Logik für Informatiker Logic for computer scientists

Till Mossakowski

WiSe 2013/14

Resolution

Recall: Conjunctive Normal Form (CNF)

For each propositional sentence, there is an equivalent sentence of form

$$
\left(\varphi_{1,1} \vee \ldots \vee \varphi_{1, m_{1}}\right) \wedge \ldots \wedge\left(\varphi_{n, 1} \vee \ldots \vee \varphi_{n, m_{n}}\right) \quad\left(n \geq 1, m_{i} \geq 1\right)
$$

where the $\varphi_{i, j}$ are literals, i.e. atomic sentences or negations of atomic sentences.
Note that n may be 1 , e.g. $A \vee B$ is in CNF. Note that the m_{i} may be 1 , e.g. A as well as $A \wedge B$ are in CNF.

A sentence in CNF is called a Horn sentence, if each disjunction of literals contains at most one positive literal.

Examples of Horn sentences

\neg Home (claire) $\wedge(\neg$ Home $($ max $) \vee$ Happy (carl)) Home(claire) \wedge Home (max) $\wedge \neg$ Home (carl)
Home (claire) $\vee \neg$ Home (max) $\vee \neg$ Home (carl)
Home (claire) ^ Home(max)^
$(\neg$ Home $($ max $) \vee \neg$ Home $($ max $)$)

$$
\begin{aligned}
& \neg \text { Home }(\text { claire }) \wedge(\text { Home }(\text { max }) \vee \text { Happy }(\text { carl })) \\
& \text { (Home (claire) } \vee \operatorname{Home}(\max) \vee \neg \text { Happy }(\text { claire }) \text {) } \\
& \wedge \text { Happy (carl) } \\
& \text { Home (claire }) \vee(\text { Home }(\max) \vee \neg H o m e(c a r l))
\end{aligned}
$$

Alternative notation for the conjuncts in Horn sentences

$$
\begin{array}{lll}
\neg A_{1} \vee \ldots \vee \neg A_{n} \vee B & \Leftrightarrow & \left(A_{1} \wedge \ldots \wedge A_{n}\right) \rightarrow B \\
\neg A_{1} \vee \ldots \vee \neg A_{n} & \Leftrightarrow & \left(A_{1} \wedge \ldots \wedge A_{n}\right) \rightarrow \perp \\
B & \Leftrightarrow & \top \rightarrow B \\
\perp & \Leftrightarrow & \square
\end{array}
$$

Any Horn sentence is equivalent to a conjunction of conditional statements of the above four forms.

Satisfaction algorithm for Horn sentences

(1) For any conjunct $\top \rightarrow B$, assign TRUE to B.
(2) If for some conjunct $\left(A_{1} \wedge \ldots \wedge A_{n}\right) \rightarrow B$, you have assigned true to A_{1}, \ldots, A_{n} then assign True to B.
(3) Repeat step 2 as often as possible.
(9) If there is some conjunct $\left(A_{1} \wedge \ldots \wedge A_{n}\right) \rightarrow \perp$ with TRUE assigned to A_{1}, \ldots, A_{n}, the Horn sentence is not satisfiable. Otherwise, assigning FALSE to the yet unassigned atomic sentences makes all the conditionals (and hence also the Horn sentence) true.

Correctness of the satisfaction algorithm

Theorem The algorithm for the satisfiability of Horn sentences is correct, in that it classifies as tt-satisfiable exactly the tt-satisfiable Horn sentences.

Propositional Prolog

AncestorOf $(a, b):-\operatorname{MotherOf}(a, b)$.
AncestorOf (b, c) : $-\operatorname{MotherOf}(b, c)$.
AncestorOf (a, b) : - FatherOf (a, b).
AncestorOf (b, c) : $-\operatorname{FatherOf}(b, c)$.
AncestorOf (a, c) : - AncestorOf (a, b), AncestorOf (b, c).
$\operatorname{MotherOf}(a, b) . \quad$ FatherOf $(b, c) . \quad$ FatherOf (b, d).
To ask whether this database entails B, Prolog adds $\perp \leftarrow B$ and runs the Horn algorithm. If the algorithm fails, Prolog answers "yes", otherwise "no".

Clauses

A clause is a finite set of literals.
Examples:

$$
\begin{gathered}
C_{1}=\{\operatorname{Small}(a), \operatorname{Cube}(a), \operatorname{BackOf}(b, a)\} \\
C_{2}=\{\operatorname{Small}(a), \operatorname{Cube}(b)\} \\
C_{3}=\emptyset \quad(\text { also written } \square)
\end{gathered}
$$

Any set \mathcal{T} of sentences in CNF can be replaced by an equivalent set \mathcal{S} of clauses: each conjunct leads to a clause.

Resolution

A clause R is a resolvent of clauses C_{1}, C_{2} if there is an atomic sentence A with $A \in C_{1}$ and $(\neg A) \in C_{2}$, such that

$$
R=\left(C_{1} \backslash\{A\}\right) \cup\left(C_{2} \backslash\{\neg A\}\right)
$$

Resolution algorithm: Given a set \mathcal{S} of clauses, systematically add resolvents. If you add \square at some point, then \mathcal{S} is not satisfiable. Otherwise (i.e. if no further resolution steps are possible and \square has not been added), it is satisfiable.

Example

We start with the CNF sentence:
$\neg A \wedge(B \vee C \vee B) \wedge(\neg C \vee \neg D) \wedge(A \vee D) \wedge(\neg B \vee \neg D)$
In Clause form:
$\{\neg A\},\{B, C\},\{\neg C, \neg D\},\{A, D\},\{\neg B, \neg D\}$
Apply resolution:

$$
\frac{\frac{\{A, D\}}{\{D\}} \frac{\{\neg A\}}{\{B, \neg D\}} \quad\{\neg D\}}{\square}
$$

Soundness and completeness

Theorem Resolution is sound and complete. That is, given a set \mathcal{S} of clauses, it is possible to arrive at \square by successive resolutions if and only if \mathcal{S} is not satisfiable.
This gives us an alternative sound and complete proof calculus by putting

$$
\mathcal{T} \vdash S
$$

iff with resolution, we can obtain \square from the clausal form of $\mathcal{T} \cup\{\neg S\}$.

