Logik für Informatiker Logic for computer scientists

Till Mossakowski

WiSe 2013/14

Object and meta theory

Object theory = reasoning within a formal proof system (e.g. Fitch)

Meta theory = reasoning about a formal proof system

Truth assignments (Valuations)

Definition

A truth assignment is a function h from the set of all atomic sentences of that language into the set $\{T, F\}$.

Definition

Any truth assignment h can be extended to an assignment \hat{h} for all sentences as follows:

Tautological consequence

A sentence S is a tautological consequence of a set of sentences $\mathcal T,$ written

$$\mathcal{T}\models_{\mathcal{T}} S,$$

if all truth assignments of atomic formulas with truth values that make all sentences in T true also make S true.

 \mathcal{T} is called tt-satisfiable, if there is a truth assignment making all sentences in \mathcal{T} true. (Note: \mathcal{T} may be infinite.)

Tautological consequence and satisfiability

Proposition. The sentence S is a tautological consequence of the set \mathcal{T} if and only if the set $\mathcal{T} \cup \{\neg S\}$ is not tt-satisfiable.

Propositional proofs

S is \mathcal{F}_T -provable from \mathcal{T} , written

 $\mathcal{T} \vdash_{\mathcal{T}} S$,

if there is a formal proof of S with premises drawn from \mathcal{T} using the elimination and introduction rules for $\lor, \land, \neg, \rightarrow, \leftrightarrow$ and \bot . Again note: \mathcal{T} may be infinite.

Consistency

A set of sentences \mathcal{T} is called formally inconsistent, if

 $\mathcal{T} \vdash_{\mathcal{T}} \perp$.

Example: $\{A \lor B, \neg A, \neg B\}$.

Otherwise, \mathcal{T} is called formally consistent.

Example: $\{A \lor B, A, \neg B\}$

Soundness

Theorem 1. The proof calculus $\mathcal{F}_{\mathcal{T}}$ is sound, i.e. if

 $\mathcal{T} \vdash_{\mathcal{T}} S$,

then

$$\mathcal{T}\models_{\mathcal{T}} S.$$

Proof: see earlier lecture.

Completeness

Theorem 2 (Bernays, Post). The proof calculus $\mathcal{F}_{\mathcal{T}}$ is complete, i.e. if

$$\mathcal{T}\models_{\mathcal{T}} S,$$

then

$$\mathcal{T} \vdash_{\mathcal{T}} S.$$

Theorem 2 follows from:

Theorem 3. Every formally consistent set of sentences is tt-satisfiable.

Lemma 4. $\mathcal{T} \cup \{\neg S\} \vdash_{\mathcal{T}} \bot$ if and only if $\mathcal{T} \vdash_{\mathcal{T}} S$.

Proof of Theorem 3

- A set \mathcal{T} is formally complete, if for any sentence S, either $\mathcal{T} \vdash_{\mathcal{T}} S$ or $\mathcal{T} \vdash_{\mathcal{T}} \neg S$.
- Proposition 5. Every formally complete and formally consistent set of sentences is tt-satisfiable.
- Proposition 6. Every formally consistent set of sentences can be expanded to a formally complete and formally consistent set of sentences.

Proof of Proposition 5

Lemma 7. Let ${\mathcal T}$ be formally complete and formally consistent. Then

$$\ \, \bullet \ \, \mathcal{T} \vdash_{\mathcal{T}} (R \land S) \text{ iff } \mathcal{T} \vdash_{\mathcal{T}} R \text{ and } \mathcal{T} \vdash_{\mathcal{T}} S$$

$$T \vdash_{\mathcal{T}} (\neg S) \text{ iff } \mathcal{T} \not\vdash_{\mathcal{T}} S$$

$$T \vdash_{\mathcal{T}} (R \to S) \text{ iff } \mathcal{T} \not\vdash_{\mathcal{T}} R \text{ or } \mathcal{T} \vdash_{\mathcal{T}} S$$

Proof of Proposition 6

Lemma 8. A set of sentences T is formally complete if and only if for any atomic sentence A,

either $\mathcal{T} \vdash_{\mathcal{T}} A$ or $\mathcal{T} \vdash_{\mathcal{T}} \neg A$.

Compactness Theorem

Theorem 9. Let \mathcal{T} be any set of sentences. If every finite subset of \mathcal{T} is tt-satisfiable, then \mathcal{T} itself is satisfiable.