
Modeling with UML, with semantics

Till Mossakowski
Otto-von-Guericke-Universität Magdeburg

Based on a course by Alexander Knapp, Universität Augsburg

2Modelling with UML, with semantics

Overview

• Model-driven software design
• Model-driven architecture

• Meta Modeling
• Unified Modeling Language 2

• Classes and packages
• State machines
• Component diagrams
• Composite structure diagrams
• Interactions
• Profiles

• Object constraint language 2
• Meta object facility 2
• Eclipse modelling framework
• Xtext
• Model transformations
• QVT operational

• MOFM2T
• Model transformation languages
• Domain-specific languages
• Dynamic meta modelling

3Modelling with UML, with semantics

Literature

• Grady Booch, Alan Brown, Sridhar Iyengar, James Rumbaugh, Bran Selic. “An MDA
Manifesto”. MDA Journal, May 2004.
http://www.ibm.com/software/rational/mda/papers.html

• Marco Brambilla, Jordi Cabot, Manuel Wimmer. Model-Driven Software Engineering
in Practice. Morgan & Claypool, 2012.

• Chris Raistrick, Paul Francis, John Wright, Colin Carter, Ian Wilkie. Model-Driven
Architecture with Executable UML. Cambridge University Press, 2004.

• Volker Gruhn, Daniel Pieper, Carsten Röttgers. MDA. Springer, 2006.
• Siegfried Nolte. QVT Operational Mappings. Springer, 2010.
• Kevin Lano, editor. UML 2 - Semantics and Applications. Wiley, 2009.

4Modelling with UML, with semantics

Software

• Eclipse modelling framework: https://www.eclipse.org/modeling/emf/
• Modelio: http://modelio.org
• Hugo/RT: http://www.pst.informatik.uni-muenchen.de/projekte/hugo/

http://modelio.org/

5Modelling with UML, with semantics

What is a model?

“Modeling, in the broadest sense, is the cost-effective use of something in place of
something else for some cognitive purpose. It allows us to use something that is
simpler, safer or cheaper than reality instead of reality for some purpose. A model
represents reality for the given purpose; the model is an abstraction of reality in the
sense that it cannot represent all aspects of reality. This allows us to deal with the world
in a simplified manner, avoiding the complexity, danger and irreversibility of reality.” [Jeff
Rothenberg. “The Nature of Modeling”. 1989]

“Ein Modell ist seinem Wesen nach eine in Maßstab, Detailliertheit und/oder Funktionalität
verkürzte beziehungsweise abstrahierte Darstellung des originalen Systems.” [H.
Stachowiak. Allgemeine Modelltheorie. 1973]

“Ein Modell ist eine vereinfachte, auf ein bestimmtes Ziel hin ausgerichtete Darstellung
der Funktion eines Gegenstands oder des Ablaufs eines Sachverhalts, die eine
Untersuchung oder eine Erforschung erleichtert oder erst möglich macht.”
[H. Balzert. Lehrbuch der Software-Technik, Bd. 1. 2000]

6Modelling with UML, with semantics

Model engineering (1)

• Traditional rôle of models in software development
• Used for communication purposes with the customer and within the development team

(requirements specification, prototypes, etc.)
• Used for software design
• Specification for the programmer
• Code visualization

• Model engineering
• Models are the central artefacts in software development.
• Models represent

• different levels of abstraction (analysis, design, implementation);
• different parts of the system (UI, database, business logic, system administration);
• different concerns (security, performance, and resilience);
• different tasks (testing, deployment modelling).

• Often, it is possible to partially generate one model from another.

7Modelling with UML, with semantics

Model engineering (2)

Model

Static Analysis

Documentation

Refactoring/
Transformation

Code generation

Automation

Automated testing

Rapid Prototyping

…

Test artefacts Pattern application

• Integration into Model-Driven Software Development (MDSD)

8Modelling with UML, with semantics

Key concepts of MDSD (1)

• Abstraction
• Abstraction can be used to model applications at different levels of detail or from different

perspectives.
• Abstraction is the process of ignoring irrelevant details in order to focus on relevant ones.
• Abstraction allows to focus on the different aspects of a system without getting lost in detail.

• Precise modelling
• Models as part of the definition of a system, not just as sketches.
• These models have well-defined semantics and can be transformed into implementation

artefacts (in the same way that one compiles Java code into byte code).
• Abstraction is not the same as imprecision

• Using abstraction one omits specific details while being precise about those details on which one does
focus.

9Modelling with UML, with semantics

Key concepts of MDSD (2)

• Automation
• Automate the development process so that any artefact, which can be derived from information

in a model, is generated (e.g., code, deployment descriptors, test cases, build scripts, other
models, ...)

• Automation can be achieved by using two main techniques:
• Transformations automate the generation of artefacts from models.
• Patterns automate the creation and the modification of model elements; they are typically applied

interactively with a designer selecting a pattern and providing parameters.

• Direct representation
• Modelling with languages that map their concepts to domain concepts rather than computer

technology concepts
• More direct coupling of solutions (solution domain) to problems (problem domain), leading to

more accurate designs

10Modelling with UML, with semantics

Claimed benefits of MDSD (1)

• Improved stakeholder communication
• Models omit implementation detail not relevant to understand the logical behavior of a system
• Models are closer to the problem domain reducing the semantic gap between the concepts that

are understood by stakeholders and the language in which the solution is expressed
• Facilitates the delivery of solutions that are better aligned to business objectives

• Improved design communication
• Models facilitate understanding and reasoning about systems at the design level.
• Improved discussion making and communication about a system

• Expertise capture
• Projects or organizations often depend on best practice decisions of key experts
• Their expertise is captured in patterns and transformations
• When sufficient documentation accompanies the transformations, the knowledge of an

organization is maintained in the patterns and transformations

11Modelling with UML, with semantics

Claimed benefits of MDSD (2)

• Models as long-term assets
• Models are important assets that capture what the IT systems of an organization do
• High-level models are resilient to changes at the state-of-the-art platform level. They change

only when business requirements change

• Ability to delay technology decisions
• Early application development is focused on modeling activities
• It is possible to delay the choice of a specific technology platform or product version until a

later point when further information is available.
• This is crucial in domains with extremely long development cycles, such as air traffic control

systems

12Modelling with UML, with semantics

Claimed benefits of MDSD (3)

• Increased productivity
• Generation of code and artefacts from models
• Careful planning needs to ensure that there is an overall cost reduction.

• Maintainability
• MDSD helps to develop maintainable architectures where changes are made rapidly and

consistently, enabling more efficient migration of components onto new technologies.
• Keeping the high-level models free of implementation detail makes it easier to handle changes

in the underlying platform technology and its technical architecture.
• A change in the technical architecture of the implementation is made by updating a

transformation.

• Reuse of legacy
• One can consistently model existing legacy platforms.
• Reverse transformations from the components
• Migrating the components to a new platform or generating wrappers to enable the legacy

component to be accessed via integration technologies such as Web services.

13Modelling with UML, with semantics

Claimed benefits of MDSD (4)

• Adaptability
• Adding or modifying a business function is simplified since the investment in automation was

already made.

• Consistency
• Manually applying coding practices and architectural decisions is an error prone activity.

• Repeatability
• ROI from developing the transformations increases each time they are reused.
• The use of tried and tested transformations

• increases the predictability of developing new functions;
• reduces the risk since the architectural and technical issues were already resolved.

14Modelling with UML, with semantics

“Normal” software development

Level of Detail

Result of
Analysis

virtual or real
Implementation model Implementation

In
fo

rm
at

io
n

G
ai

n

Start

Goal
Implementation

Analy
sis

Design

Effort

15Modelling with UML, with semantics

MDSD effort (stage 1)

Reuse

Automation

Manual refinement

16Modelling with UML, with semantics

Level of Detail

Results of
Analysis

virtual or real
implementation model Implementation

In
fo

rm
at

io
n

 G
ai

n

Start

Goal

An
aly

sis

Effort

M
od

el
lin

g

Automation

Savings based on
the use of a semantically

rich platform

Savings
because

of generation

A

BA'

MDSD effort (stage 2)

Reuse

Automation

Without manual
refinement

17Modelling with UML, with semantics

Model-driven software development

• Makes software development more domain related opposed to computing related

• Narrows the semantic gap between business models and IT
• Re-use of components (assets)
• Generation techniques reduce time-to-market
• Makes software development more efficient

Domain
Concepts

Software Technology
Concepts

Domain
Concepts

Software Technology
Concepts

manual
refinement

manual refinement
& automation

18Modelling with UML, with semantics

Automation in software development

Requirements Requirements Requirements

Implementation

Source in a
general-purpose
language, e.g.,

Java or C++

Implementation

(may generate
code in

Java or C++)

Source in
domain-specific
language (DSL)

Implementation

(may generate
code in

Java or C++)

Source in
domain-specific
language (DSL)

High-level spec
(functional and
nonfunctional)

Manually
implement

Manually
implement

Manually
implement

Compile Compile Compile

Compile Compile

Implement
with
interactive,
automated
support

19Modelling with UML, with semantics

ModelModelModel

ModelModelArtefact (e.g., code)

Transform
ation/

C
odegeneration
Transform

ation/
C

odegeneration
Transform

ation/
C

ode generation

ModelModelling
Language

Meta-modelling
Language

ModelTransformation
Definition

Transformation
Language

ModelPlatform defined through
used

Reuse Abstraction (bottom-up)

Construction (top-down)

Reuse

MDSD: Basic architecture

20Modelling with UML, with semantics

MDSD: A bird’s view

Model Implementation

J2EE

Transformation
Knowledge

Transformer

Implementation

.Net

Implementation

. . .

21Modelling with UML, with semantics

How is MDSD realised?

• Developer develops model(s),
expressed using a DSL, based on
certain meta-model(s).

• Using code generation templates, the
model is transformed into executable
code.
• Alternative: Interpretation

• Optionally, the generated code is
merged with manually written code.

• One or more model-to-model
transformation steps may precede
code generation.

Transformation
Rules

Meta-model
ModelModelModel

Meta-modelModel

Transformer

Transformer

Generated Code

Code
Generation
Templates

Manually
Written
Code

optional

op
tio

na
l,

ca
n

be
 re

pe
at

ed

22Modelling with UML, with semantics

(Meta-)Model hierarchy

Meta-model

Meta-model element

Meta-meta-model
Meta-meta-model
element

conformsTometa

conformsTo

Model

Model element

conformsTometa

repOfSystem

meta MOF

Relational
meta-model

M3

M2

M1

UML
meta-model…

… …

23Modelling with UML, with semantics

(Meta-)Model hierarchy: Example

repOf

Relational Model

Book

conformsTo

Relational Meta-model

MOF Meta-meta-model

ClassAssociation
source

destination

conformsTo

conformsTo

System

…………

…………

AuthorIdPagesNbTitleBookId

Type

name: String

Table

name: String
+ type*+ col

+ owner

+ keyOf + key1..* *

*

Column

name: String
{ordered}

	Modeling with UML, with semantics
	Overview
	Literature
	Software
	What is a model?
	Model engineering (1)
	Model engineering (2)
	Key concepts of MDSD (1)
	Key concepts of MDSD (2)
	Claimed benefits of MDSD (1)
	Claimed benefits of MDSD (2)
	Claimed benefits of MDSD (3)
	Claimed benefits of MDSD (4)
	“Normal” software development
	MDSD effort (stage 1)
	MDSD effort (stage 2)
	Model-driven software development
	Automation in software development
	MDSD: Basic architecture
	MDSD: A bird’s view
	How is MDSD realised?
	(Meta-)Model hierarchy
	(Meta-)Model hierarchy: Example
	MDSD: Process
	Set-up of MDSD project and tooling
	MDSD approaches: A short overview
	Computer-Aided Software Engineering (CASE)
	Executable UML
	Model-Driven Architecture (MDA)
	Model-Driven Architecture (MDA): Overview
	MDA basic elements: Models
	MDA basic elements: Models
	MDA basic elements: Meta-models (1)
	MDA basic elements: Meta-models (2)
	MDA basic elements: Transformations (1)
	MDA basic elements: Transformations (2)
	MDA basic elements: Transformations (3)
	MDA technologies and standards
	MDA development process
	Architecture-Centric Model Driven Software Development
	MetaCASE/MetaEdit+
	Software Factories
	Acronyms / Definitions
	Map of MDSD concepts
	References
	Meta-Modelling
	Model vs. System
	Model of a model ― The correspondence continuum
	Basic entities of MDE and MDSD
	A very popular model: Geographical maps
	Limited substitutability principle
	Lewis Carroll and the 1:1 map
	Lewis Carroll and the blank map
	Every map has a legend (implicit or explicit)
	Maps without legends are meaningless
	The legend is a meta-model
	The model of a model is not a meta-model
	Meta-models act as filters
	Meta-models as simple ontologies
	Multiple views and coordinated DSLs
	Multiple views and aspects of a software system
	Meta-models
	A “lattice” of meta-models
	The basic assumptions of MDE and MDSD
	Meta-modelling hierarchy or the meta-modelling stack
	Abstract Syntax Systems Compared
	Three-level hierarchy: Example ― Petri-nets
	Foliennummer 68
	Foliennummer 69
	Basic entities of MDE and MDSD
	The notion of Technological Space (TS)
	Main Technological Spaces
	Unified Modeling Language 2
	History and Predecessors
	Usage Scenarios
	Usage Scenarios
	Diagram types in UML 2
	Internal Structure: Overview
	Internal Structure: Layers
	Internal Structure: Layers
	Internal Structure: Rings
	Internal Structure: Packages
	UML is not (only) object oriented
	Unified Modeling Language 2
	History and predecessors
	Usage scenarios
	Classes
	Associations
	Association classes
	Data types and enumerations
	Inheritance (1)
	Inheritance (2)
	Constraints
	Packages (1)
	Packages (2)
	Packages (3)
	Metamodel
	Features
	Properties
	Behavioral features
	Operations (1)
	Operations (2)
	Signals and receptions
	Interfaces
	Templates
	Object diagram
	Instances specifications
	Wrap up
	Unified Modeling Language 2
	History and predecessors
	Usage scenarios
	States and transitions
	Relation to class diagrams
	Triggers and events (1)
	Triggers and events (2)
	Triggers and events (3)
	Behaviours
	How state machines communicate
	Hierarchical states (1)
	Hierarchical states (2)
	Orthogonal regions
	Forks and joins
	Entry and exit points (1)
	Entry and exit points (2)
	History states
	Metamodel
	Run-to-Completion Step: Overview
	Run-to-Completion Step: Preliminaries (1)
	Run-to-Completion Step: Preliminaries (2)
	Run-to-Completion Step: Preliminaries (3)
	Run-to-Completion Step (1)
	Run-to-Completion Step (2)
	Run-to-Completion Step (3)
	Semantic variation points
	State machine refinement
	Protocol state machines
	Protocol state machines
	How things work together
	Wrap up
	Unified Modeling Language 2
	A first glimpse
	History and predecessors
	Usage scenarios
	Syntactical variants
	Main concepts
	Message types
	Activation
	Usage: Use case scenarios
	Usage: Class interactions
	Usage: Test cases
	Usage: Timing specification
	Abstraction in timing diagram
	Usage: Interaction overview
	Complex interactions
	Interaction operators (overview)
	Main concepts (metamodel)
	Semantics
	Interaction operators seq & strict
	Interaction operator loop
	Interaction operators: interleaving
	Interaction operators alt, opt, brk: choice
	Interaction operators: abstraction
	Interaction operator ref & parameters
	Interaction operators: negation
	Wrap up
	Unified Modeling Language 2
	Usage scenarios
	Stereotypes (1)
	Stereotypes (2)
	Profiling
	Metamodel
	Metamodeling with Profiles
	Wrap up
	Object Constraint Language 2
	A first glimpse
	History and predecessors
	Usage scenarios
	Language characteristics
	Simple types
	Parameterized types
	Type hierarchy
	Expressions
	Expressions: Standard library (1)
	Expressions: Standard library (2)
	Evaluation
	Connection to UML
	Invariants
	Semantics of invariants
	Pre-/post-conditions
	Semantics of pre-/post-conditions
	Combining pre-/post-conditions
	Messages
	Initial values and derived properties
	Query bodies and model features
	Wrap up
	Meta-Object Facility 2
	OMG’s standards UML and MOF
	Relations between UML 2 and MOF 2
	Meta-Object Facility (MOF)
	MOF 2.0 Structure
	MOF 2.0 Relationships (1)
	MOF 2.0 Relationships (2)
	EMOF Types ― merged from UML Infrastructure
	EMOF Classes ― merged from UML Infrastructure (1)
	EMOF Classes ― merged from UML Infrastructure (2)
	EMOF Data Types ― merged from UML Infrastructure
	EMOF Packages ― merged from UML Core:Basic
	XML Metadata Interchange (XMI)
	XMI versions and MOF versions
	MOF and XMI
	UML Superstructure as XMI document (1)
	UML Superstructure as XMI document (2)
	UML model as XMI document
	Schema production
	Schema production rules: Classes and properties
	Schema production: Example (1)
	Document production: Example (1)
	Schema production rules: Relationships
	Schema production: Example (2)
	Document production: Example (2)
	Schema production: Example (3)
	Differences
	Differences: Example
	Tool interoperability
	Eclipse Modeling Framework
	Eclipse Modeling Framework (EMF)
	EMF
	EMF architecture: Model import and generation
	EMF ― Fundamental Pieces
	EMF in the meta-modelling architecture
	EMF architecture: Ecore
	Ecore: Overview
	Ecore: Inheritance hierarchy
	Ecore: Associations
	Ecore: Generics
	EMF model definition (1)
	EMF model definition: Programming (1)
	EMF model definition: Programming (2)
	EMF model definition: Programming (3)
	EMF model definition (2)
	Foliennummer 241
	Foliennummer 242
	Foliennummer 243
	Foliennummer 244
	Foliennummer 245
	Foliennummer 246
	Foliennummer 247
	Foliennummer 248
	Foliennummer 249
	Foliennummer 250
	Foliennummer 251
	Foliennummer 252
	Foliennummer 253
	Foliennummer 254
	Foliennummer 255
	Foliennummer 256
	Xtext
	Xtext
	DSL example: Secret compartments (1)
	DSL example: Secret compartments (2)
	DSL example: Secret compartments (3)
	Secret compartments in Xtext: Grammar (1)
	Secret compartments in Xtext: Grammar (2)
	Secret compartments: Code generation with Xtend/Xpand (1)
	Secret compartments: Code generation with Xtend/Xpand (2)
	Secret compartments: Code generation with Xtend/Xpand (3)
	Secret compartments: Code generation with Xtend/Xpand (4)
	Secret compartments: Modelling workflow (1)
	Secret compartments: Modelling workflow (2)
	Secret compartments: Modelling workflow (3)
	Model Transformations
	What is a transformation?
	Model-to-model vs. Model-to-code
	Transformations as models
	Model transformation
	Characterisation of model transformations (1)
	Characterisation of model transformations (2)
	Characterisation of model transformations (3)
	Characterisation of model transformations (4)
	Features of model transformations
	Features of model transformations
	Features of model transformations
	Features of model transformations
	Model-to-model approaches (1)
	Model-to-model approaches (2)
	Model-to-model approaches (3)
	Model-to-model approaches (4)
	Model-to-model approaches (5)
	Model-to-model approaches (6)
	Model-to-text approaches
	QVT Operational
	MOF QVT: OMG’s model-to-model transformation standard
	MOF QVT context
	Requirements for MOF QVT language
	MOF QVT architecture
	Overview of Operational Mappings (OM)
	Flattening class hierarchies example
	Sample input model
	Sample output model
	OM language: Transformation program structure
	Mapping operations
	General structure of mapping operations
	Mapping operations: Example
	Helpers: Example
	Resolving object references
	Mapping operations: Disjunction, inheritance, merging
	Imperative OCL constructs
	MOFM2T
	MOFM2T: OMG’s model-to-text transformation standard
	M2T Transformations: Example (1)
	M2T Transformations: Example (2)
	MOFM2T features
	Model Transformation Languages
	Model-to-model approaches: Example
	Model-to-model approaches: Example
	UML to RDBMS example: Metamodel
	ATLAS Transformation Language (ATL)
	ATL: Matched rules
	ATL: Example (1)
	ATL: Example (2)
	QVT Relations: Language Overview
	Relations transformations
	QVT Relations: Graphical syntax
	Relational approach: QVT Relations (1)
	Relational approach: QVT Relations (2)
	Relational approach: QVT Relations (3)
	Graph-transformation approach: AGG
	Graph-transformation approach: MOFLON
	Graph-transformation approach: Mola
	Model-to-model approaches: Comparison (1)
	Model-to-model approaches: Comparison (2)
	Java Emitter Templates (JET)
	JET2: Example ― Template
	JET2: Example ― Generated code
	JET2: Example ― Transformation
	Domain-Specific Languages
	UML – one size fits all?
	Domain-Specific Languages
	Advantages of using UML profiles
	Disadvantages of using UML profiles
	Rationale for Using Profiles vs. MOF (benefits)
	Meta-model characteristics
	Dynamic Meta-Modelling
	Dynamic Meta-Modelling (DMM)
	DMM: Overview
	DMM example: UML activities
	UML activities with DMM: Offers
	UML activities with DMM: Static semantics (1)
	UML activities with DMM: Static semantics (2)
	UML activities with DMM: Operations
	UML activities with DMM: Decision nodes
	UML activities with DMM: Decision nodes ― Example (1)
	UML activities with DMM: Decision nodes ― Example (2)
	UML activities with DMM: Starting an activity
	UML activities with DMM: Fork nodes
	Semantic Web
	Web of data: Examples
	Models for the Web of data: Candidates
	RDF triples
	Namespaces
	Interpreting RDF: Focus on resources
	Interpreting RDF: Focus on linkage
	Syntaxes for RDF
	Standard vocabulary of RDF
	Blank nodes
	Three kinds of literals
	Named graphs
	Features of RDF
	Example: Turtle
	Turtle: Handling of lists
	SPARQL
	Inference
	RDFa
	References
	Model-to-text approaches: Templates
	References
	Which approach to choose?
	openArchitectureWare
	openArchitectureWare (oAW)
	Code Generation with oAW
	Code Generation with oAW
	Code Generation with oAW
	Code Generation with oAW
	Code Generation with oAW
	Separating generated and non-generated code
	oAW: Recipes
	oAW: Recipes ― Example
	References
	Climbing the MDSD mountain (1)
	Climbing the MDSD mountain (2)
	Climbing the MDSD mountain (3)
	Climbing the MDSD mountain (4)

