics

Characterisation of model transformations (2)

• Level of automation
• The level of automation is the grade to which a model transformation can be automated.

• Complexity
• Simple transformations

• Mappings for identifying relations between source and target model elements
• Complex transformations

• Synthesis, where higher-level models are refined to lower-level models

• Preservation
• Each transformation preserves certain aspects of the source model in the transformed target

model.
• The properties that are preserved can differ significantly depending on the type of

transformation.
• With refactorings the (external) behaviour needs to be preserved, while the structure is modified.
• With refinements, the program correctness needs to be preserved.

278Modelling with UML, with semantics

Transformation = Matching and deriving patterns

Lang. YLang. X

expressed in expressed in

Transformation
Definition

trans -
formation

defined by

derived
patterns
derived
patterns

matched
patterns
matched
patterns

Transformation in the same meta-model

Lang. X

expressed in expressed in

Transformation
Definition

defined by

trans -
formation

Transformation in the same model

Lang. X

expressed in

Transformation
Definition

defined by

matched
patterns

in-place
transformation

Characterisation of model transformations (3)

279Modelling with UML, with semantics

Refinement preserve meaning and derives complex patterns

Lang. YLang. X

expressed in expressed in

Refinement
Definition

refinement

defined by

higher
abstraction
level

lower
abstraction
level

Characterisation of model transformations (4)

Refinement in the same meta-model

Lang. X

expressed in expressed in

Refinement
Definition

defined by

refinement

Refinement in the same model

Lang. X

expressed in

Refinement
Definition

defined by

derived
patterns

in-place
refinement

280Modelling with UML, with semantics

Features of model transformations

• Specification
• Some approaches provide a dedicated specification mechanism, such as pre-/post-conditions

expressed in OCL.
• Transformation rules

• A transformation rule consists of two parts:
• A left-hand side (LHS), which accesses the source model
• A right-hand side right-hand side (RHS), which expands in the target model

• A domain is the rule part used for accessing the models on which the rule operates
• The body of a domain can be divided into three subcategories

• Variables: Variables may hold elements from the source and/or target models
• Patterns: Patterns are model fragments with zero or more variables
• Logic:. Logic expresses computations and constraints on model elements

• The transformations variables and patterns can be typed.

281Modelling with UML, with semantics

Features of model transformations

• Rule application control
• Location determination is the strategy for determining the model locations to which

transformation rules are applied.
• Scheduling determines the order in which transformation rules are executed.

• Rule organisation
• Rule organisation is concerned with composing and structuring multiple transformation rules by

mechanisms such as modularisation and reuse.
• Source-target relationship

• whether source and target are one and the same model or two different models
• Create new models
• Update existing models
• In-place update

282Modelling with UML, with semantics

Features of model transformations

• Incrementality
• Ability to update existing target models based on changes in the source models

• Directionality
• Unidirectional transformations can be executed in one direction only, in which case a target

model is computed (or updated) based on a source model
• Multidirectional transformations can be executed in multiple directions, which is particularly

useful in the context of model synchronisation.

283Modelling with UML, with semantics

Features of model transformations

• Tracing
• Mechanisms for recording different aspects of transformation execution, such as creating and

maintaining trace links between source and target model elements.
• Trace information can be useful in

• performing impact analysis (i.e. analyzing how changing one model would affect other related models),
• determining the target of a transformation as in model synchronization
• model-based debugging (i.e. mapping the stepwise execution of an implementation back to its high-

level model)
• debugging model transformations themselves

284Modelling with UML, with semantics

Model-to-model approaches (1)

• Direct manipulation approaches
• Offers an internal model representation and some APIs to manipulate it
• Usually implemented as an object-oriented framework
• Users usually have to implement transformation rules, scheduling, tracing, etc.
• Examples: Java Metadata Interface (JMI), EMF, …

• Structure-driven approaches
• Two distinct phases:

• The first phase is concerned with creating the hierarchical structure of the target model
• The second phase sets the attributes and references in the target

• The overall framework determines the scheduling and application strategy; users are only
concerned with providing the transformation rules

• Example: OptimalJ

285Modelling with UML, with semantics

Model-to-model approaches (2)

• Template-based approaches
• Model templates are models with embedded meta-code that compute the variable parts of the

resulting template instances.
• Model templates are usually expressed in the concrete syntax of the target language, which

helps the developer to predict the result of template instantiation
• Typical annotations are conditions, iterations, and expressions, all being part of the meta-

language. An expression language to be used in the meta-language is OCL.
• Examples: Czarnecki, Antkiewicz (2005)

• Operational approaches
• Similar to direct manipulation but offer more dedicated support for model transformation
• Extend the utilized metamodeling formalism with facilities for expressing computations

• Extend a query language such as OCL with imperative constructs.
• The combination of MOF with such extended executable OCL becomes a fully-fledged object-oriented

programming system.)
• Examples: QVT Operational mappings, XMF-Mosaic’s executable MOF, MTL, C-SAW,

Kermeta, etc.

286Modelling with UML, with semantics

Model-to-model approaches (3)

• Relational approaches
• Declarative approaches in which the main concept is mathematical relations
• The basic idea is to specify the relations among source and target element types using

constraints
• Since declarative constraints are non-executable, declarative approaches give them an

executable semantics, such as in logic programming
• Relational approaches are side-effect-free, support multidirectional rules, can provide

backtracking …
• Examples: QVT Relations, MTF, Kent Model Transformation Language, Tefkat, AMW,

mappings in XMF-Mosaic, etc.

287Modelling with UML, with semantics

Model-to-model approaches (4)

• Graph-transformation-based approaches
• Based on the theoretical work on graph transformations
• Operates on typed, attributed, labelled graphs
• Graph transformation rules have an LHS and an RHS graph pattern.

• The LHS pattern is matched in the model being transformed and replaced by the RHS pattern in place
• Additional logic, for example, in string and numeric domains, is needed to compute target attribute

values such as element names
• Examples: AGG, AToM3, VIATRA, GReAT, UMLX, BOTL, MOLA, Fujaba, etc.

288Modelling with UML, with semantics

Model-to-model approaches (5)

• Hybrid approaches
• Hybrid approaches combine different techniques from the previous categories

• as separate components
• or/and , in a more fine-grained fashion, at the level of individual rules

• In a hybrid rule, the source or target patterns are complemented with a block of imperative
logic which is run after the application of the target pattern

• Rules are unidirectional and support rule inheritance.
• Examples:

• Separate components: QVT (Relations, Operational mappings, and Core)
• Fine-grained combination: ATL and YATL

289Modelling with UML, with semantics

Model-to-model approaches (6)

• Other approaches
• Extensible Stylesheet Language Transformation (XSLT)

• Models can be serialized as XML using the XMI
• Model transformations can be implemented with Extensible Stylesheet Language Transformation

(XSLT), which is a standard technology for transforming XML
• The use of XMI and XSLT has scalability limitations
• Manual implementation of model transformations in XSLT quickly leads to non-maintainable

implementations
• Application of meta-programming to model transformation

• Domain-specific language for model transformations embedded in a meta-programming language.

290Modelling with UML, with semantics

Model-to-text approaches

• Visitor-based approaches
• Use visitor mechanism to traverse the internal representation of a model and write text to a text

stream
• Example: Jamda

• Template-based approaches
• The majority of currently available MDA tools support template-based model-to-text generation

• structure of a template resembles more closely the code to be generated
• Templates lend themselves to iterative development (they can be derived from examples)

• A template consists of the target text containing slices of meta-code to access information from
the source

• Examples: oAW, JET, Codagen Architect, AndroMDA, ArcStyler, MetaEdit, OptimalJ, etc.

291Modelling with UML, with semantics

QVT Operational

292Modelling with UML, with semantics

MOF QVT: OMG’s model-to-model transformation standard

• QVT stands for Query/Views/Transformations
• OMG standard language for expressing queries, views, and transformations on MOF models

• OMG QVT Request for Proposals (QVT RFP, ad/02-04-10) issued in 2002
• Seven initial submissions that converged to a common proposal
• Current status (June, 2011): version 1.1, formal/11-01-01

http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/QVT/1.1/

http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/QVT/1.1/Beta2

293Modelling with UML, with semantics

MOF QVT context

• Abstract syntax of the language is defined as MOF 2.0 metamodel
• Transformations (Tab) are defined on the base of MOF 2.0 metamodels (MMa, MMb)
• Transformations are executed on instances of MOF 2.0 metamodels (Ma)

294Modelling with UML, with semantics

Requirements for MOF QVT language

Mandatory requirements
Query language Proposals shall define a language for querying models

Transformation language Proposals shall define a language for transformation definitions

Abstract syntax The abstract syntax of the QVT languages shall be described as MOF 2.0 metamodel

Paradigm The transformation definition language shall be declarative

Input and output All the mechanisms defined by proposals shall operate on models instances of MOF
2.0 metamodels

Optional requirements

Directionality Proposals may support transformation definitions that can be executed in two
directions

Traceability Proposals may support traceability between source and target model elements

Reusability Proposals may support mechanisms for reuse of transformation definitions

Model update Proposals may support execution of transformations that update an existing model

• Some requirements formulated in the QVT RFP

295Modelling with UML, with semantics

MOF QVT architecture

• Layered architecture with three transformation languages:
• Relations (declarative)
• Core (declarative, simpler than Relations)
• Operational Mappings (imperative)

• Black Box is a mechanism for calling external programs during transformation execution
• QVT is a set of three languages that collectively provide a hybrid “language”.

Relations

Operational
Mappings

Core

extends

RelationsToCore
Transformation

Black
Box

extends

extends

extends

296Modelling with UML, with semantics

Overview of Operational Mappings (OM)

• Imperative transformation language that extends relations
• OM execution overview:

• Init: code to be executed before the instantiation of the declared outputs.
• Instantiation (internal): creates all output parameters that have a null value at the end of the

initialization section
• Population: code to populate the result parameters and the
• End: code to be executed before exiting the operation. Automatic handling of traceability links

• Transformations are unidirectional
• Supported execution scenarios:

• Model transformations
• In-place update

• OM uses explicit internal scheduling, where the sequence of applying the transformation
rules is specified within the transformation rules

• Updates have to be implemented in the model transformations

297Modelling with UML, with semantics

Flattening class hierarchies example

• Flattening UML class hierarchies: given a source UML model transform it to another
UML model in which only the leaf classes (classes not extended by other classes) in
inheritance hierarchies are kept.

• Rules:
• Transform only the leaf classes in the source model
• Include the inherited attributes and associations
• Attributes with the same name override the inherited attributes
• Copy the primitive types

298Modelling with UML, with semantics

Sample input model

name : String
ssn : String

Person
school : String
EnrolledInSchool

organizationName : String
Employed

Student Employee

«primitive type»
String

CarPhDStudent

firstName : String
lastName : String

FullName

name : FullName
Professor carOwnership

supervisor

name : String
Course

street : String
city : String

Address

residesAtattends

299Modelling with UML, with semantics

Sample output model

«primitive type»
String

Carname : String
ssn : String
school : String

PhDStudent

firstName : String
lastName : String

FullName

name : FullName
ssn : String
organizationName : String

Professor carOwnership

supervisor

name : String
Course

street : String
city : String

Address

residesAtattends residesAt

300Modelling with UML, with semantics

transformation
flatten
(in hierarchical : UML,
out flat : UML);

main() {

…
}

…

helper declarations
…

mapping operations declarations

OM language: Transformation program structure

Entry point: execution of the
transformation starts here by executing the
operations in the body of main

Transformation elements:
Transformation consists of mapping
operations and helpers forming the
transformation logic.

Signature: declares the
transformation name and the
source and target metamodels.
in and out keywords indicate
source and target model variables.

301Modelling with UML, with semantics

Mapping operations

• A mapping operation maps one or more source elements into one or more target
elements

• Always unidirectional
• Selects source elements on the base of a type and a Boolean condition (guard)
• Executes operations in its body to create target elements
• May invoke other mapping operations and may be invoked
• Mapping operations may be related by inheritance, merging, and disjunction

302Modelling with UML, with semantics

mapping Type::operationName(((in|out|inout) pName : pType)*)
: (rName : rType)+
when {guardExpression}
where {guardExpression} {
init {

…
}

population {

…
}

end {

…
}

}

General structure of mapping operations

end section contains code executed before exiting the operation

population section contains code that sets the values or the result and the
parameters declared as out or inout. The population keyword may be
skipped. The population section is the default section in the operation body.

There exists an implicit instantiation section that creates all the output parameters not created in
the init section. The trace links are created in the instantiation section.

init section contains code executed before the instantiation of the declared result
elements

pre-condition
post-condition

303Modelling with UML, with semantics

Mapping operations: Example

• Rule for transforming leaf classes
• selects only classes without subclasses, collects all the inherited properties and associations,

creates new class in the target model

mapping Class::copyLeafClass() : Class
when {
not hierarchical.allInstances(Generalization)->exists(g | g.general = self)

} {
name := self.name;
ownedAttribute += self.ownedAttribute.

map copyOwnedProperty();
ownedAttribute += (self.allFeatures()[Property] –

self.ownedAttribute).copyProperty(self);
self.allFeatures()[Property]->select(p |
not p.association.oclIsUndefined()).association.copyAssociation(self);

}

guard: mapping operation
only executed for elements
for which the guard expression
evaluates to true

call of another mapping

call of a helper

target type: instance created on call

object on which mapping is called

• Mappings only executed once
• Call of mappings with OCL-syntax (collection->map vs. object.map)

304Modelling with UML, with semantics

Helpers: Example

intermediate property Property::mappedTo : Set(Tuple(c : Class, p : Property));

helper Property::copyProperty(in c : Class) : Property {
log('[Property] name = ' + self.name);
var copy := object Property {
name := self.name;
type := self.type.map transformType();

};
self.mappedTo += Tuple{ c = c, p = copy };
return copy;

}

meta-model extension

object creation and population

305Modelling with UML, with semantics

• The transformation engine maintains links among source and target model elements.
These links are used for resolving object references from source to target model
elements and back.
• resolveIn is an operation that looks for model elements of a given type (Class) in the

target model derived from a source element by applying a given rule (copyLeafClass).

• Variants: resolve(i | exp), resolveone(i | exp)
• late resolve for resolving after the transformation (in order of calls)

helper Association::copyAssociation(in c : Class) : Association {
var theOwnedEnd : Property := self.ownedEnd->any(true); …
return object Association {
name := self.name;
package := self.package.resolveoneIn(Package::transformPackage, Package);
ownedEnd += new Property(theOwnedEnd.name,

c.resolveoneIn(Class::copyLeafClass, Class)); …
}

}

Resolving object references

call to constructor

306Modelling with UML, with semantics

Mapping operations: Disjunction, inheritance, merging

mapping DataType::copyDataType() : DataType {
name := self.name;
ownedAttribute += self.ownedAttribute.map copyOwnedProperty();

}

mapping PrimitiveType::copyPrimitiveType() : PrimitiveType {
init {
result := self.deepclone().oclAsType(PrimitiveType);

}
}

mapping Type::transformType() : Type
disjuncts DataType::copyDataType,

Class::copyLeafClass,
PrimitiveType::copyPrimitiveType;

• Inherited rules executed after init
• Merged rules executed after end

307Modelling with UML, with semantics

• More sophisticated control flow
• compute (v : T := exp) body

• like let … in
• while (cond) body
• coll->forEach (i | exp) body
• break, continue
• switch-statement, exceptions

Imperative OCL constructs

308Modelling with UML, with semantics

MOFM2T

309Modelling with UML, with semantics

MOFM2T: OMG’s model-to-text transformation standard

• M2T stands for Model-to-Text
• OMG standard language for transforming MOF models into text

• Current status (June, 2011): version 1.0, formal/08-01-16

http://www.omg.org/spec/MOFM2T/1.0/

http://www.omg.org/spec/MOFM2T/1.0/

310Modelling with UML, with semantics

M2T Transformations: Example (1)

[comment encoding = UTF-8 /]
[** Java Beans-style code from UML static structure */]
[module generate('http://www.eclipse.org/uml2/3.0.0/UML')]

[**
* Generate a Java file from a UML class
* @param aClass
*/]
[template public generateClass(aClass : Class)]
[comment @main/]
[file (aClass.name.concat('.java'), false, 'UTF-8')]
public class [aClass.name/] {
[for (p : Property | aClass.attribute) separator('\n')]
[generateClassAttribute(p)/]
[/for]
}
[/file]
[/template]

metamodel type

top-level rule (several possible)

output in file, not appending

verbatim text
call of another template

311Modelling with UML, with semantics

M2T Transformations: Example (2)

[template public generateClassAttribute(aProperty : Property)]
private [getTypeName(aProperty.type)/] [aProperty.name/];

public [getTypeName(aProperty.type)/] [aProperty.name.toUpperFirst()/]() {
// [protected(aProperty.name)]
// TODO implement
// [/protected]
return this.[aProperty.name/];

}
[/template]

[template public generateDataType(aDataType : DataType)]
[comment @main/]
[file (aDataType.name.concat('.java'), false, 'UTF-8')]
public class [aDataType.name/] [for (p : Property | aDataType.attribute)

before(' {\n') separator('\n') after('\n}')]
public [getTypeName(aProperty.type)/] [aProperty.name/]; [/for]

[/file]
[/template]

[query public getTypeName(aType : Type) : String = aType.name /]

protected code message

top-level rule (several possible)
output in file, not appending

before first, in-between
each, and after last item

312Modelling with UML, with semantics

MOFM2T features

• Tracing
• [trace(id)] … [/trace]

• Change of escape direction
• @text-explicit (default, shown above)
• @code-explicit

• Macros
• Module structure

• public module elements visible outside a module
• guards on templates for selecting a template when overriding (overridden template callable

with [super/])

• No type checking of output

