
Modeling with UML, with semantics

Till Mossakowski
Otto-von-Guericke-Universität Magdeburg

Based on a course by Alexander Knapp, Universität Augsburg



2Modelling with UML, with semantics

Overview

• Model-driven software design
• Model-driven architecture

• Meta Modeling
• Unified Modeling Language 2

• Classes and packages
• State machines
• Component diagrams
• Composite structure diagrams
• Interactions
• Profiles

• Object constraint language 2
• Meta object facility 2
• Eclipse modelling framework
• Xtext
• Model transformations
• QVT operational

• MOFM2T
• Model transformation languages
• Domain-specific languages
• Dynamic meta modelling
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Software

• Eclipse modelling framework: https://www.eclipse.org/modeling/emf/
• Modelio: http://modelio.org
• Hugo/RT: http://www.pst.informatik.uni-muenchen.de/projekte/hugo/

http://modelio.org/
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What is a model? 

“Modeling, in the broadest sense, is the cost-effective use of something in place of 
something else for some cognitive purpose. It allows us to use something that is 
simpler, safer or cheaper than reality instead of reality for some purpose. A model 
represents reality for the given purpose; the model is an abstraction of reality in the 
sense that it cannot represent all aspects of reality. This allows us to deal with the world 
in a simplified manner, avoiding the complexity, danger and irreversibility of reality.” [Jeff 
Rothenberg. “The Nature of Modeling”. 1989]

“Ein Modell ist seinem Wesen nach eine in Maßstab, Detailliertheit und/oder Funktionalität 
verkürzte beziehungsweise abstrahierte Darstellung des originalen Systems.” [H. 
Stachowiak. Allgemeine Modelltheorie. 1973]

“Ein Modell ist eine vereinfachte, auf ein bestimmtes Ziel hin ausgerichtete Darstellung 
der Funktion eines Gegenstands oder des Ablaufs eines Sachverhalts, die eine 
Untersuchung oder eine Erforschung erleichtert oder erst möglich macht.”
[H. Balzert. Lehrbuch der Software-Technik, Bd. 1. 2000]
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Model engineering (1)

• Traditional rôle of models in software development
• Used for communication purposes with the customer and within the development team 

(requirements specification, prototypes, etc.)
• Used for software design
• Specification for the programmer
• Code visualization

• Model engineering
• Models are the central artefacts in software development.
• Models represent

• different levels of abstraction (analysis, design, implementation);
• different parts of the system (UI, database, business logic, system administration);
• different concerns (security, performance, and resilience);
• different tasks (testing, deployment modelling).

• Often, it is possible to partially generate one model from another.
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Model engineering (2)

Model

Static Analysis

Documentation

Refactoring/
Transformation

Code generation

Automation

Automated testing

Rapid Prototyping

…

Test artefacts Pattern application

• Integration into Model-Driven Software Development (MDSD)
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Key concepts of MDSD (1)

• Abstraction
• Abstraction can be used to model applications at different levels of detail or from different 

perspectives.
• Abstraction is the process of ignoring irrelevant details in order to focus on relevant ones.
• Abstraction allows to focus on the different aspects of a system without getting lost in detail.

• Precise modelling
• Models as part of the definition of a system, not just as sketches.
• These models have well-defined semantics and can be transformed into implementation 

artefacts (in the same way that one compiles Java code into byte code).
• Abstraction is not the same as imprecision

• Using abstraction one omits specific details while being precise about those details on which one does 
focus.
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Key concepts of MDSD (2)

• Automation
• Automate the development process so that any artefact, which can be derived from information 

in a model, is generated (e.g., code, deployment descriptors, test cases, build scripts, other 
models, ...)

• Automation can be achieved by using two main techniques:
• Transformations automate the generation of artefacts from models.
• Patterns automate the creation and the modification of model elements; they are typically applied 

interactively with a designer selecting a pattern and providing parameters.

• Direct representation
• Modelling with languages that map their concepts to domain concepts rather than computer 

technology concepts
• More direct coupling of solutions (solution domain) to problems (problem domain), leading to 

more accurate designs
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Claimed benefits of MDSD (1)

• Improved stakeholder communication
• Models omit implementation detail not relevant to understand the logical behavior of a system
• Models are closer to the problem domain reducing the semantic gap between the concepts that 

are understood by stakeholders and the language in which the solution is expressed 
• Facilitates the delivery of solutions that are better aligned to business objectives

• Improved design communication
• Models facilitate understanding and reasoning about systems at the design level.
• Improved discussion making and communication about a system

• Expertise capture
• Projects or organizations often depend on best practice decisions of key experts
• Their expertise is captured in patterns and transformations
• When sufficient documentation accompanies the transformations, the knowledge of an 

organization is maintained in the patterns and transformations
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Claimed benefits of MDSD (2)

• Models as long-term assets
• Models are important assets that capture what the IT systems of an organization do
• High-level models are resilient to changes at the state-of-the-art platform level. They change 

only when business requirements change

• Ability to delay technology decisions
• Early application development is focused on modeling activities
• It is possible to delay the choice of a specific technology platform or product version until a 

later point when further information is available.
• This is crucial in domains with extremely long development cycles, such as air traffic control 

systems
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Claimed benefits of MDSD (3)

• Increased productivity
• Generation of code and artefacts from models
• Careful planning needs to ensure that there is an overall cost reduction.

• Maintainability
• MDSD helps to develop maintainable architectures where changes are made rapidly and 

consistently, enabling more efficient migration of components onto new technologies.
• Keeping the high-level models free of implementation detail makes it easier to handle changes 

in the underlying platform technology and its technical architecture.
• A change in the technical architecture of the implementation is made by updating a 

transformation.

• Reuse of legacy
• One can consistently model existing legacy platforms.
• Reverse transformations from the components
• Migrating the components to a new platform or generating wrappers to enable the legacy 

component to be accessed via integration technologies such as Web services.
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Claimed benefits of MDSD (4)

• Adaptability
• Adding or modifying a business function is simplified since the investment in automation was 

already made.

• Consistency
• Manually applying coding practices and architectural decisions is an error prone activity.

• Repeatability
• ROI from developing the transformations increases each time they are reused.
• The use of tried and tested transformations 

• increases the predictability of developing new functions;
• reduces the risk since the architectural and technical issues were already resolved.
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“Normal” software development
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MDSD effort (stage 1)

Reuse

Automation

Manual refinement
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Model-driven software development

• Makes software development more domain related opposed to computing related

• Narrows the semantic gap between business models and IT
• Re-use of components (assets)
• Generation techniques reduce time-to-market
• Makes software development more efficient
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Automation in software development
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ModelModelModel
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MDSD: A bird’s view
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How is MDSD realised?

• Developer develops model(s), 
expressed using a DSL, based on 
certain meta-model(s).

• Using code generation templates, the 
model is transformed into executable 
code.
• Alternative: Interpretation

• Optionally, the generated code is 
merged with manually written code.

• One or more model-to-model 
transformation steps may precede 
code generation.
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(Meta-)Model hierarchy
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(Meta-)Model hierarchy: Example
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